This application claims priority to Japanese Patent Application No. 2013-044044 filed on Mar. 6, 2013, the contents of which are hereby incorporated by reference into the present application.
The present application relates to a scroll compressor.
A scroll compressor adopts a mechanism which enables the orbital radius of the movable scroll to be variable in order to appropriately maintain the contact pressure of the movable scroll and the fixed scroll. An example of the foregoing mechanism is the swing link mechanism. Japanese Patent Application Publication No. 2008-208717 discloses, as an example of the swing link mechanism, a scroll compressor in which an eccentric hole is formed at an eccentric position of a bush. A drive pin is disposed at a position that is eccentric from the center axis on one end surface of the main axis, and the drive pin inserted rotatably into the eccentric hole of the bush. Consequently, when the main axis is driven, the movable scroll that is rotatably supported by the bush orbits about the drive pin, and the orbital radius of the movable scroll can thereby be changed.
With the conventional scroll compressor described above, the bush continues to rotate due to inertial force even when the scroll compressor is stopped and the drive of the main axis is stopped. Here, the bush rotates about the drive pin. Thus, the main axis and the bush collides and generate a relatively large noise.
This specification provides technology for reducing the abnormal noise that is generated when the scroll compressor stops.
A scroll compressor comprises a housing, a cylindrical rotating shaft rotatably supported by the housing, a fixed scroll fixed to the housing, a movable scroll which opposes the fixed scroll to form a compressing chamber, and a drive mechanism disposed in the housing and configured to allow the movable scroll to make an orbital motion by rotation of the rotating shaft. The drive mechanism includes an eccentric pin extending in parallel with the rotating shaft from an end part of the rotating shaft, and a balancer-integrated bush disposed between the eccentric pin and the movable scroll, including an eccentric hole into which the eccentric pin is inserted, configured to rotate around the eccentric pin, further including a balancer in an integrated manner, and configured to rotatably move relative to the rotating shaft. An elastic member is disposed between the balancer-integrated bush and at least one of the rotating shaft and the eccentric pin, and the elastic member regulates a relatively movable range in which the balancer-integrated bush rotatably moves around the rotating shaft relative to the rotating shaft.
In one aspect of the present teachings, there may exist a non-adjacent state in which the elastic member is not in abutment with either the balancer-integrated bush or at least one of the rotating shaft and the eccentric pin within the relatively movable range. According to the foregoing configuration, in comparison to a configuration where the elastic member is always in abutment with the balancer-integrated bush and at least one of the rotating shaft and the eccentric pin in a relatively movable range, the relatively movable range of the balancer-integrated bush increases. Thus, the balancer-integrated bush can appropriately adjust the pressing force of the movable scroll applied to the fixed scroll that is generated by the orbital motion of the movable scroll. In particular, even when the centrifugal force increases during the high-speed rotation of the scroll compressor, by the balancer-integrated bush rotatably moving around the rotating shaft relative to the rotating shaft, the balancer-integrated bush offsets the centrifugal force of the movable scroll, and increase in the pressing force of the scroll wall surfaces of the movable scroll and the fixed scroll can be inhibited.
In another aspect of the present teachings, the elastic member may be always in abutment with at least one of the rotating shaft and the eccentric pin and the balancer-integrated bush within the relatively movable range. According to the foregoing configuration, the rotational resistance of the balancer-integrated bush increases due to the elastic member. Thus, when the rotating shaft stops, the balancer-integrated bush gradually decelerates and then stops. Accordingly, the collision noise of when the balancer-integrated bush stops is reduced.
In another aspect of the present teachings, the balancer-integrated bush may comprise a body and a projecting portion which projects in parallel with the rotating shaft from the body towards the rotating shaft. The projecting portion may include a first opposing surface opposing a peripheral surface of the rotating shaft. The body may include a second opposing surface opposing an end surface of the rotating shaft. The first opposing surface and the second opposing surface may form a concaved portion capable of accommodating the end part of the rotating shaft. According to the foregoing configuration, when the rotating shaft stops, the balancer-integrated bush stops as a result of colliding with the end part of the rotating shaft. Here, since the impact during collision is lightened by the elastic member, the abnormal noise during the collision of the rotating shaft and the balancer-integrated bush can be reduced.
In another aspect of the present teachings, the balancer-integrated bush may include a first opposing surface opposing a peripheral surface of the rotating shaft. The elastic member may be attached to a part opposing the first opposing surface within the peripheral surface of the rotating shaft, or to the first opposing surface, or to a combination thereof. According to the foregoing configuration, an elastic member is disposed between the first opposing surface of the balancer-integrated bush and the peripheral surface of the rotating shaft, and the elastic member comes into abutment with both the balancer-integrated bush and the rotating shaft when the rotating shaft and the balancer-integrated bush collide. Consequently, the impact during the collision of the rotating shaft and the balancer-integrated bush is lightened. Thus, the abnormal noise during the collision of the rotating shaft and the balancer-integrated bush can be reduced.
In another aspect of the present teachings, the balancer-integrated bush may include a projecting portion having a first opposing surface opposing a peripheral surface of the rotating shaft. The elastic member may be a ring shaped elastic member. The ring shaped elastic member may be attached to the rotating shaft, or to the projecting portion, or to a combination thereof. According to the foregoing configuration, by using a ring shaped elastic member, the elastic member can be easily attached to the balancer-integrated bush or to the rotating shaft.
In the other aspect of the present teachings, the eccentric pin may include an exposed portion exposed to outside the eccentric hole. A ring shaped elastic member may be attached to a peripheral surface of the exposed portion. The ring shaped elastic member may be in abutment with the balancer-integrated bush. According to the foregoing configuration, the ring shaped elastic member is attached to the exposed portion of the eccentric pin, and the ring shaped elastic member also comes into abutment with the balancer-integrated bush. According to the foregoing configuration, friction force is generated between the elastic member, which is attached to the eccentric pin, and the balancer-integrated bush, and the resistance during the rotation of the balancer-integrated bush about the eccentric pin increases. Thus, the rotating speed of the balancer-integrated bush decreases and the impact of the balancer-integrated bush colliding with the rotating shaft when the scroll compressor stops weakens. Accordingly, the abnormal noise during the collision of the rotating shaft and the balancer-integrated bush can be reduced. Moreover, when the scroll compressor starts, the balancer-integrated bush rotates relatively in a direction that is opposite to the direction of when the scroll compressor stops, and there are cases in which the scroll wall surface of the movable scroll collides with the scroll wall surface of the fixed scroll, thereby generating abnormal noise. According to the foregoing configuration, when the scroll compressor starts, since the rotating speed of the balancer-integrated bush gradually increases, the abnormal noise between the movable scroll and the fixed scroll can also be reduced.
Representative, non-limiting examples of the present invention will now be described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Furthermore, each of the additional features and teachings disclosed below may be utilized separately or in conjunction with other features and teachings to provide an improved scroll compressor.
Moreover, combinations of features and steps disclosed in the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described and below-described representative examples, as well as the various independent and dependent claims, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
The overall configuration of the scroll compressor 10 according to a first embodiment is now explained with reference to
The housing 12 comprises a bottomed cylindrical motor housing 16, a front housing 18 mounted inside the motor housing 16, and a discharge housing 20 for closing the open end (left end of
The motor housing 16 is formed from a metal material (for instance, aluminum or the like). An inlet port 16a is formed on the side face of the motor housing 16. The inlet port 16a is positioned near the bottom wall (right end of
The front housing 18 is formed from a metal material (for instance, aluminum or the like). When the front housing 18 is mounted in the motor housing 16, the space inside the motor housing 16 is partitioned into a space (space on the right side of the front housing 18 in
A discharge housing 20 is formed in a bottomed cylindrical shape, and formed from a metal material (for instance, aluminum or the like). A discharge port 20a is formed on the discharge housing 20. When the discharge housing 20 is mounted on the motor housing 16, a discharge chamber 20b is formed between the compression unit 22 and the discharge housing 20. The discharge chamber 20b is in communication with the outside via the discharge port 20a. The pressure of the refrigerant of the concaved portion 44 is maintained at an intermediate pressure between the pressure of the refrigerant of the inlet port 16a (low pressure) and the pressure of the refrigerant of the discharge port 20a (high pressure), and becomes a back pressure region. Consequently, the movable scroll 24 (described later) is pressed against the fixed scroll 26 (described later), and thus the leakage of the refrigerant is prevented and the appropriate operation of the movable scroll 24 is enabled.
The rotating shaft 39 is housed in the housing 12. As described above, one end of the rotating shaft 39 is rotatably supported by the slide bearing 47 disposed in the housing 12, and the other end of the rotating shaft 39 is rotatably supported by the slide bearing 45 disposed in the front housing 18. An eccentric pin 42 is disposed on the other end surface 41 of the rotating shaft 39. The eccentric pin 42 is disposed at a position that is eccentric from the center axis of the rotating shaft 39, and extends in parallel with the rotating shaft 39 from the other end surface 41 of the rotating shaft 39 toward the compression unit 22. A balancer-integrated bush 60 is rotatably mounted on the eccentric pin 42. The balancer-integrated bush 60 can rotatably move relative to the rotating shaft 39.
The electric motor (30, 34) is housed in the spaces (17a, 17b) on the side of the bottom wall in the motor housing 16. The electric motor (30, 34) comprises a rotor 34 fixed to the rotating shaft 39, and a stator coil 30 wound with a coil wire and disposed on the outer peripheral side of the rotor 34. When the electric motor (30, 34) is fixed to the inner wall surface of the motor housing 16, the spaces (17a, 17b) on the side of the bottom wall in the motor housing 16 are partitioned into a space 17a on the side of the motor drive circuit 15a and a space 17b on the side of the compression unit 22 in the axial direction of the rotating shaft 39 across the electric motor (30, 34). A flow path 38 is formed in the rotor 34. As evident from the diagrams, the flow path 38 causes the space 17a and the space 17b to be in communication.
The compression unit 22 is housed in a space on the open end side in the motor housing 16 (in
Note that the coil wire of the electric motor (30, 34) is connected to the motor drive circuit 15a via a lead wire 15c, a cluster block 54 and a terminal 15b. The cluster block 54 is fixed to the peripheral surface of the stator coil 30.
The operation of the foregoing scroll compressor 10 is now explained. When the motor drive circuit 15a supplies power to the electric motor (30, 34), the rotor 34 and the rotating shaft 39 start rotating integrally. When the rotating shaft 39 rotates, that rotation is transmitted to the movable scroll 24 via the eccentric pin 42 and the balancer-integrated bush 60. Consequently, the movable scroll 24 orbits, and the volume of the compressing chamber 22a between the movable scroll 24 and the fixed scroll 26 changes.
The refrigerant sucked in from the inlet port 16a flows through the space 17a in the motor housing 16 and cools one coil end of the stator coil 30. Subsequently, the refrigerant in the space 17a passes through the flow path 38 formed on the rotor 34, and flows to the space 17b. The rotor 34 is cooled by the refrigerant flowing in the flow path 38.
The refrigerant that flowed into the space 17b is sucked into the compressing chamber 22a of the compression unit 22. The refrigerant that was sucked into the compressing chamber 22a is compressed pursuant to the rotation of the movable scroll 24. The refrigerant that was compressed in the compressing chamber 22a is discharged to the discharge chamber 20b, and discharged outside the housing 12 by the discharge port 20a.
The balancer-integrated bush 60 is now explained with reference to
The bush 62 is formed in a cylindrical shape. The movable scroll 24 is rotatably mounted on the peripheral surface of the bush 62 via a slide bearing 28. An eccentric hole 64 is formed on one face 63 (face on the side of the rotating shaft 39) of the bush 62. The eccentric hole 64 is formed at a position that is eccentric from the rotating axis of the bush 62 and is separated from the axis A. In other words, the center O3 of the eccentric hole 64 is not positioned on the axis A. An eccentric pin 42 formed on the rotating shaft 39 is inserted into the eccentric hole 64. The length of the eccentric hole 64 (that is, the depth of the eccentric hole 64) is shorter than the length of the eccentric pin 42. Thus, when the eccentric pin 42 is inserted into the eccentric hole 64, the base end portion of the eccentric pin 42 is exposed. Note that the eccentric pin 42 is formed on the other end surface 41 of the rotating shaft 39 (that is, circle of the radius R1 having the point O1 of
The balancer 65 is formed on a side that is nearer to the rotating shaft 39 than the bush 62 is. As shown in
The positional relation of the rotating shaft 39 and the balancer-integrated bush 60 in a state where the eccentric pin 42 is inserted into the eccentric hole 64 is now explained with reference to
The O ring 100 that is attached to the rotating shaft 39 is now explained with reference to
The positional relation of the rotating shaft 39 and the balancer-integrated bush 60 in a state where the rotating shaft 39 is colliding with the balancer-integrated bush 60 and not colliding with the balancer-integrated bush 60 is each explained, and the operation and effect of the present embodiment are also explained.
The balancer-integrated bush 60 configured as described above rotates about the eccentric pin 42. Specifically, when the rotating shaft 39 is driven and rotates in the direction (clockwise rotation) shown with the arrow D of
When the drive of the rotating shaft 39 is stopped pursuant to the stoppage of the scroll compressor 10, the balancer-integrated bush 60 that was rotating around the eccentric pin 42 rotates in the direction indicated with the arrow D (clockwise rotation) due to the inertial force, and rotatably moves relative to the rotating shaft 39. Here, since the balancer-integrated bush 60 is engaged in eccentric rotation, the face 68 of the balancer 65 collides with the peripheral surface of the rotating shaft 39 at the point C of
A first modification example according to the first embodiment is now explained with reference to
Generally speaking, with a scroll compressor, when the compressor is activated, the balancer-integrated bush 60 rotates around the eccentric pin 42 relative to the eccentric pin 42 in a direction that is opposite to the direction of when the compressor stops. Consequently, there are cases when the movable scroll 24 orbits pursuant to the rotation of the balancer-integrated bush 60 and the scroll wall surface of the movable scroll 24 collides with the scroll wall surface of the fixed scroll 26, thereby generating an abnormal noise. This abnormal noise is considered to increase as the rotating speed of the balancer-integrated bush 60 is faster. In the first modification example, the diameter of the O ring 200 is set to be a thickness so that the O ring 200 is always in abutment with the face 68 while the scroll compressor 10 is being driven. Thus, when the scroll compressor 10 is activated and the balancer-integrated bush 60 starts to rotate, the rotational resistance of the balancer-integrated bush 60 based on the friction force arising between the O ring 100 and the face 68 increases. Consequently, the rotation angle acceleration of the balancer-integrated bush 60 decreases, and the increase in the rotating speed of the balancer-integrated bush 60 is inhibited. Accordingly, the impact upon the scroll wall surface of the movable scroll 24 colliding with the scroll wall surface of the fixed scroll 26 weakens, and the collision noise of the scroll wall surfaces of the scrolls can be reduced.
A second modification example according to the first embodiment is now explained with reference to
With the scroll compressor according to the second modification example, a groove 70 is formed on the projecting portion 65a of the balancer-integrated bush 60 in substitute for the groove 43 being formed on the rotating shaft 39. The groove 70 is formed to make a full circle around the side face (that is, the face that is formed substantially vertical from the face 69) including the face 68 of the projecting portion 65a. A circular ring 100a is fitted onto the groove 70. As shown in
A second embodiment is now explained with reference to
With the scroll compressor according to the second embodiment, a rubber sheet 100b is disposed between the other end surface 41 of the rotating shaft 39 and the face 67 of the balancer 65 and between the peripheral surface of the rotating shaft 39 and the face 68 in substitute for attaching the O ring 100 to one end of the rotating shaft 39. The sheet 100b is configured from a sheet portion 100b1 spreading in the yz plane, and a sheet portion 100b2 extending from the sheet portion 100b1 in the −x direction. The sheet portion 100b1 has a substantially line-symmetric shape with regard to the axis B indicated with a dashed line. A hole having a diameter that is substantially the same as the diameter of the eccentric pin 42 is formed on the sheet portion 100b1, and the center of the hole is positioned on the axis B. Moreover, the outer peripheral edge of the sheet portion 100b1 has a circular shape following the peripheral surface of the rotating shaft 39, and the radius R4 of this circular shape is slightly larger than the radius R1 of the rotating shaft 39. The foregoing hole formed on the sheet portion 100b1 is formed at a position such that the center of the circle of the circular arc of the sheet portion 100b1 and the center O1 of the other end surface 41 of the rotating shaft 39 overlap when the eccentric pin 42 is inserted into this hole. The sheet portion 100b2 extends from the circular part of the sheet portion 100b1 in the −x direction along the circular arc. The thickness of the sheet portion 100b2 is substantially the same as the difference between the radius R4 and the radius R1. In the present embodiment, the length of the sheet portion 100b2 in the −x direction is longer than the length L2. The sheet portion 100b1 has a thickness that is equal to or greater than the gap between the other end surface 41 of the rotating shaft 39 and the face 67 (L3−L2) when the eccentric pin 42 is inserted into the eccentric hole 64 of the bush 62. Moreover, the thickness of the sheet portion 100b2 is equal to or greater than the gap between the peripheral surface of the rotating shaft 39 and the face 68 (that is, R4-R1) in the foregoing case. Accordingly, when the eccentric pin 42 is inserted into the foregoing hole of the sheet portion 100b1, both faces of the sheet portion 100b1 come into abutment with the other end surface 41 of the rotating shaft 39 and the face 67, and both faces of the sheet portion 100b2 come into abutment with the peripheral surface of the rotating shaft 39 and the face 68. The balancer-integrated bush 60 can rotatably move relative to the rotating shaft 39 based on the elastic deformation of the sheet 100b. The sheet 100b can be easily positioned relative to the other end surface 41 as a result of the eccentric pin 42 being inserted into the hole formed on the sheet portion 100b1.
With the scroll compressor according to the second embodiment also, the same effect as the scroll compressor according to the first modification example of the first embodiment is yielded. In addition, in the present embodiment, the sheet 100b is also disposed on the part where the other end surface 41 of the rotating shaft 39 opposes the face 67. Thus, greater friction force is generated, and the impact during collision can be weakened and the abnormal noise can be reduced. Moreover, the impact from the collision of the rotating shaft 39 and the balancer-integrated bush 60 in the axial direction can also be lightened. Note that, while the present embodiment is configured so that the sheet 100b is also disposed on the part where the other end surface 41 opposes the face 67, the configuration is not limited thereto, and a configuration where the sheet is disposed only on the part at which the peripheral surface of the rotating shaft 39 opposes the face 68 may also be adopted. Moreover, while the present embodiment is configured so that the sheet portion 100b2 is always in abutment with the peripheral surface of the rotating shaft 39 and the face 68, the configuration is not limited thereto, and the sheet portion 100b2 does not need to be always in abutment with the peripheral surface of the rotating shaft 39 and the face 68 while the scroll compressor is being driven.
A third embodiment is now explained with reference to
With the scroll compressor according to the third embodiment, an O ring 100c is fitted onto the base portion of the eccentric pin 42 in substitute for the O ring 100 being attached to one end of the rotating shaft 39. The diameter of the O ring 100c is set to be thickness in which the O ring 100c comes into abutment with the face 66 of the balancer 65 while the scroll compressor is being driven. Moreover, the width of the O ring 100c in the x direction is set to be longer than the difference between the length L2 and the length L3. Thus, when the O ring 100c is attached to the base portion of the eccentric pin 42, the O ring 100c comes into abutment with the face 66 of the balancer 65. The balancer-integrated bush 60 can rotatably move relative to the rotating shaft 39 based on the elastic deformation of the O ring 100c. In other words, the scroll compressor according to the third embodiment differs from the scroll compressor 10 according to the first embodiment with respect to the point that the O ring 100c is not disposed at the part where the balancer-integrated bush 60 collides with the rotating shaft 39 when the scroll compressor stops. According to the foregoing configuration, friction force is generated between the O ring 100c and the face 66 of the balancer 65 while the scroll compressor is being driven, and the rotating speed upon the balancer-integrated bush 60 colliding with the rotating shaft 39 is reduced. Thus, the impact when the face 68 of the balancer 65 collides with the peripheral surface of the rotating shaft 39 is weakened, and the abnormal noise that is generated during the collision is reduced. While the O ring 100c was attached to the base portion of the eccentric pin 42 in the present embodiment, the configuration is not limited thereto. The O ring 100c may be attached to an arbitrary location of the exposed portion of the eccentric pin 42 as long as the O ring 100c is configured to come into abutment with the face 66 while the scroll compressor is being driven. Moreover, while the O ring 100c is configured to constantly come into abutment with the face 66 while the scroll compressor is being driven in the present embodiment, the configuration is not limited thereto. The O ring 100c does not need to be always in abutment with the face 66 while the scroll compressor is being driven as long as the balancer-integrated bush 60 is configured so that the rotating speed of the balancer-integrated bush 60 is reduced upon colliding with the rotating shaft 39.
A fourth embodiment is now explained with reference to
With the scroll compressor according to the fourth embodiment, two grooves 72 are formed on the projecting portion 65a of the balancer 65. Specifically, one groove 72 each is formed on two faces configured as a plane among the four side faces of the projecting portion 65a. The grooves 72 are formed at an arbitrary depth along the x direction on the foregoing face. The length of the grooves 72 in the x direction can be made to be substantially the same as the length L2 of the respective faces in the x direction. Both ends of the resin sheet 100d are respectively stopped in an engaged state with the two grooves 72. The sheet 100d is a rectangular sheet having a width that is substantially the same as the length of the grooves 72 in the x direction, and is pre-processed so that the sheet 100d fits along the shape of the two planes and the face 68. As a result of both ends of the sheet 100d being engaged with the grooves 72, the sheet 100d is fitted onto the projecting portion 65a so as to cover the face 68. The thickness of the sheet 100d is set so that the sheet 100d is always in abutment with the peripheral surface of the rotating shaft 39 while the scroll compressor is being driven. The balancer-integrated bush 60 can rotatably move relative to the rotating shaft 39 based on the elastic deformation of the sheet 100d. Based on this configuration also, the same effect as the first modification example of the first embodiment is yielded. Note that, while the length of the sheet 100d in the x direction is substantially the same as the length L2 in the present embodiment, the length of the sheet 100d is not limited thereto as long as the sheet 100d is disposed on a part opposing the peripheral surface of the rotating shaft 39. Moreover, while the present embodiment is configured so that the sheet 100d is always in abutment with the peripheral surface of the rotating shaft 39 while the scroll compressor is being driven, the configuration is not limited thereto, and the sheet 100d does not need to be always in abutment with the peripheral surface of the rotating shaft 39 while the scroll compressor is being driven.
A first modification example according to the fourth embodiment is now explained with reference to
With the scroll compressor according to the first modification example, a plurality of grooves 74 is formed on the face 68 in the depth direction of the face 68 (that is, direction that is substantially the same as the radial direction of the circle in which the point O2 of
While embodiments of the technology disclosed in this specification have been explained in detail above, the present disclosure is not limited to these embodiments, and the scroll compressor disclosed in the present specification includes the various modifications and variations of the foregoing embodiments. For example, in the foregoing embodiments and modification examples, while the elastic member is disposed on one among the rotating shaft 39, the eccentric pin 42, and the balancer-integrated bush 60, the configuration is not limited thereto. For example, the elastic member may also be disposed on both the rotating shaft 39 and the balancer-integrated bush 60, or disposed on both the rotating shaft 39 and the eccentric pin 42, or disposed on the rotating shaft 39, the eccentric pin 42, and the balancer-integrated bush 60.
Number | Date | Country | Kind |
---|---|---|---|
2013-044044 | Mar 2013 | JP | national |