Screen support strip for use in vibratory screening apparatus

Abstract
A support strip has been invented for supporting part of a screen used in a vibratory shaker, the support strip having a support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one hump, raised portion or upturned finger projecting above the top surface of the support body and a support beneath said at least one hump, etc. The support may be entirely beneath the hump, etc. or part thereof may project beyond the hump, etc. The present invention also discloses a variety of screens and screen assemblies with such structure.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is directed to screens for vibratory shakers, screens for classifying and/or filtering material, modular screens with individual screen modules or plugs, plugs for openings in screens, plugs with screening material thereon and holes therethrough, screen useful for both dewatering and classification, and methods of screen repair and assembly.




2. Description of Related Art




The related art section of each of the above-identified applications is incorporated here fully by reference.




SUMMARY OF THE PRESENT INVENTION




The present invention, in certain embodiments, discloses a screen for a vibratory shaker for screening material flowing thereto, the screen having a frame with a plurality of spaced-apart frame openings, and a plurality of screen modules (or in other aspects, plugs) each disposed in a frame opening, each screen module having a module body with a module opening and screen means (e.g. mesh, screen, openings therethrough, etc.) at the module opening for screening material flowing thereto; such a screen wherein at least one or all screen modules is removably disposed in its respective frame opening; such a screen wherein the frame has exterior sides defining a frame space within the frame and wherein the plurality of frame openings extend substantially all across the frame space; such a screen wherein the frame is substantially flat or is corrugated; such a screen wherein the screening means is screening material (e.g. any mesh, screen or combination thereof) disposed over or in or over and in the module opening; such a screen wherein the frame has holding means and the screen modules have releasable attachment means (e.g. but not limited to a recess on one member and a bead on the other) that cooperate with the holding means to releasably mount the screen modules in the frame; such a screen wherein the frame is substantially flat with a top surface and at least one screen module (or all the modules) has a screening portion that projects above the top surface of the frame; such a screen wherein the frame has a bottom and at least one screen module (or all of them) has a screening portion that projects below the bottom surface; such a screen wherein there are projecting plug portions or module portions both above and below a frame, plate or panel and, in one aspect, holes or openings through the frame, plate or panel; such a screen wherein the plurality of screen modules includes a first set of screen modules and a second set of screen modules, the first set of screen modules having screening means having a first mesh (or screen) of a first mesh (or screen) size, and the second set of screen modules having screening means having a second mesh (or screen) of a second mesh (or screen) size, the first mesh size different from the second mesh size; such a screen wherein the first set of screen modules are for dewatering the material flowing to the vibratory shaker and the second set of screen modules are for classifying the material; such a screen wherein the screening means is removably secured to the screen modules; such a screen wherein the screening means comprises a series of openings extending through the module bodies; such a screen wherein each module body has a threaded end extendable through its respective frame opening and the screen includes a threaded nut for each screen module for mating with the threaded end of the module body to secure the screen modules in their frame openings; such a screen wherein the frame has a frame top surface and each screen module has a top surface which does not project above the frame top surface; such a screen wherein the frame (plate, panel, etc.) is corrugated including periodic raised portions and a plurality of support strips underlie and are attached to the frame, each support strip having a support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger configured and sized for contacting and supporting at least a part of a raised portion of the frame; such a screen wherein the at least one upturned finger is a plurality of spaced-apart upturned fingers; such a screen wherein the at least one upturned finger has a curved top with a shape corresponding to a shape of a raised portion of the frame; such a screen wherein the at least one upturned finger extends up from cuts (e.g. cuts in a plastic or metal strip disposed so that upon bending the finger(s) is created) in the support body and the at least one upturned finger is integral with the support body.




The present invention discloses, in certain embodiments a screen for a vibratory shaker for screening material flowing thereto, the screen having a frame with a plurality of spaced-apart frame openings, a plurality of screen modules (or in other aspects, plugs) each disposed in a frame opening, each screen module having a module body with a module opening and screen means at the module opening for screening material (e.g. fluid, slurries, drilling mud, etc.) flowing thereto, wherein all the screen modules are removably disposed in their respective frame openings, wherein the frame has exterior sides defining a frame space within the frame and cross members which with the exterior sides define the frame openings and wherein the plurality of frame openings extend substantially all across the frame space, wherein the frame has holding means and the screen modules have releasable attachment means that cooperate with the holding means to releasably mount the screen modules in the frame, and wherein the plurality of screen modules includes a first set of screen modules and a second set of screen modules, the first set of screen modules having screening means having a first mesh of a first mesh size, or the module body having openings therethrough of a first size, or both, and the second set of screen modules having screening means having a second mesh of a second mesh size, or the module bodies having openings of a second size, or both, the first mesh size (or first opening size) different from the second mesh size (or second opening size);




The present invention discloses, in certain embodiments, a frame for a screen for a vibratory shaker, the frame having a body with sides and cross members defining a plurality of openings (or a plate or panel with such openings) for mounting therein in each opening a screen module, mounting means for securing the screen modules in the openings; and such a frame wherein the mounting means include release means for releasably mounting each screen module in its respective opening.




The present invention discloses, in certain embodiments, a support strip for supporting part of a screen used in a vibratory shaker, the support strip having a support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger configured and sized for contacting and supporting at least a part of a raised portion of the frame; such a support strip wherein the at least one upturned finger is a plurality of spaced-apart upturned fingers; such a support strip wherein the at least one upturned finger has a curved top with a shape corresponding to a shape of a raised portion of the frame; and such a support strip wherein the at least one upturned finger extends up from cuts in the support body and the at least one upturned finger is integral with the support body.




The present invention, in certain embodiments, discloses a plug (or module) for disposition in an opening of a plug (or module) positioning member of a screen assembly for a vibratory separator that receives fluid with material therein for separation therefrom, the plug (or module) having a body, an opening through the body through which fluid is flowable, and screening apparatus at the opening for screening the fluid with material therein; such a plug or module wherein the screening apparatus is a series of holes through the body; such a plug or module wherein the screening apparatus is at least one, two, three or more layers of mesh and/or screen material used with or without a series of holes through the body, the layers of the same or different mesh or opening size; such a plug or module with holding apparatus on the body for securing the plug to the screen assembly; such a plug or module with releasable holding apparatus for releasably securing the plug to the screen assembly; such a plug or module with a top surface and sized and configured so that the top surface will not project above a top surface of the screen assembly, frame, plate, or panel; such a plug or module wherein the screening apparatus is releasably secured to the body; such a plug or module wherein the plug or module has a length and a width and the screen assembly has a length and a width and the opening in the plug or module positioning member (e.g. frame, plate, panel) has a length, and wherein the length of the plug is substantially equal to the length of the opening and the opening extends for substantially the length of the plug or module positioning member; such a plug or module wherein the plug or module positioning member is selected from the group consisting of a frame, a plate, and a panel and wherein the screening apparatus includes screening material; and such a plug or module with a curved, convex, concave, slanted, or horizontal top on the body.




It is, therefore, an object of at least certain preferred embodiments of the present invention to provide:




New, useful, unique, efficient, nonobvious: screens and vibratory devices with such screens; plugs and modules for screens for vibratory separators, in one aspect releasably secured to the screen; three-dimensional screens formed with a flat plate, frame, or panel and a plurality of plugs or modules that project beyond the frame, etc. either above, below, or both; screen or frame, panel, or plate, support strips that have one or more upturned fingers formed by cutting the strip member and bending the finger therefrom; and screens with at least dual screening areas, e.g. an area for dewatering and an area for classifying and/or an area for high wear and replaceable modules or plugs with appropriate screening and/or mesh material to effect this; screens that are easily repairable or have areas that are easily replaced; and such screens that are flat or corrugated.




The present invention, in certain embodiments, discloses a method for making a plate mesh combination, the method including securing (e.g., but not limited to, with adhesive and/or heat) at least one, two, three or more meshes and/or screens to a plate, heating the plate, and corrugating the plate with the mesh and/or screen thereon while it remains heated.




Certain embodiments of this invention are not limited to any particular individual feature disclosed here, but include combinations of them distinguished from the prior art in their structures and functions. There are, of course, additional aspects of the invention described below and which may be included in the subject matter of the claims to this invention. Those skilled in the art who have the benefit of this invention, its teachings, and suggestions will appreciate that the conceptions of this disclosure may be used as a creative basis for designing other structures, methods and systems for carrying out and practicing the present invention. The claims of this invention are to be read to include any legally equivalent devices or methods.




The present invention recognizes and addresses the previously-mentioned problems and long-felt needs and provides a solution to those problems and a satisfactory meeting of those needs. To one skilled in this art who has the benefits of this invention's realizations, teachings, disclosures, and suggestions, other purposes and advantages will be appreciated from the following description of preferred embodiments, given for the purpose of disclosure, when taken in conjunction with the accompanying drawings. The detail in these descriptions is not intended to thwart this patent's object to claim this invention no matter how others may later disguise it by variations in form or additions of further improvements.











BRIEF DESCRIPTION OF THE DRAWINGS




A more particular description of embodiments of the invention briefly summarized above may be had by references to the embodiments which are shown in the drawings which form a part of this specification. These drawings illustrate certain preferred embodiments and are not to be used to improperly limit the scope of the invention which may have other equally effective or legally equivalent embodiments.





FIG. 1A

is a top view of a screen plug according to the present invention.

FIG. 1B

is a side view of an embodiment of a plug as in FIG.


1


A.

FIG. 1C

is a side view of an embodiment of a plug as in FIG.


1


A.





FIG. 2A

is a top view of a screen plug according to the present invention.

FIG. 2B

is a cross-section view along line


2


B—


2


B of FIG.


2


A.

FIGS. 2C

,


2


D are side views of an embodiment of a plug as in FIG.


2


A.





FIG. 3A

is a top view of a screen plug according to the present invention.

FIG. 3B

is a cross-section view along line


3


B—


3


B of FIG.


3


A.

FIG. 3C

is a side view of an embodiment of a plug as in FIG.


3


A.

FIG. 3D

is a side view of an embodiment of a plug as in FIG.


3


A.

FIG. 3E

is a side view of an embodiment of a plug as in FIG.


3


A.

FIG. 3F

is a side view in cross-section of a fastener for the plug of FIG.


3


F.





FIG. 4A

is a top view of a screen according to the present invention.

FIG. 4B

is an end view of the screen of FIG.


4


A.





FIG. 5A

is a top view of a screen according to the present invention.

FIG. 5B

is an end view of the screen of FIG.


5


A.





FIG. 6A

is a perspective view of a strip support according to the present invention.

FIGS. 6B

,


6


D are end views of the strip support of FIG.


6


B.

FIG. 6C

is a top view of the strip support of FIG.


6


A.





FIGS. 7A

,


7


E are top views of a strip support according to the present invention.

FIG. 7B

is a perspective view of the strip support of FIG.


7


A.

FIGS. 7C

,


7


D are end views of the strip support of FIG.


7


B.





FIG. 8

is a top schematic view of a screen assembly according to the present invention.





FIG. 9

is a side cross-section view of a screen assembly according to the present invention.





FIG. 10A

is a side cross-section view of a screen assembly according to the present invention.

FIG. 10B

is a side cross-section view of a screen assembly according to the present invention.





FIG. 11A

is a side cross-section view of a screen assembly according to the present invention.

FIG. 11B

is a top view of the screen assembly of claim


11


A.





FIG. 12A

is a side cross-section view of a screen assembly according to the present invention.

FIG. 12B

is a top view of the screen assembly of claim


11


A.





FIG. 13

is a side cross-section view of a plug according to the present invention.





FIG. 14

is a side cross-section view of a plug according to the present invention.





FIG. 15A

is a bottom view of a plug according to the present invention.

FIG. 15B

is a side view of the plug of FIG.


15


A.





FIG. 16A

is a bottom view of a plug according to the present invention.

FIG. 16B

is a side view of the plug of FIG.


15


A.





FIG. 17A

is a top view of a screen assembly according to the present invention.

FIG. 17B

is an end view of the screen assembly of FIG.


17


A.

FIG. 17C

is an end view of an elongated plug of the screen assembly of FIG.


17


A.

FIGS. 17D and 17E

are end views of alternative elongated plug embodiments.





FIGS. 18A-18D

are top views of prior art perforated plates.





FIG. 19A

is a perspective view of a strip system according to the present invention.

FIG. 19B

is a cross-section view along line


19


B—


19


B of FIG.


19


A.

FIG. 19C

is a cross-section view along line


19


C—


19


C of FIG.


19


B.

FIG. 19D

is a cross-section view of a system as in FIG.


19


A.





FIG. 20A

is a cross-section view of a screen support member according to the present invention.

FIG. 20B

shows a side cross-section view of the support of FIG.


20


A.





FIG. 21A

is a cross-section view of a screen support member according to the present invention.

FIG. 21B

shows a side cross-section view of the support of FIG.


21


A.





FIG. 22A

is a cross-section view of a screen support member according to the present invention.

FIG. 22B

shows a side cross-section view of the support of FIG.


22


A.

FIG. 22C

is a cross-section view of a screen support member according to the present invention.





FIG. 23A

is a top view of a screen according to the present invention.

FIG. 23B

is a view along line


23


B—


23


B of FIG.


23


A.

FIG. 23C

is a view along line


23


C—


23


C of FIG.


23


B.

FIG. 23D

is a cross-section view of a screen according to the present invention.











DESCRIPTION OF EMBODIMENTS PREFERRED AT THE TIME OF FILING FOR THIS PATENT




As shown in

FIG. 1A

, a plug


160


according to the present invention has a body


161


and a mesh


162


formed integrally thereof. It is within the scope of this invention for the mesh to be a wire mesh or meshes (or screens) secured to the body


161


or wire mesh over the integral mesh


162


. In certain aspects the plug


160


is a single piece member made of plastic or urethane.




In the embodiment of

FIG. 1B

, the plug


160


has an upper member


163


spaced apart from a lower member


164


by a snap recess


165


which is sized to correspond to an edge of a screen opening so that the plug


160


may be snapped into and then held in the screen opening.




In the embodiment of the plug


160


in

FIG. 1C

, an upper member


166


is disposed above a lower member


167


. The lower member


167


is sized to fit in an opening of a screen. The plug


160


may be held in place in a screen opening by a friction fit and/or with a suitable glue, adhesive, or epoxy. Velcro ™ material at plug edges and on opening edges may be used to releasably secure any plug herein at or in an opening. Plugs of different screening material or mesh or mesh size may be used in different screen areas; e.g., but not limited to plugs with a 40 mesh at back edge of a screen and plugs with a 100 mesh at a front end of the screen.




As shown in

FIGS. 2A

,


2


B and


2


C, a plug


170


according to the present invention has a body


171


and a mesh


172


formed integrally thereof. It is within the scope of this invention for the mesh to be any known mesh or screen, meshes or screens, or combination thereof, including but not limited to a layer or layers of plastic or synthetic mesh or a piece or pieces of perforated plastic or synthetics (bonded together, unbonded, or bonded at intermittent points) or a wire mesh secured to the body


171


. In certain aspects the plug


170


is a single piece member made of plastic or urethane.




In the embodiment of

FIG. 2A

, the plug


170


has an upper member


173


spaced apart from a lower member


174


by a snap recess


175


which is sized to correspond to an edge of a screen opening so that the plug


170


may be snapped into and then held in the screen opening.




In the embodiment of the plug


170


in

FIG. 2D

, an upper member


176


is disposed above a lower member


177


. The lower member


177


is sized to fit in an opening of a screen. The plug


170


may be held in place in a screen opening by a friction fit and/or with a suitable glue, adhesive, or epoxy.




As shown in

FIGS. 3A

,


3


B and


3


C, a plug


180


according to the present invention has a body


181


and a mesh


182


formed integrally thereof. It is within the scope of this invention for the mesh to be a wire mesh secured to the body


181


. In certain aspects the plug


180


is a single piece member made of plastic or urethane.




In the embodiment of

FIG. 3A

, the plug


180


has an upper member


183


spaced apart from a lower member


184


by a snap recess


185


which is sized to correspond to an edge of a screen opening so that the plug


180


may be snapped into and then held in the screen opening.




In the embodiment of the plug


180


in

FIG. 3D

, an upper member


186


is disposed above a lower member


187


. The lower member


187


is sized to fit in an opening of a screen. The plug


180


may be held in place in a screen opening by a friction fit and/or with a suitable glue, adhesive, or epoxy.





FIG. 3E

shows an embodiment of the plug


180


with an upper body


188


and a lower body


189


with threads


190


thereon. A fastener


191


(

FIG. 3F

) with internal threads


192


threadedly mates with the lower body


189


to removably attach the plug


180


in a screen opening. Internal threads may be used on the plug


180


with an externally threaded fastener.





FIG. 4A

shows a screen


330


according to the present invention with a plurality of ridges with ridge tops


332


connected to ridge sides


333


with bottom member


334


between adjacent ridge sides


333


. The ridge tops


332


have a plurality of openings


335


each with a plug


336


therein according to the present invention. The ridge sides


333


have a plurality of openings


337


each with a plug


338


therein according to the present invention. The bottom member


334


has one or a plurality of at least two or more openings each with a plug


339


therein according to the present invention. A plate


340


has the ridge tops


332


, ridge sides


333


and bottom members


334


, each with their respective openings. It is within the scope of this invention for some or substantially all (e.g. the total minus one, two, three, four, five, or up to twenty) of the openings in the plate


340


to be covered with screen, screens, mesh or meshes in any combination applied and secured in any known manner or in any manner disclosed herein. It is within the scope of this invention for any opening in the plate


340


to have a plug permanently or removably disposed therein or for such a plug to be emplaced in any opening to repair damaged screen or to replace a previously used plug. Any plug disclosed herein may be used with the screen


330


. The plugs


342


are like the plugs of

FIGS. 1C

,


2


D,


3


D or


3


E. It is within the scope of this invention for the screen


330


to have any number of desired ridges


332


of any suitable dimensions with corresponding ridge sides


333


and bottom members


334


, or with interconnected ridges having no bottom member therebetween. Alternatively, pointed corrugations may be used with no flat top and no flat bottom or with a flat bottom and pointed top. Such a screen (and any screen or screen assembly disclosed herein) may be used on a frame; on a flat perforated plate; on one or more braces and/or strip supports (flat and/or corrugated; and corrugated to correspond to the shape of the screen


330


's shapes); on a combination thereof; and/or with upturned side edges or other connection apparatus for connection to a vibratory separator or shale shaker.




It is within the scope of this invention for the plugs of

FIGS. 2A-2D

and


3


A-


3


E (and any plug disclosed herein) to be circular, oval, or square, rectangular, triangular, regular polygonal, polygonal elliptical (as viewed from above) or to be elongated as disclosed below. It is within the scope of this invention for mesh or meshes on or formed integrally of any plug herein (described above or below) to be oriented and emplaced on a screen either parallel to or normal to the direction of flow of material onto the screen for dewatering or classifying as desired. It is within the scope of this invention to provide a plug (described above or below) with both mesh or meshes formed integrally thereof and mesh or meshes applied thereunder or thereover. Upper plug parts may be made of plastic (or urethane) with lower parts made of metal, or vice versa. The plug body may be plastic or metal with plastic and/or wire mesh bonded to it. Different plugs may be used in the same screen. Plugs can be any desired size. In one aspect plugs range from a smallest width of about 0.5 inches to one foot wide, or more and from a length of 0.5 inches to several feet. In one aspect plugs with different mesh or screen than other plugs are used in the same screen to provide a different classification function in one screen. In one aspect plugs of uniform size with similar or dissimilar mesh or screen are used.





FIG. 5A

shows a screen


350


according to the present invention with a plurality of openings


351


and


352


in a plate


360


. Plugs


353


are secured in some of the openings


351


and a plug


354


is in one of the openings


352


. Mesh (shown partially in

FIG. 5A

) covers substantially all of the tops of the plugs


353


and


354


. Screen


355


covers openings that are not plugged. Screen


355


may be any known screen, screens, mesh, or meshes applied to the plate


360


in any known manner or any manner disclosed herein. The plate


360


may be any known plate, flat or corrugated.





FIG. 6A

shows a support strip


370


according to the present invention with a body


371


, ends


372


and upturned fingers


373


,


374


. In one aspect the strip


370


is metal (e.g. but not limited to carbon steel or stainless steel), and the fingers are upturned following a cut


375


in the body


371


and then a cut to separate the fingers. These cuts are made and sized, in one aspect, so that the fingers are sized and positioned to correspond to raised portions of a corrugated screen or of a corrugated plate. The strip


370


can be used as any strip disclosed herein or in pending co-owned application U.S. Ser. No. 08/786,515 filed on Jan. 21, 1997 entitled “Screen For Shale Shaker” incorporated fully herein for all purposes. Alternatively, the strip


370


can be a molded item made as shown in

FIGS. 6A-6C

. It is within the scope of this invention to have a strip with three, four, five or more sets of upturned fingers and, in one aspect, to have a set of fingers for each raised portion of a plate and/or screen used with the strip. It is within the scope of this invention to use any desired number of strips with a plate and/or screen. One or more sets of fingers


373


,


374


may be used on a strip with one or more fingers


385


of the strip of FIG.


7


A.

FIG. 6D

shows an alternative embodiment of the strip


370


with an internal support


377


between fingers


373


,


374


. Such supports


377


may be glued in place to the interior surfaces of the fingers


373


,


374


. If the strip


370


is metal and the supports


377


are metal, they may be glued, sintered, or welded in place. The supports


377


(and strip


370


) may be made of materials as described below for the supports and strips in

FIGS. 19A-23D

.





FIGS. 7A-7C

disclose a support strip


380


for a screen and/or plate which has a body


381


(in one aspect made of metal) with ends


382


and a cut


383


which has fingers


385


. As shown in

FIGS. 7B and 7C

, the fingers


385


are upturned and have a top curved portion


384


. In one aspect the top curved portion


384


corresponds in shape to a curved portion of a corrugated plate and/or screen used with one or more of the strips


380


. Alternatively the strip


380


can be made of one integral plastic piece. Any desired number of fingers


385


may be provided.

FIGS. 7D and 7E

show an alternative embodiment of the strip


380


with an internal support


387


beneath each finger


385


. The supports


387


have an end portion


388


extending over a top of the strip


380


. The supports


387


may be secured to the interior surface of the fingers


385


and/or secured to or fastened to the strip


380


. The supports


387


as shown do not extend downward to the lowest extent of the bottom of the strip


380


, although this would be within the scope of the invention. The supports


377


,


387


may be one or a series of fluid flow holes therethrough—as may any support in

FIGS. 19A-23D

. Any support disclosed herein may be fastened to a strip and/or screen and/or plate with one or more fasteners and/or with Velcro™ material.




The present invention discloses a method for making a screen assembly in which a perforated plate is sandblasted and/or washed with any suitable degreaser and/or soap. Any suitable perforated plate may be used. In one particular embodiment the perforated plate has round holes about ¼ inch in diameter or square holes with a diagonal measurement of about ¼ inch which have centers that are about 0.030 inches apart and that are separated from each other by about 0.050 inches of plate. Alternatively holes with a ⅜ inch, or ½ inch diameter may be used. The plate, in certain aspects, is made of carbon steel, stainless steel, or plastic. The holes, in one aspect, are at a 45° angle to the direction of fluid flow across the plate. If desired, the plate can be sandblasted or sanded.




The plate is heated to about 450° F. (in an oven or heat press) and is then dipped, preferably while positioned horizontally, into a fluidized bed of epoxy, (or other suitable adhesive) to coat the plate with melted epoxy powder in the bed. Heat in the plate permits the epoxy powder to bond to it in a semi-cured state. In another aspect powdered nylon, (or powdered polyester, or any suitable powderized coating) is coated onto the plate using a fluidized bed. In one aspect the epoxy is about 15 to 30 mils thick and in another aspect is about 20 mils thick on top of the plate and about 5 mils thick on the sides and bottom.




One, two, three, four or more layers of wire mesh are then cut to cover the pattern of perforations on the screen plate (in one aspect wider and longer than the coated screen plate), in one aspect mesh of 2 mesh to 500 mesh. The wire mesh and screen plate are placed on top of a non-stick panel (e.g. a panel made of 20 gauge steel with a Teflon (™) coating is applied to the panel; alternatively a 20 gauge steel sheet with a 20 mil thick sheet of Teflon (™) material on it may be used). The now non-stick panel acts as a tray for sliding the plate/mesh combination into an oven and the panel prevents the screen plate coating from sticking to the oven. Due to the Teflon (™) coating the plate surface adjacent to the wire mesh, the screen plate and wire mesh do not bond to the panel. The screen plate, alternatively, may be placed on top of the mesh or meshes. A second non-stick panel is then placed over the first plate/mesh/panel combination. This second panel non-sticking surface is adjacent to the plate. In one aspect this second panel has a sheet of self-adhesive Teflon (™) material on its lower side facing the mesh on the plate. Instead of Teflon (™) material, any material may be used which will prevent the epoxy (nylon, polyester, etc.) from sticking to the panels. The two panels may be fastened together to provide pressure to facilitate encapsulation of the mesh by molten epoxy.




The sandwich of panels, plate, and mesh is placed in an oven, e.g. for 6 to 8 minutes at 340° F. to cure the epoxy. The cured screen plate is removed from the oven and the mesh and epoxy are cut flush with the sides of the screen plate. It is known in the art to thus prepare a plate/mesh combination. However, the inventors are unaware of any prior art teaching: the re-introduction of the plate/mesh back into an oven; the re-heating of the plate/mesh; or corrugating a re-heated combination of plate/mesh.




The plate with the mesh may then be corrugated or, alternatively, it is first placed back in the oven for about 2 minutes at about 450° F. While still hot, the plate is removed from the oven and corrugated (e.g. using a press brake). In one aspect a plate about 36 inches wide and about 47 inches long after corrugations has corrugations with ridges that are about an inch high. In one preferred embodiment the plate with the mesh and cured epoxy is at a temperature of at least about 250° F. until the corrugating operation is finished. With more flexible cured materials, e.g. nylon, it is not critical to maintain the relatively high temperature level of the plate during the corrugation operation. Alternatively, the plate is not corrugated.




The resulting screen assembly may be attached to a frame or it may be provided with upturned opposed edges for connection to a separator or shaker. In one aspect Velcro (™) material on the screen assembly is used with mating Velcro (™) material on a frame or on a separator or shaker to releasably attach the screen assembly thereto. In another aspect the screen assembly is thus connected to one or more support strips (e.g. but not limited to, any support strip described herein).




In one aspect such a screen assembly is placed on a frame coated with epoxy and the two items are held together between Teflon (™) material sheets. This combination is then cooked at about 450° F. for about 8 to 15 minutes to cure the epoxy and secure the screen assembly to the frame.




In one aspect a corrugated screen assembly as described above has the spaces below ridges capped or plugged at each end of the screen assembly.





FIG. 8

shows schematically a screen


450


with a plurality of screening plugs or modules


451


,


452


,


453


that are removably secured in corresponding openings


454


in a plate


456


. Each module may be any size. With modules larger than those shown (e.g. up to a largest dimension of 6, 8, 12 or more inches or several feet; and in one aspect a screen with relatively few modules e.g. as in

FIG. 8

) there are fewer modules over the plate surface and with smaller modules (e.g. down to a largest dimension of about ½ inch) there are more modules over the plate surface. In one aspect the modules


451


have a relatively coarse metal mesh, e.g. 150 mesh screen; the modules


452


have a coarser mesh, e.g. 80 mesh; and the modules


453


have a fine mesh, e.g. 200 mesh, with the flow of fluid to be treated from the fine to the coarse modules (right to left in FIG.


8


A). Alternatively this pattern can be reversed; all the modules may have a substantially similar mesh; or any and all modules may have a combination of meshes thereon, including screens in layers of different mesh and/or screens or meshes made of different material, e.g. but not limited to carbon steel, stainless steel, Teflon (™) material, plastic, and/or urethane.




It is within the scope of this invention to provide any plug or module disclosed herein initially with no holes, perforations, or openings therethrough and then, e.g. later at a job site, to perforate the plug or module with the desired number and desired size openings, holes, or perforations or combination thereof. Such openings (and holes or openings for any plug or module disclosed herein) may be normal to the direction of the flow of fluid flowing above the hole, etc. (e.g. for classification) or at an angle other than perpendicular to such direction of flow (e.g. for dewatering to remove a large, preferably maximum, amount of liquid from a product).




With respect to the screen of

FIG. 8

(or any other screen disclosed herein) it is within the scope of this invention for any plug or module, or any group thereof, to be fashioned for dewatering and/or for classification. A single screen may, therefore, have an area primarily for dewatering a product flowing thereacross and an area for classifying component materials of the product. Plugs and modules disclosed herein may be made of metal, plastic, fiberglass, cermet, urethane, KYNAR, polymeric material, BUNA N, Teflon (™) material, or polyvinylidene fluoride. In one aspect a screen is provided with plugs or modules made of urethane (or similar material) for a high wear area (e.g. at an area of the initial introduction of a slurry to a first screen, the area which first encounters fluid and/or product to be treated); and a lower wear area with plugs or modules with metal wire mesh.




Square plugs or similar plugs fitted with woven mesh (e.g. rectangular woven mesh) can be fitted to provide a screen for classifying or dewatering. With rectangular openings, in one aspect flow parallel to a long opening is used for dewatering and flow perpendicular to a long opening is used for classification.





FIG. 9

shows a screen assembly


460


with a plate


462


having holes


463


therethrough. A plug


464


,


465


, or


466


is removably secured in each hole


463


. The plugs convert the plate into a 3-D corrugated screen assembly. It is within the scope of this invention for the plugs to have any desired shape and size to make a screen assembly with ridges of any shape and size—the ridges being part of the plugs. The plugs may be discrete separate items with a plurality of them spaced apart or they may be elongated members, e.g. two, four, twelve, twenty four, thirty, thirty six or more inches long and one, two, three, four or more inches wide.




The plug


464


has openings


467


. Any number of openings of any desired size may be used. A mesh


468


covers the exposed surface of the plug


464


. The plate


462


has optional openings


469


(any desired number and in any desired pattern) which may be sized for dewatering, separation, or classifying.




The plugs


465


have openings


469


and have no mesh thereon. The plug


466


has two mesh layers


470


and


471


and holes


472


. Any combination of any mesh made of any material may be used on the plugs


464


,


465


,


466


. Grooves


475


permit the plugs to be snapped into the holes


463


. Alternatively the plugs can be permanently or semi-permanently bonded to the plate. Failed or damaged plugs may be replaced with little or no loss of screening area.





FIG. 10A

shows a screen assembly


480


according to the present invention with a plate


482


having holes


481


therethrough and thereacross. A groove


484


permits plugs


485


to be snapped into the holes


481


. A top perforated plug body


483


projects above the plate surface and a bottom perforated plug body


488


projects below the plate surface. Perforations


486


in the top perforated plug body may be similar to or different from perforations


487


in the bottom perforated plug body in size and disposition and they may be angled differently. Top and bottom plug bodies may be made of similar or different material and they may have one or more meshes (metal or otherwise thereon). As with the plugs of FIG.


9


and others disclosed herein, the plugs


485


may be any desired size, length, width, and cross-sectional shape.





FIG. 10B

shows a screen assembly


490


with plugs as in

FIG. 9

above a top surface of the plate


462


and bottom plug bodies like those of the plugs


485


(FIG.


10


A). Holders


491


hold the bottom plug bodies on the plate


462


. The holders


491


use the grooves


484


as is shown in FIG.


10


A. The sections of the plate


462


between plugs may have holes or openings therethrough. The holes


463


in the plate


462


may be sized and configured as any opening or hole disclosed herein, including but not limited to an array of adjacent holes or openings (square, hexagonal, circular, triangular, rectangular) extending across the entire surface of the plate


462


or a series of relatively long openings extending from one side of a square or rectangular plate


462


to the other so that a corrugated screen is formed with both upper and lower corrugated surfaces defined by the plugs, the plugs extending for substantially the whole length of the relatively long openings.





FIGS. 11A and 11B

show a screen assembly


630


according to the present invention with a plate


631


(shown partially) having a plurality of openings


632


thereacross. The openings


632


may initially be covered by one or more meshes and/or screens (as with all plates disclosed herein) or, alternatively all the openings


632


may have a plug


634


therein (as with all plates disclosed herein). Also, a plug


634


may be used to repair damaged mesh/screen over an opening with little or no loss of screening area. The plug


634


has a tapered body


635


corresponding to a tapered surface of the openings


632


and a lower lip


636


that permits the plug to be snapped into the openings


632


and held in the openings


632


. The plug


634


has holes


637


extending therethrough. Alternatively the plugs


634


may be solid or may have more or less holes of larger or smaller diameter than those shown. The plug


634


as shown in

FIG. 11B

is elliptical as viewed from above; however it is within the scope of this invention to use any suitable shape, including but not limited to square, circular, triangular, hexagonal, polygonal, regular polygonal or rectangular. Also, a mesh, meshes, screen, and/or screens may be applied on the top surface of the plugs


634


. It is critical for certain particular embodiments of the screen assembly


630


that the top surface of the plugs


634


is substantially flush with the top surface of the plate


631


(or with mesh etc. on top of the plate). Materials disclosed herein may be used for the plugs and plate.





FIGS. 12A and 12B

show a screen assembly


640


according to the present invention with a plate


641


(shown partially) having a plurality of openings


642


thereacross. The openings


642


may initially be covered by one or more meshes and/or screens (as with all plates disclosed herein) or, alternatively all the openings


642


may have a plug


644


therein (as with all plates disclosed herein). Also, a plug


644


may be used to repair damaged mesh/screen over an opening. The plug


644


has a body


645


and a groove


646


that permits the plug to be snapped into the openings


642


and a bead


649


on the plate


641


to enter into the groove


646


to hold the plugs


644


. The plug


644


has holes


647


extending therethrough. Alternatively the plugs


644


may be solid or may have more or less holes of larger or smaller diameter than those shown. The plug


644


as shown in

FIG. 12B

is circular as viewed from above; however it is within the scope of this invention to use any suitable shape, including but not limited to square, circular, elliptical, hexagonal, polygonal, regular polygonal, triangular, or rectangular. Also, a mesh, meshes screen, and/or screens may be applied on the top surface of the plugs


644


. It is critical for certain particular embodiments of the screen assembly


640


that the top surface of the plugs


644


is substantially flush with the top surface of the plate


641


(or with mesh etc. on top of the plate). Materials disclosed herein may be used for the plugs and plate.





FIG. 13

shows a plug


650


according to the present invention with a body


651


and a top convex surface


652


. A series of holes


653


extend through the plug


650


. The plug


650


may be any desired size or shape.





FIG. 14

shows a plug


660


according to the present invention with a body


661


, a top convex surface


662


, and a mesh


668


thereon. A series of holes


663


extend through the plug


660


. The plug


660


may be any desired size or shape. The holes


653


(

FIG. 13

) and holes


663


(

FIG. 14

) may be any diameter and there may be any desired number of them.





FIGS. 15A and 15B

show a plug


670


according to the present invention with a body


671


and a series of holes


673


extend therethrough. The plug


670


may be any desired size or shape. The plug


670


is made of flexible material and has an expansion ring


675


therein that pushes the plug sides outwardly to facilitate maintenance of the plug


670


in position in a plate opening and/or put the plug's mesh or meshes in tension. A mesh or screen


675


is on top of the plug


670


.





FIGS. 16A and 16B

show a plug


680


according to the present invention with a body


682


. A series of holes


683


extend through the plug


680


. The plug


680


may be any desired size or shape. The plug


680


is made of flexible material and has expansion springs


684


and


686


that push the plug sides outwardly to facilitate maintenance of the plug


680


in position in a plate opening and/or put the plug's mesh or meshes in tension. One, two, three or more springs may be used. Meshes


681


and


688


are secured on the plug


680


.





FIGS. 17A and 17B

show a screen assembly


500


according to the present invention with a perforated plate


502


having perforations


504


extending therethrough from top to bottom. Any number and size perforations may be employed in any desirable pattern or positioning on the plate


502


. Dovetail recesses


506


extend across the plate


502


. Holes


505


extend from the recesses through the plate


502


. A corresponding dovetail base of an elongated hollow plug


510


is held in each dovetail recess


506


. Each plug


510


has a series of perforations or holes


508


therethrough and one or more bottom holes


509


. Any number and size holes may be employed in any desired pattern or positioning on the plugs


510


. The plugs


510


may be held tightly in the recesses


506


with a tight friction fit and/or with welding or epoxy. In one aspect the plugs


510


are removably inserted into the dovetail recesses


506


for easy replacement and/or repair. Any hole in a plug


510


may be repaired with a plug as previously described above for repairing damaged or torn mesh or screen. The perforations


504


and/or the holes


508


may be covered with any known mesh, meshes, screen or screens, bonded or unbonded, in any combination or layers.





FIG. 17C

shows one of the plugs


510


.





FIG. 17D

shows an alternative embodiment of an elongated hollow plug


520


according to the present invention that has a body


522


, holes


524


therethrough, a base


526


with holes


528


therethrough and a dovetail portion


529


through which the holes


528


also extend. To enhance sealing of the plug/plate interface, a seal bead


521


is provided along each side of the plug along its entire length. Alternatively such a seal member may be formed of or secured to the plate with which the plug


520


is used. The seal bead or member may be plastic, rubber, or any known suitable sealing material. Such a bead may also serve to stabilize the plug in place on the plate.





FIG. 17E

shows an alternative elongated solid plug


530


with a body


532


having a series of holes


534


therethrough and a dovetail base


536


. A mesh or screen


538


is secured over the plug body


532


covering the plug on its top surface. Fluid to be treated flows through the screen


538


and through the holes


534


. Two or more meshes and/or screens may be used.





FIGS. 18A-18D

show known perforation patterns for plates used with screens which may be used with plates and/or screen assemblies according to the present invention. The direction of fluid flow on the plates of

FIGS. 18A-18D

may be from top to bottom (as viewed in the Figures) or side to side (as viewed in the Figures).




U.S. Pat. Nos. 5,971,159 and 6,029,824, identified above, are incorporated herein in their entirety for all purposes and copies of which are attached hereto and submitted herewith.





FIG. 19A

shows a screen frame


700


according to the present invention. In one aspect the frame


700


is made from a single sheet or frame piece from which areas


702


are removed, e.g. but not limited to by an appropriate saw or laser, to form outer sides


703


,


704


,


705


,


706


and cross strips


707


and cross strips


708


. Each cross strip


708


has two raised portions or humps


709


. It is within the scope of this invention for any of the strips


707


,


708


to have one, two, three, four five or more humps


709


.




As shown each hump


709


has an internal support


710


therebeneath. The supports


710


are secured to a strip's underside by any suitable means, including, but not limited to, glue, adhesives, epoxy, sintering, and welding. The strips


707


,


708


and the supports


710


may be made of any suitable metal, plastic, fiberglass, or composite material.




As shown in

FIGS. 19B and 19C

the inner surface of a top of the raised portion or hump


709


is spaced apart from a top surface of the supports


710


to facilitate fluid flow over and around the supports


710


.




As discussed below, the strips


707


,


708


and/or supports


710


may have a series of fluid flow holes therethrough. As shown in

FIG. 19D

a hump


711


(like the humps


709


,

FIG. 19B

) has a series of fluid flow holes


712


therethrough and a support


713


(like the supports


710


,

FIG. 19B

) has a series of fluid flow holes


714


therethrough.





FIGS. 20A and 20B

shows a hump


715


(like the humps


709


,


711


) on a strip


716


. The strip


716


has a series of fluid flow holes


719


therethrough, including holes through the hump


715


. An internal support


717


with a series of fluid flow holes


718


therethrough is substantially as wide as the strip


716


.





FIG. 21A

shows a hump


720


(like the humps in

FIGS. 19B

,


19


D,


20


A) of a strip


721


(like the strips


708


,


716


) has an internal support


722


; but the support


722


viewed in cross-section as in

FIG. 21A

, occupies substantially all of the space under the hump


720


when viewed this way. The support


722


and/or hump


720


may have a series of fluid flow holes therethrough. The support


722


, as is true of the supports in

FIGS. 19D

,


20


A,


22


A,


22


C,


23


B, and


23


D, may be secured to a strip's underside as is a support


710


(

FIG. 19B

) and the strips in these figures and the supports may be made of any of the materials listed above regarding the strips


707


,


708


and supports


710


.





FIGS. 22A and 22B

show a hump


725


of a strip


726


with an internal support


727


adhesively secured to the strip


726


with epoxy. Alternatively, the support


727


may be welded to the strip


726


. Preferably when viewed as in

FIG. 22B

the support


727


occupies less than 10% of the area beneath the hump


725


and most preferably less than 5%. As with any other internal support and hump disclosed herein, the hump


725


and/or support


727


may have one or a series of fluid flow holes therethrough, as shown with the holes


728


,


729


in FIG.


22


C.





FIGS. 23A-23C

illustrate changes to a screen assembly


730


disclosed in U.S. Pat. No. 5,720,881 which is incorporated fully herein. The screen assembly


730


has a plate


731


with holes


738


therethrough and a multi-layer screen


732


epoxied together and bonded to the plate


731


.




As shown in

FIG. 23B

, support


733


underlies a ridge


734


of the screen


732


and support


735


with a series of fluid flow holes


736


therethrough underlies a ridge


737


.




It is within the scope of this invention to use one or more supports


733


and/or


735


(and/or one or more of any of the supports disclosed herein) under one, two, three, more than three, or all of the ridges of the screen


732


(or of any screen or screen assembly disclosed in U.S. Pat. No. 5,720,881). In one aspect each ridge may have a series of spaced apart supports and, in another aspect, supports under one ridge are offset from those under another ridge.




Although it is not preferred, in certain embodiments the support(s) may be loose under the ridges. As shown in

FIG. 23B

the support


733


is secured to the screen


732


and to the plate


731


and the support


735


is secured to the screen


732


.




As shown in

FIG. 23C

the width of a support may be such that, as viewed from above, it does not block off the openings


738


(support


733


) or, alternatively it does block off openings


738


(support


736


).





FIG. 23D

shows a screen


740


like the screen assembly


730


's screen


732


, but with no lower plate


731


. It is to be understood that the screens


732


and


740


represent any known single or multi-layer screen or screen assembly with screen(s) bonded together or unbonded. It is within the scope of this invention to use one or more supports (any disclosed herein) with each of the various screen assemblies disclosed in U.S. Pat. No. 5,720,881 including but not limited to those of this patent's

FIGS. 2

,


4


,


8


and


9


.




Ridges


741


,


742


,


743


of the screen


740


each has an internal support


744


,


745


,


746


, respectively secured thereto and thereunder. It is within the scope of this invention for the screen


740


to have only supports


744


,


745


, or


746


, to have them under each ridge, for such supports to extend along and under the entire length of a ridge, or for there to be a plurality of spaced apart supports beneath each ridge. The support


746


is shown with a series of fluid flow holes


747


therethrough, but it may be solid and either or both of the supports


744


,


745


may have a series of fluid flow holes therethrough.




The present invention, in certain embodiments, discloses a support strip for supporting part of a screen used in a vibratory shaker, the support strip with a support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger configured and sized for contacting and supporting at least a part of a raised portion of the screen; such a support strip wherein the at least one upturned finger is a plurality of spaced-apart upturned fingers; and/or wherein the at least one upturned finger has a curved top with a shape corresponding to a shape of a raised portion of the screen, and/or wherein the at least one upturned finger extends up from cuts in the support body and the at least one upturned finger is integral with the support body; and such a support strip with a support (totally internal or with part projecting from beneath the finger) beneath the at least one upturned finger, and such a support strip wherein the internal support is secured to the at least one upturned finger, and such a support strip wherein the internal support has a series of holes therethrough for fluid flow therethrough, and/or wherein the at least one upturned finger defines an interior space, the internal support is disposed within said interior space, and the internal support occupies less than all said interior space, and/or wherein the interior space has a top area, the internal support has a top surface, the top surface of the internal support is spaced apart from the at least one raised part, and the top surface of the internal support defining a lower limit of the top area, and/or wherein said support body has a body width and said internal support has a support width which is less than said body width, and/or wherein said support body has a series of holes therethrough for fluid flow therethrough; and/or any such support in combination with the screen and/or in combination with a vibratory shaker on which the screen is releasably mounted.




The present invention, in certain embodiments discloses a support strip for supporting part of a screen used in a vibratory shaker, the support strip having a support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one raised portion projecting above the top surface of the support body, the at least one raised portion configured and sized for contacting and supporting at least a part of a raised portion of the screen of a support and/or with a support beneath the raised portion(s), including any embodiment described in the preceding paragraph.




The present invention, in certain embodiments, discloses a screen apparatus for a vibratory shaker device, the screen apparatus with screening material with an undulating shape with a series of raised portions, and at least one support strip beneath said screening material and in contact therewith, said at least one support strip between one half inch to three inches in width and between one thirty-second of an inch and one-eighth of an inch in thickness, said at least one support strip having at least one raised part thereof with a shape corresponding to a shape of a raised portion of the screening material, said at least one raised part positioned beneath and supporting said raised portion, and the at least one raised part thereof having a support thereunder.




The present invention discloses, in certain embodiments, a separatory apparatus with a vibratory shaker device, a screen apparatus mounted on the vibratory shaker device and with screening material with an undulating shape with a series of raised portions, and at least one support strip beneath said screening material and in contact therewith, said at least one support strip between one half inch to three inches in width and between one thirty-second of an inch and one-eighth of an inch in thickness, said at least one support strip having at least one raised part thereof with a shape corresponding to a shape of a raised portion of the screening material, said at least one part positioned beneath and supporting said raised portion, and the at least one raised part thereof having a support thereunder.




The present invention discloses, in certain embodiments, a screen assembly for screening material in a vibratory screening machine, said assembly with a frame, a plurality of apertures in said frame, spaced frame members on opposite sides of said plurality of apertures, a screen formed in an undulating shape with elongated substantially parallel ridges having sloping sides, troughs formed between said sloping sides for conducting material which is being screened longitudinally of said troughs while it is being screened, undersides on said troughs, said undersides of said troughs being secured to said spaced frame members on the opposite sides of a plurality of said apertures with said ridges and troughs overlying said plurality of apertures, said elongated ridges having first end portions, said troughs having second end portions, and sealing means for sealing said first end portions of said elongated ridges against entry of material which is being screened while maintaining said second end portions unsealed to permit passage of said material being screened therethrough, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a plurality of screen assemblies for mounting on a vibratory screening machine for screening material, each assembly with a plate, a plurality of apertures in said plate, elongated spaced plate members on opposite sides of said plurality of apertures, a screen formed in an undulating shape with elongated substantially parallel ridges, troughs formed between said ridges of each of said screen assemblies for conducting material longitudinally of said troughs while it is being screened, and undersides on said troughs, said undersides of said troughs being secured to said elongated spaced plate members on the opposite sides of a plurality of said apertures, each screen assembly being mounted adjacent to another screen assembly with said ridges and troughs of adjacent assemblies being in alignment so that material which is being screened can pass longitudinally through the aligned troughs of said adjacent screen assemblies, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a plurality of screen assemblies for mounting on a vibratory screening machine for screening material, each assembly with a frame, a plurality of apertures in said frame, elongated spaced frame members on opposite sides of said plurality of apertures, a screen formed in an undulating shape with elongated substantially parallel ridges, troughs formed between said ridges of each of said screen assemblies for conducting material which is being screened longitudinally of said troughs while it is being screened, and undersides on said troughs, said undersides of said troughs being secured to said spaced frame members on the opposite sides of a plurality of said apertures with said ridges over-lying said plurality of apertures, each assembly being mounted adjacent to another screen assembly with said ridges and troughs of adjacent assemblies being in alignment so that material which is being screened can pass longitudinally through the aligned troughs of said adjacent screen assemblies, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a screen assembly for screening material in a vibratory screening machine, said assembly with a plate having a length and a width, an area defined by said length and width, a plurality of plate members on said plate, a plurality of apertures defined by said plate members, a multiple-layer screen formed in an undulating shape to provide a screening area which is larger than said area of said plate, said multiple layer screen including a plurality of elongated alternating parallel ridges and troughs, said ridges further including side walls extending toward said plate and defining said troughs for conducting material which is being screened longitudinally of said troughs while it is being screened, undersides on said plurality of troughs, said undersides of said plurality of troughs being secured to said plate members where said undersides of said troughs overlie said plate members, said plurality of ridges which comprise said screening area which is larger than the area of said plate overlying said plurality of apertures, said screen comprising an undulating screening screen and an apertured plate formed in the same undulating shape as said screening screen and located in underlying relationship thereto and secured to said plate, said elongated ridges having first end portions which are sealed against entry of material which is being screened, and said troughs having second end portions which are unsealed, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a screen assembly for screening material in a vibratory screening machine, said assembly with a plate having a length and a width, an area defined by said length and width, a plurality of plate members on said plate, a plurality of apertures defined by said plate members, a multiple-layer screen formed in an undulating shape to provide a screening area which is larger than said area of said plate, said multiple layer screen including a plurality of elongated alternating parallel ridges and troughs, said ridges further including side walls extending toward said plate and defining said troughs for conducting material which is being screened longitudinally of said troughs while it is being screened, undersides on said plurality of troughs, said undersides of said plurality of troughs being secured to said plate members where said undersides of said troughs overlie said plate members, said plurality of ridges which comprise said screening area which is larger than the area of said plate overlying said plurality of apertures, said elongated ridges have first end portions which are sealed against entry of material which is being screened, and said troughs have second end portions which are unsealed, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments a screen assembly for screening material in a vibratory screening machine, said assembly with a plate having a length and a width, an area defined by said length and width, a plurality of plate members on said plate, a plurality of apertures defined by said plate members, a multiple-layer screen formed in an undulating shape to provide a screening area which is larger than said area of said plate, said multiple layer screen including a plurality of elongated alternating parallel ridges and troughs, said ridges further including side walls extending toward said plate and defining said troughs for conducting material which is being screened longitudinally of said troughs while it is being screened, undersides on said plurality of troughs, said undersides of said plurality of troughs being secured to said plate members where said undersides of said trough overlie said plate members, said plurality of ridges which comprise said screening area which is larger than the area of said plate overlying said plurality of apertures, said screen comprising an undulating base screen of relatively large mesh, an undulating top screening screen of fine mesh, and an undulating intermediate screening screen of less fine mesh than said top screen, said intermediate screen being located between said base screen and said top screen, said elongated ridges have first end portions which are sealed against entry of material which is being screened, and said troughs have second end portions which are unsealed, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a screen assembly for screening material in a vibratory screening machine with an undulating apertured plate having ridges and troughs between said ridges, and a screen formed in the same configuration as said apertured plate and bonded in complementary mating relationship thereto, open ends on said ridges and said troughs, and means for sealing said open ends of said ridges while permitting said open ends of said troughs to remain unsealed, and at least one support beneath at least one of said ridges.




The present invention discloses, in certain embodiments, a screen for screening material in a vibratory screening machine comprising a coarse screen and a fine screen bonded thereto, said fine and coarse screens being formed into an undulating shape having substantially parallel ridges and troughs between said ridges for conducting material being screened in a direction longitudinally of said troughs while said material is being screened, said ridges having first ends, seals sealing said first ends of said ridges, and said troughs having second ends while are unsealed, and at least one support beneath at least one of said ridges.




In conclusion, therefore, it is seen that the present invention and the embodiments disclosed herein and those covered by the appended claims are well adapted to carry out the objectives and obtain the ends set forth. Certain changes can be made in the subject matter without departing from the spirit and the scope of this invention. It is realized that changes are possible within the scope of this invention and it is further intended that each element or step recited in any of the following claims is to be understood as referring to all equivalent elements or steps. The following claims are intended to cover the invention as broadly as legally possible in whatever form it may be utilized. The invention claimed herein is new and novel in accordance with 35 U.S.C. § 102 and satisfies the conditions for patentability in § 102. The invention claimed herein is not obvious in accordance with 35 U.S.C. § 103 and satisfies the conditions for patentability in § 103. This specification and the claims that follow are in accordance with all of the requirements of 35 U.S.C. § 112.



Claims
  • 1. A support strip for supporting part of a screen used in a vibratory shaker, the screen having a raised portion, the support strip comprisinga support body having spaced-apart ends, spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger adapted to contact and support the raised portion of the screen, and a wherein the at least one upturned finger extends up from cuts in the support body and the at least one upturned finger is integral with the support body.
  • 2. The support strip of claim 1 wherein the at least one upturned finger is a plurality of spaced-apart upturned fingers.
  • 3. The support strip of claim 1 further comprisingan internal support beneath the at least one upturned finger.
  • 4. The support strip of claim 3 wherein the internal support is secured to the at least one upturned finger.
  • 5. The support strip of claim 3 wherein the internal support has a series of holes therethrough for fluid flow therethrough.
  • 6. The support strip of claim 3 wherein the at least one upturned finger defines an interior space, the internal support is disposed within said interior space, and the internal support occupies less than all said interior space.
  • 7. The support strip of claim 6 wherein the interior space has a top area, the internal support has a top surface, the top surface of the internal support is spaced apart from the at least one raised part, and the top surface of the internal support defining a lower limit of the top area.
  • 8. The support strip of claim 3 wherein said support body has a body width and said internal support has a support width which is less than said body width.
  • 9. The support strip of claim 1 wherein said support body has a series of holes therethrough for fluid flow therethrough.
  • 10. A support strip for supporting part of a screen used in a vibratory shaker, the screen having a raised portion, the support strip comprisinga support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one raised portion projecting above the top surface of the support body, the at least one raised portion adapted to contact and support the raised portion of the screen, and wherein the at least one raised portion extends up from cuts in the support body and the at least one raised portion is integral with the support body.
  • 11. The support strip of claim 10 wherein the at least one raised portion is a plurality of spaced-apart raised portions.
  • 12. The support strip of claim 10 further comprisingan internal support beneath the at least one raised portion.
  • 13. The support strip of claim 12 wherein the internal support is secured to the at least one raised portion.
  • 14. The support strip of claim 12 wherein the internal support has a series of holes therethrough for fluid flow therethrough.
  • 15. The support strip of claim 12 wherein the at least one raised portion defines an interior space, the internal support is disposed within said interior space, and the internal support occupies less than all said interior space.
  • 16. The support strip of claim 15 wherein the interior space has a top area, the internal support has a top surface, the top surface of the internal support is spaced apart from the at least one raised part, and the top surface of the internal support defining a lower limit of the top area.
  • 17. The support strip of claim 10 wherein said support body has a body width and said internal support has a support width which is less than said body width.
  • 18. The support strip of claim 10 wherein said support body has a series of holes therethrough for fluid flow therethrough.
  • 19. A support strip for supporting part of a screen used in a vibratory shaker, the screen has a raised portion, the support strip comprisinga support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger adapted to contact and support the raised portion of the screen, and an internal support beneath the at least one upturned finger.
  • 20. A support strip for supporting part of a screen used in a vibratory shaker, the screen has a raised portion, the support strip comprisinga support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger adapted to contact and an internal support beneath the at least one upturned finger, support the raised portion of the screen, and wherein said support body has a body width and said internal support has a support width which is less than said body width.
  • 21. A support strip for supporting part of a screen used in a vibratory shaker, the screen has a raised portion, the support strip comprisinga support body having spaced-apart ends spaced-apart sides, and a top surface, and at least one upturned finger projecting above the top surface of the support body, the at least one upturned finger adapted to contact and support the raised portion of the screen, and wherein said support body has a series of holes therethrough for fluid flow therethrough.
RELATED APPLICATIONS

This is a division of U.S. application Ser. No. 09/090,554 filed Jun. 4, 1998 which is a continuation-in-part of U.S. application Ser. No. 08/895,976 filed Jul. 17, 1997 entitled “Screen For Vibratory Shaker” which U.S. Pat. No. 5,988,397 is a continuation-in-part of U.S. application Ser. No. 08/786,515 filed Jan. 21, 1997 (U.S. Pat. No. 5,971,159 issued Oct. 26, 1999) and of U.S. application Ser. No. 08/598,566 filed Feb. 12, 1996 (abandoned entitled “Screen For Vibrating Separator.” U.S. application Ser. No. 08/786,515 is a continuation in part of the following co-owned applications and patents: U.S. Ser. No. 29/048,575 U.S. Pat. No. D 377656 filed Jan. 4, 1996 which is a continuation of U.S. Ser. No. 29/014,571 filed Oct. 25, 1993 now U.S. Pat. D 366,040 issued on Jan. 9, 1996 which is a continuation-in-part of U.S. applications: Ser. No. 08/056,123 filed Apr. 30, 1993, now U.S. Pat. No. 5,385,669 issued on Jan 31, 1995; and U.S. Ser. No. 08/105,696 filed Aug. 12, 1993, now U.S. Pat. No. 5,392,925 issued on Feb. 28, 1995; U.S. Ser. No. 08/504,495 filed Jul. 20, 1995 entitled “Shale Shaker Screen;” U.S. Ser. No. 08/598,566 filed Feb. 12, 1996 entitled “Screen For Vibrating Separator” which is a continuation-in-part of U.S. Ser. No. 08/220/101 filed Mar. 30, 1994 now U.S. Pat. No. 5,490,598 issued Feb. 13, 1996. All of these related applications and patents are incorporated herein in their entirety for all purposes.

US Referenced Citations (161)
Number Name Date Kind
H1481 Ray Sep 1995
40242 Capell Oct 1863
236416 Bourne Jan 1881
246144 Keeler Aug 1881
268491 Hubbell Dec 1882
275190 Gilbert Apr 1883
275340 Kimball Apr 1883
500302 Stoecket et al. Jun 1893
516673 Wilson Mar 1894
526562 Cross Sep 1894
560858 Missroon May 1896
583981 Plaisted Jun 1897
607598 Closz Jul 1898
777317 Traylor Dec 1904
865185 Kerrigan Sep 1907
912481 Melish Feb 1909
948222 Honabach Feb 1910
964897 Bryant Jul 1910
966578 Murphy et al. Aug 1910
984866 Tate Feb 1911
1098979 Schuchard Jun 1914
1132667 Milliot Mar 1915
1139041 Larson May 1915
1242982 Reynolds Oct 1917
1248081 Couch Nov 1917
1250768 Baumgartner Dec 1917
1344747 Wright Jun 1920
1397339 Sturtevant Nov 1921
1423021 Reynolds Jul 1922
1462804 Evans Jul 1923
1505735 Stebbins Aug 1924
1561632 Woodward Nov 1925
1614586 Anderson et al. Oct 1927
1626774 Allan May 1927
1678941 Helman Jul 1928
1713143 Overstrom May 1929
1716758 Bland Jun 1929
1785195 Hoes et al. Dec 1930
1879377 McNeely Sep 1932
1950861 O'Toole, Sr. Mar 1934
1997713 Boehm Apr 1935
1997740 Nickerson Apr 1935
2052467 Hermann Aug 1936
2061850 Roberts Nov 1936
2082513 Roberts Jun 1937
2089548 Frantz et al. Aug 1937
2104785 Akeyson Jan 1938
2190262 Geist Feb 1940
2251909 Lindsay Aug 1941
2274700 Jenks Mar 1942
2335084 Rice Nov 1943
2406051 Weiss Aug 1946
2462878 Logue Mar 1949
2480320 Carrier Aug 1949
2511239 Behnke et al. Jun 1950
2648441 Soldan Aug 1953
2667975 Seaholm Feb 1954
2670079 Betts Feb 1954
2677462 Conkling May 1954
2723032 Gisler et al. Nov 1955
2726184 Cox et al. Dec 1955
2774477 Pollitz Dec 1956
2777579 Roubol Jan 1957
2800227 Kiger Jul 1957
2813629 Brugmann Nov 1957
2827169 Cusi Mar 1958
2902165 Imershein Sep 1959
2929464 Sprouse Mar 1960
2973865 Cibula Mar 1961
2980208 Neumann Apr 1961
2985303 Wright May 1961
3057481 Pale Oct 1962
3070231 McCorkel et al. Dec 1962
3092573 Lambert et al. Jun 1963
3165473 Pall et al. Jan 1965
3176843 Hoskins et al. Apr 1965
3243943 Getzin Apr 1966
3255885 Burls Jun 1966
3285413 Taylor-Smith Nov 1966
3458978 Davis Aug 1969
3465413 Rosaen et al. Sep 1969
3542636 Wandel Nov 1970
3574103 Latkin Apr 1971
3655060 Hagdahl Apr 1972
3679057 Perez Jul 1972
3716138 Lumsden Feb 1973
3747770 Zentis Jul 1973
3747772 Brown Jul 1973
3789498 Cole Feb 1974
3793692 Tate et al. Feb 1974
3853529 Boothe et al. Dec 1974
3900628 Stewart Aug 1975
3970550 Fry et al. Jul 1976
4019987 Krashow Apr 1977
4022596 Pedersen May 1977
4033865 Derrick, Jr. Jul 1977
4062769 Simonson Dec 1977
4075106 Yamazaki Feb 1978
4120784 Hassall Oct 1978
4138303 Taylor Feb 1979
4380494 Wilson Apr 1983
4410427 Wydeven Oct 1983
4464242 Boulton Aug 1984
4472473 Davis et al. Sep 1984
4529510 Johnson et al. Jul 1985
4546783 Lott Oct 1985
4575421 Derrick et al. Mar 1986
4582597 Huber Apr 1986
4589983 Wydevan May 1986
4617122 Kruse et al. Oct 1986
4634535 Lott Jan 1987
4661245 Rutherford et al. Apr 1987
4678578 Nodes et al. Jul 1987
4696751 Eifling Sep 1987
4728422 Bailey Mar 1988
4769968 Davis et al. Sep 1988
4820407 Lilie Apr 1989
4832834 Baird, Jr. May 1989
4857176 Derrick et al. Aug 1989
4882044 Friessle Nov 1989
4882054 Derrick et al. Nov 1989
4909929 Tabor Mar 1990
4940500 Tadokoro et al. Jul 1990
4954249 Gero et al. Sep 1990
5028474 Czaplicki Jul 1991
5056286 Bokor Oct 1991
5084178 Miller et al. Jan 1992
5104521 Rutherford Apr 1992
5137622 Souter Aug 1992
5139154 Gero et al. Aug 1992
5162143 Porter et al. Nov 1992
5167740 Michaelis et al. Dec 1992
5211291 Kelley et al. May 1993
5221008 Derrick, Jr. et al. Jun 1993
5256292 Cagle Oct 1993
5312508 Chisholm May 1994
5330057 Schiller et al. Jul 1994
5385669 Leone, Sr. Jan 1995
5392925 Seyffert Feb 1995
5417793 Bakula May 1995
5417858 Derrick et al. May 1995
5417859 Bakula May 1995
5490598 Adams Feb 1996
5614094 Deister et al. Mar 1997
5636749 Wojciechowski Jun 1997
5690826 Cravello Nov 1997
5720881 Derrick et al. Feb 1998
5851393 Carr et al. Dec 1998
5868929 Derrick et al. Sep 1999
5876552 Bakula Mar 1999
5950841 Knox et al. Sep 1999
5958236 Bakula Sep 1999
5967336 Baltzer et al. Oct 1999
5984107 Bleh Nov 1999
5992641 Caldwell, Jr. Nov 1999
6000556 Bakula Dec 1999
6000558 Proulx et al. Dec 1999
6006923 Helmy et al. Dec 1999
6019228 Duggan Feb 2000
6053331 Cravello Apr 2000
6053332 Bakula Apr 2000
Foreign Referenced Citations (19)
Number Date Country
2912228A Oct 1980 DE
3827259A Apr 1989 DE
8904477U Nov 1989 DE
269877 Apr 1928 GB
519680 Jun 1939 GB
823648 Oct 1957 GB
1412975 Oct 1973 GB
2161715B Jan 1983 GB
2124099A Feb 1983 GB
2161715A Mar 1984 GB
59-142818 Jan 1984 JP
1433509 Oct 1988 SU
1505601 Sep 1989 SU
9005594 May 1990 WO
WO 9200133A Jan 1992 WO
WO 9415723A Jul 1994 WO
WO 9611070A Apr 1996 WO
WO 9703765A Feb 1997 WO
WO 9523655A Sep 1998 WO
Non-Patent Literature Citations (13)
Entry
U.S. application Ser. No. 08/282,983; filed Jul. 29, 1994 entitled “Shale Shaker Screens,” co-owned with present invention/application. U.S. Pat. 5,551,575 Pub Sep. 3, 1996.
“The Future of Fine Screening,” Derrick Equipment Co. Mar. 1993.
“LM3 Full-Flo ™ Shale Shaker,” Sweco Oilfield Services, Jul. 1991.
Pending U.S. application 08/220,101 filed Mar. 30, 1994 entitled “Screen For Vibrating Separator.” U.S. 5,490,598 Pat Pub Incorporated in Feb. 13, 1996.
Amendment Under 37 CFR 1.115 in pending U.S. Ser. No. 08/220,101.
Official Gazette Entry for U.S. Pat. 5,626,234, May 6, 1997.
The Brandt Company General Catalog 1982-1983, 4 pages, Feb. 1982.
Take the Drilled Solids Out, The Brandt Company, Sep. 6, 1980.
Catalog 105 H&K Perforated Materials, Harrington & KingPerforating Co., Jun. 1988.
Sweco Oilfield Services, Composite Catalog, Oct. 1992.
“The Future of Fine Screening,” Derrick Equipment Co. Apr. 1993.
Mcnally Coal Preparation Manual M 576, pp. iii,73-96, 216 (Jun. 1978).
Int'l Search Report, PCT/GB97/00385 co-owned with present application.
Continuations (1)
Number Date Country
Parent 29/014571 Oct 1993 US
Child 29/048575 US
Continuation in Parts (9)
Number Date Country
Parent 08/895976 Jul 1997 US
Child 09/090554 US
Parent 08/786515 Jan 1997 US
Child 08/895976 US
Parent 08/598566 Feb 1996 US
Child 08/895976 US
Parent 29/048575 Jan 1996 US
Child 08/786515 US
Parent 08/056123 Apr 1993 US
Child 29/014571 US
Parent 08/105696 Aug 1993 US
Child 08/056123 US
Parent 08/504495 Jul 1995 US
Child 08/105696 US
Parent 08/598566 US
Child 08/504495 US
Parent 08/220101 Mar 1994 US
Child 08/598566 US