This invention relates to a screening bar assembly for a screen for grading particulate material and in particular to a bofor bar assembly for a screen of the type typically referred to as a “grizzly” screen and to a screen incorporating said assembly.
Grizzly screens are typically used to separate larger rocks and boulders from quarried or mined material prior to further grading/treatment of the material. A grizzly screen typically comprises one or more sets of parallel metal bars, often called “bofor bars”, mounted to define a sloping deck onto which the feed material is adapted to be delivered. The bars are normally mounted parallel to the slope of the deck and the path of the material thereon. The length of each bar may be up to 3 m and the spacing between the bars ranges from 50 to 200 mm typically, although wider spacing is possible. The present invention is also applicable to Rip Rap screen media and static grids used to protect machinery and separate out large piece sizes from fines material (e.g. Gabion stone etc.).
A coarse feed (say from a primary crusher) may be fed at the upper end of the deck of the screen. Larger chunks roll and slide to the lower discharge end, while smaller lumps having sizes less than the gaps between the bars fall into a collection hopper, conveyor or further deck therebeneath.
Often the screen is mounted on a chassis or base via compliant linkages, such as springs, and the screen may be vibrated by a vibration generating means, such as one or more rotors defining eccentric masses, driven by one or more drive motors, to impart circular or reciprocating vibratory motion to the deck.
Conventionally the bars of such screens are welded or bolted to a support frame in which they are mounted. Such rigid connections between the bars and support frame tend to fracture under the heavy loads as rocks impact on the bars. An object of the present invention is to provide improved screen with a more reliable coupling between the bars of the screen and their support frame.
According to a first aspect of the present invention there is provided a screening bar assembly for a screen, the assembly comprising a plurality of substantially parallel screening bars mounted to a substantially rectangular support frame; a compliant mounting block being provided at each end of each bofor bar to engage the support frame. The mounting blocks may be formed from a polymeric material, a metallic spring material, a suitable non-metallic material or a fibrous or composite material. The mounting blocks are made from a different material from the bars, such material having sufficient compliance and elasticity to absorb shocks due to the impact of rocks and boulders with the bars and to resist transmission of such shocks to the support frame.
In one embodiment said support frame may include a pair of opposing mounting channels arranged, said mounting blocks engaging said mounting channels to couple the screening bars to the support frame. The support frame may comprise a pair of substantially parallel side members and a pair of end members extending between and perpendicular to the side members, said end members of the support frame incorporating said mounting channels. Preferably the screening bars, when mounted on the support frame, extend parallel to the side members of the support frame. Each side member of the support frame may include a laterally extending mounting flange to facilitate mounting of the support frame to the screen. Alternatively, or additionally, mounting flanges may be provided on the end members of the support frame.
In one embodiment each end of each screening bar may incorporate a mounting recess within which a portion of a respective mounting block is received. Preferably the sides of each mounting recess diverge outwardly from one another to define a wedge shaped recess receiving a correspondingly shaped portion of the respective mounting block.
In one embodiment the vertical depth of each screening bar may increase from one end to the other. An end of each screening bar at its deepest portion may extend above the support frame. Preferably the vertical depth of each screening bar increases from an upstream to a down stream end when installed in the support frame and mounted on the screen, in use.
Spacer members may be inserted between the mounting blocks of adjacent bars to maintain the position of the bars in the support frame. Preferably said spacer members are located within said mounting channels of the support frame.
Retaining members may be releasably attached to the support frame, the retaining members having fingers shaped to extend between the ends of adjacent bars to retain the spacer members in position.
According to a further aspect of the present invention there is provided a screen comprising a frame defined by a pair of substantially parallel side walls interconnected by transversely extending bridging members, one of more screening bar assemblies in accordance with the first aspect of the invention being mounted on the frame to define a sloping deck, the bars of each screening bar assembly being aligned with the slope of the deck and the path of the material thereon.
The screen may include means for imparting circular or reciprocating vibratory motion to the deck.
A screen incorporating a screening bar assembly in accordance with an embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
The screen comprises a pair of substantially parallel side walls 2,4 interconnected by transversely extending bridging members (hidden in
The screening bars 20, which may typically be formed from metal, in each assembly are mounted to a respective support frame 22 arranged such that the bars 20 are mounted in longitudinal alignment with the slope of the deck and the path of the material thereon. In the embodiment shown in the drawings, four screening bar assemblies 6,8,10,12 are provided along the length of the main frame of the screen, arranged inline. More or less sets of screening bars may be utilised depending upon the size of the screen. The bars 20 are arranged to define a stepped screening deck over which the feed material passes, undersize material falling through the gaps between the bars to be received in a collection hopper/chute therebelow while larger rocks and boulders pass over the deck to pass over a downstream end of the deck to be delivered onto a conveyor. The undersize material may pass over a downstream end of the collection hopper/chute beneath the deck to be delivered onto a second conveyor.
The main frame may be mounted on a base or chassis of the screen via resilient linkages, such as springs 14, and the frame, and thus the deck may be vibrated by means of a pair of counter rotating rotors defining eccentric masses, driven by one or more drive motors, to impart circular or reciprocating vibratory motion to the deck. Accordingly the deck may be vibrated to agitate the material on the deck of the screen and to encourage undersize material to pass between the sets of bars while conveying the material across the deck such that the oversize material is discharged over a downstream end of the deck onto a conveyor. Alternatively the sets of screening bars may be mounted on a stationary chassis or base, gravity being relied on to convey the material over the deck defined by the bars.
In each screening bar assembly 6,8,10,12, each bar 20 is coupled to its support frame 22 via compliant mounting blocks 24,26 formed from a different material than the bars, preferably formed from a polymer material although other metallic and non-metallic compliant material are envisaged, and provided at each end of each bar 20 such that there are no welds or bolted connections between the bars 20 and the support frame 22 within which they are mounted, nor any direct metal to metal contact between the relatively rigid metal bars 20 and the relatively rigid metal support frame 22. The bars 20 are primarily held in place by a friction or interference fit between the compliant mounting blocks 24,26 and the support frame 22. As well as providing a secure coupling between the bars 20 and the support frame 22, the compliant mounting blocks 24,26 absorb shocks during use which protects the support frame 22 and any component to which it is attached from damage that might otherwise be caused by rocks impacting on the bars 20.
As best illustrated in
Each bar 20 may comprise an upper wall 32, a pair of depending side walls 34,36 and a bottom wall 38, end walls 40,42 extending between the bottom wall 38 and upper wall 32, between the side walls 34,36 at either end of each bar 20, said end walls 40,42 extending at an acute angle to said bottom wall 38 to abut the upper wall 32 inwardly from the outer ends of the upper wall 32 such that the ends walls 40,42, side walls 34,36 and a respective outer region of the upper wall 32 define between them said wedge shaped recesses in the respective ends of each bar 20 for receiving a cooperating portion of a respective mounting block 24,26 therein. The outer ends of each side wall 34,36 of each bar 20 are shaped such that the side walls do not contact the support frame 22 when the bars 20 are mounted therein via said mounting blocks 24,26. The upper wall 32 of each screening bar 20 may be reinforced by an elongate rod 33 or similar strengthening member welded to an upper face thereof to reinforce the bar and resist wear. The rods 33 may also serve to break up material and to focus material impact forces towards the centerline of each bar, reducing undesirable edge loading.
Each support frame 22 comprises parallel side members 44,46 having laterally extending flanges 48,50 to facilitate bolting of the support frames 22 to the main frame of the screen, and a pair of end members 52,54 extending between the side members 44,46. Each end member 52,54 has a U shaped profile defining a mounting channel 56,58 having an inwardly facing open side, a portion of each mounting block 24,26 being adapted to engage the mounting channel of a respective end member 52,54 of the support frame 22 to retain the bars 20 in place in the support frame 22.
As illustrated in the drawings, each screening bar 20 may have an increasing height (distance between upper wall 32 and bottom wall 38) from one end to the other, preferably from an upstream to a down stream end when installed in the support frame 22 and mounted on the screen. This provides a stepped profile to the deck to facilitate breaking up of the feed material as it traverses the deck. An upper end 60 of each screening bar 20 at its deepest portion may extend above the mounting channel 56 of the support frame 22. A slot 62 may be formed in the outer end of the respective mounting block 24 mounted in the end of the bar 20 adjacent said upper end 60 of the bar 20 for receiving an upper side of the mounting channel 56 of the support frame 22 therein.
To maintain the screening bars 20 in position within the support frame 22, spacer members 64 are provided to be inserted into the mounting channels 56,58 between the mounting blocks 24,26 of the bars 20. Furthermore, retaining bars 66,68 are provided adapted to be bolted to upper faces of the end members 52,54 of the support frame, the retaining bars 66,68 having fingers 70 shaped to extend between the bars 20 to retain the spacer members 64 in position.
In use, respective mounting blocks 24,26 are inserted into each end of a respective screening bar 20 and the bar is located in its support frame 22 diagonally to allow the ends of the mounting blocks 24,26 to be received in the mounting channels 56,58 of the support frame 22, the bars subsequently being moved into an operative position parallel to the side members 44,46 of the support frame 22, as illustrated in
Subsequently the spacer members 64 are located between the mounting blocks 24,26 and the retaining plates 66,68 are bolted in place to retain the bars 20 in position within the respective support frame 22.
The compliant mounting blocks 24, 26 may be formed from any suitably compliant, or resilient, material so that the blocks 24, 26 act as a compliant or resilient coupling, preferably a friction fit coupling, between the bars 20 and the support frame 22, and in particular to act as a shock absorber. The compliant mounting blocks 24,26 may be made from any suitable polymer material, such as polyethylene, polyurethane or natural rubber, although polyethylene may be preferred. Alternatively, the mounting blocks 24, 26 may be formed from a metallic or fibrous or composite material.
The invention is not limited to the embodiment described herein but can be amended or modified without departing from the scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1801107 | Jan 2018 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2790552 | Symons | Apr 1957 | A |
4381235 | Mallaghan | Apr 1983 | A |
5560496 | Lynn | Oct 1996 | A |
5816412 | Bokor | Oct 1998 | A |
5901857 | Schurman | May 1999 | A |
7216768 | Fisher | May 2007 | B2 |
8403147 | Sauser et al. | Mar 2013 | B2 |
8820536 | Schirm | Sep 2014 | B2 |
8875900 | Sauser | Nov 2014 | B2 |
8915375 | Sauser et al. | Dec 2014 | B2 |
8915376 | Garland | Dec 2014 | B2 |
8979008 | Sauser et al. | Mar 2015 | B2 |
9010543 | Schirm et al. | Apr 2015 | B2 |
9205459 | Sauser | Dec 2015 | B2 |
9238255 | Sauser et al. | Jan 2016 | B2 |
9296017 | Robinson | Mar 2016 | B2 |
9427745 | Dunn et al. | Aug 2016 | B2 |
9611099 | Watters | Apr 2017 | B2 |
9849461 | Sauser et al. | Dec 2017 | B2 |
9895696 | Hamilton et al. | Feb 2018 | B2 |
10086407 | Sauser | Oct 2018 | B2 |
10179348 | Schirm et al. | Jan 2019 | B2 |
Number | Date | Country |
---|---|---|
1036782 | Aug 1958 | DE |
0945189 | Sep 1999 | EP |
1726370 | Nov 2006 | EP |
1340492 | Oct 1963 | FR |
2515074 | Apr 1983 | FR |
2545385 | Nov 1984 | FR |
Entry |
---|
European Search Report, dated Aug. 6, 2019, for EP patent application 19151291, a foreign counterpart application. |
Number | Date | Country | |
---|---|---|---|
20190224719 A1 | Jul 2019 | US |