The invention relates to oil-flooded screw compressors for high input power. Such screw compressors have two parallel rotors: a male rotor having essentially convex lobe flanks featuring four, five or six lobes, and a female rotor having essentially concave lobe flanks featuring six or seven lobes; the male rotor has a drive-shaft end and both rotors are enclosed in housing sections: a suction-housing section having at least parts of a suction channel and parts of an inlet port for passing of the working fluid into the interlobe spaces of the rotor pair, a rotor-housing section at least partially enclosing the profile section of the rotors, and a discharge housing having at least an outlet port for passing the gas out of the interlobe spaces of the rotor pair due to rotation of the rotors, and a discharge channel.
Such screw compressors have a working space designated also as working chamber or working cavity formed by the interlobe spaces of both rotors, adjacent housing sections and other adjacent components such as e.g. a control slide. The suction channel and the inlet port are adjacent to the working chambers on the suction side. One or several outlet ports are adjacent to the working chambers on the discharge side. The rotors have shaft extensions enclosed in radial- and/or axial bearings.
The compressor drive-shaft end and the radial- and axial bearings are loaded more or less depending on the compressor size, the suction- and discharge pressure. The distance between both rotor axes determines the maximum bearing size and hence the load-carrying ability of the bearings with respect to a pre-defined service life of the bearings.
There is a relationship between the input power and bearing load for an existing compressor. When the input power rises which is the case at higher working pressures, the torsional moment at the drive-shaft end as well as the load on the radial- and axial bearings will increase. This results in a limitation of the conditions of application for the known compressors.
The screw compressors used so far having four or five lobes on the male rotor and six or seven lobes on the female rotor with a wrap angle on the male rotor of approx. 300° are not capable to accommodate extremely high input power as the bearings of the rotors do not reach an acceptable service life due to the high loads. According to prior art, the input power of an existing compressor is limited for such compressors to working pressures of approx. 40 bar. For higher working pressures, the compressor would have to be operated in the part-load mode which would cause additional losses and hence higher operating cost.
Therefore, compressors with a greater number of lobes have been developed for this case of application and introduced into the market. They have a ratio of six lobes on the male rotor to seven or eight lobes on the female rotor with a wrap angle of approx. 300° at the profile section of the male rotor.
These compressors have smaller working cavities. Hence, the loads on both the radial- and axial bearings are less compared to the first-mentioned compressors having ratios of male-to-female rotor lobes of 4:6 or 5:6 or 5:7 respectively. A drawback is that the internal leakage of such compressors increases compared to the first-mentioned compressors having greater working cavities and ratios of male-to-female rotor lobes of 4:6, 5:6 or 5:7.
The internal leakage, which can be demonstrated by a geometric relationship between the meshing line length and the volume of the working cavity increases on compressors having a ratio of male-to-female rotor lobes of 6:8 by the factor 2 to 3 in comparison with the first-mentioned compressors so that the efficiency, i.e. the volumetric efficiency and the isentropic efficiency, and hence the efficiency of energy conversion of the compressor, will be reduced.
The object of the invention is to prevent the disadvantages mentioned and to generate a screw compressor wherein the internal leakage does not worsen and wherein the input power of the compressor and its impact on the bearing loads are brought into a range so as to achieve a sufficient service life required for industrial applications.
A further object of the invention is, for reasons of component standardization and cost reduction, to use compressor components such as bearing assemblies of existing compressors designed for smaller pressure gradients between the suction- and discharge sides.
The feature of the invention is to use rotors having a ratio of male-to-female rotor lobes of 4:6, 5:6 or 5:7 as before and to reduce the ratio L/A between the length of the profile section of the rotors L and distance between the rotor axes A, which determines the bearing load, by shortening the profile sections of both rotors compared with known compressors. In order to use the same rotor-housing section, an intermediate plate is fixed at the suction housing adjacent to the working chamber on the suction side. The intermediate plate consists of a similar material as the material of the housings, cast grey iron or steel, or aluminium or another rigid material suitable for refrigerants and oil.
The intermediate plate furnishes parts of the suction channel at the male rotor side and at the female rotor side. It continues the suction channel in axial direction from the suction housing to the grooves of the rotor profile of male and female rotor. Another feature of the intermediate plate is characterized by location of parts of oil return channels for oil drainage from bearings or shaft seals or combinations of this to grooves of the rotor profile of the male rotor and of the female rotor. The intermediate plate seals the grooves of the rotor profile of male and female rotor at the end face of the rotor pair without direct contact. Male rotors of compressors according to the invention have wrap angles in the range of approximately 140° to 250°. The wrap angle is defined as the angle between the two end face sides of the rotor profile measured around the rotor axis, the wrap angle represents the twist of rotor profile between the suction and discharge end faces. During rotation between the suction process and the beginning of compression, the rotor pair has a transfer phase, i.e. a phase without geometric change of volume of the working cavity. The ratio L/A between the length of the profile section of the rotors L and distance between the rotor axes A lies approximately between 0.7 to 1.3.
The advantage of the invention is that the inlet port shape is preferably defined so that the suction process is terminated after the maximum volume of the working cavity has been reached and before the cavity starts to decrease as a result of rotor rotation, i.e. within the transfer phase. Therefore, the additional volume flow may be admitted within the transfer phase of compressor versions with economizers. Thus, the refrigerating capacity is preferably increased compared to compressor versions with economizers and without transfer phase. A further advantage of the solution according to the invention is that the screw compressor compared to another known solution with shortening of one rotor only (U.S. Pat. No. 6,328,546) features a defined displacement volume independent of the operation conditions.
A further advantage is that from an existing compressor designed for smaller input power the components such as bearings and rotor housing can be used and tools and appliances for manufacture of components such as rotors with their profiles, and the housing can be reused so as to reduce costs for the manufacture of compressors due to standardization of components, tools and manufacturing auxiliaries. Compressors according to the invention have preferably the same connection dimensions as have compressors of smaller input power.
In the following, the invention is described in an example of embodiment. The accompanying drawing shows in:
In the screw compressor shown in
Due to rotation of the rotors, the volume of a working cavity considered increases (suction process 15), then remains constant for a range of the angle of rotation (transfer phase 16), and decreases (compression process 17 and discharge process 18). Due to the shape of the inlet port, the latter gets disconnected from the working cavity considered as a result of rotor rotation, after the transfer phase 16 has begun.
The compressor can be fitted with an economizer port 8 on the wall of the housing enclosing the rotors between the suction- and discharge side of the compressor, preferably arranged in the area of the transfer phase 16 of the working cavity after the disconnection of the working cavity from the suction port.
Both rotors 2 and 3 are supported by radial bearings 1 on the suction side and by radial bearings 9 and axial bearings 10 on the discharge side. For compensation of the axial thrust, a contactless sealing rotating balance piston 11 is arranged on male rotor 2. Balance piston 11 is supplied with pressurized oil and axially counteracts the gas force exerting on male rotor 2.
The intermediate plate 7 is fixed with fixation screws 19 at the suction housing adjacent to the working chamber on the suction side. The intermediate plate 7 consists of a similar material as the material of the housings, cast grey iron or steel, or aluminum, or another rigid material suitable for refrigerants and oil.
The intermediate plate 7 furnishes parts of the suction channel 6. The contour 22 of the intermediate plate 7 at the male rotor side is adapted to the shape of the male rotor groove at its suction face side. The contour 23 of the intermediate plate 7 at the female rotor side is adapted to the shape of the female rotor groove at its suction face side. It continues the suction channel 6 in axial direction from the suction housing to the grooves of the rotor profile of male and female rotor. The position of contour 22 and of contour 23 finishes the suction stroke and defines the beginning of the transportation stroke. Another feature of the intermediate plate is characterized by location of parts of oil return channels 20 for oil drainage from bearings or shaft seal or combinations of this to grooves of the rotor profile of male rotor and female rotor. Oil return channels 20 are arranged related to the contour 22 and the contour 23 in a way that returned oil from sleeve bearings 1 and shaft seal is led off into closed working chambers. The intermediate plate 7 seals the grooves of the rotor profile of male rotor and female rotor at the end face 21 of the rotor pair without direct contact.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 021 704 | May 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2578196 | Montelius | Dec 1951 | A |
4443170 | Schibbye | Apr 1984 | A |
4938672 | Ingalls | Jul 1990 | A |
5096399 | Mosemann | Mar 1992 | A |
5674063 | Ozaki et al. | Oct 1997 | A |
6328546 | Uishi | Dec 2001 | B1 |
6519967 | Mosemann et al. | Feb 2003 | B1 |
Number | Date | Country |
---|---|---|
42027 | Dec 1981 | EP |
648055 | Nov 1948 | GB |
1335025 | Oct 1973 | GB |
54011511 | Jan 1979 | JP |
54039209 | Mar 1979 | JP |
Number | Date | Country | |
---|---|---|---|
20070264146 A1 | Nov 2007 | US |