This disclosure relates to scroll devices and more particularly to a scroll device having a pressure plate for preventing damage to the scroll device.
Scroll type devices, such as compressors, typically employ two interleaving scrolls that often, but not exclusively, employ involute vane geometries to pump, compress, expand, or pressurize fluids, such as liquids or gases, with such liquids or gases typically being introduced into the scroll type device through an inlet or input port and discharged through a discharge port. One of the interleaving scrolls is held fixed while the other scroll orbits eccentrically, without rotating, to trap and pump or compress pockets of fluid between the scrolls. Although other techniques are used for effecting suitable relative motion between the scrolls such as co-rotating the scrolls. The scroll type devices having two interleaving scrolls generally tend to be compact and operate more smoothly, quietly, and reliably than previous types of compressors.
Scroll devices have been used as compressors and expanders, and vacuum pumps for many years. In general, these devices may have a single stage of compression having a spiral involute or scroll upon a rotating plate orbits within a fixed spiral or scroll upon a stationery plate. A motor shaft turns a shaft that orbits a scroll eccentrically within a fixed scroll. The eccentric orbit forces a gas through and out of the fixed scroll thus creating a pressure in a container in communication with the fixed scroll. An expander operates with the same principle only turning the scrolls in reverse. When referring to compressors, it is understood that a vacuum pump can be substituted for compressor and that an expander can be an alternate usage when the scrolls operate in reverse from an expanding gas.
Currently, scroll devices may be semi-hermetic or hermetic scroll devices which have a fixed scroll positioned on an end of a compressor for sealing between ambient pressure and operating pressure. The scroll is machined on the inside of the scroll. The fixed scroll takes an axial pressure load from the difference between ambient pressure and internal operation pressure. This results in deflections on the spiral involute. These deflections on the fixed scroll can result in deformation of the scroll geometry machined on the inside of the scroll. The deformation of the scroll geometry can result in the involute contacting the orbiting scroll component. This can lead to failure of the scroll and should be avoided.
The present disclosure overcomes the limitations of the prior art where a need exists for preventing a deformation of the scroll geometry. It would also be advantageous to have a scroll device having a pressure plate that is capable of preventing damage to the scroll regardless of whether an interface pressure is at low operating pressure or at high operating pressure.
Accordingly, the present disclosure is a scroll device that comprises a housing having a fixed scroll plate and an orbiting scroll plate mounted therein on an idler shaft, the fixed scroll plate having a side having a fixed interleaved involute scroll and an outward facing side, the orbiting scroll plate having a side that has an orbiting interleaved involute scroll, an inlet port for the introduction of a working fluid into the device, and a pressure plate positioned adjacent to the outward facing side of the fixed scroll plate.
In another form of the present disclosure, a scroll device is disclosed which comprises a housing having a fixed scroll plate and an orbiting scroll plate mounted therein on an idler shaft, the fixed scroll plate having a side having a fixed interleaved involute scroll and an outward facing side, the orbiting scroll plate having a side that has an orbiting interleaved involute scroll, an inlet port for the introduction of a working fluid into the device, an O-ring located around the idler shaft, and a pressure plate positioned adjacent to the outward facing side of the fixed scroll plate.
In still another form of the present disclosure, a scroll device is disclosed which comprises a housing having a fixed scroll plate and an orbiting scroll plate mounted therein on an idler shaft, the fixed scroll plate having a side having a fixed interleaved involute scroll and an outward facing side, the orbiting scroll plate having a side that has an orbiting interleaved involute scroll, an inlet port for the introduction of a working fluid into the device, an O-ring located around the inlet port, and a pressure plate positioned adjacent to the outward facing side of the fixed scroll plate.
Therefore, the present disclosure provides a new and improved scroll device having a pressure plate with the scroll device being from the machine class of compressors, vacuum pumps, liquid pumps, and expanders for gases.
The present disclosure provides a scroll device having a pressure plate for protecting a fixed scroll within the scroll device from high differential pressure between atmospheric pressure and operating pressures within the scroll device.
The present disclosure also provides a scroll device having a pressure plate that may be used with a scroll device having an interface pressure being at a low operating pressure.
The present disclosure is directed to a scroll device having a pressure plate that may be used with a scroll device having an interface pressure being at a high operating pressure.
The present disclosure also provides a scroll device having a pressure plate with the pressure plate preventing damage to the scroll device.
These and other advantages may become more apparent to those skilled in the art upon review of the disclosure as described herein, and upon undertaking a study of the description of its preferred embodiments, when viewed in conjunction with the drawings.
In referring to the drawings,
Referring now to the drawings, wherein like numbers refer to like items, number 10 identifies a preferred embodiment of a scroll device having a pressure plate constructed according to the present disclosure. With reference now to
Although one idler shaft 18 is shown, typically there are three idler shafts that are preferably spaced approximately 120° from each other around the outside of the scroll plates 14 and 16. Although the idler shafts 18 is shown positioned between the fixed scroll plate 14 and the orbiting scroll plate 16, the idler shaft 18 could just as easily be located between the orbiting scroll plate 16 and the housing 12.
The housing 102 may also have fins 132 provided thereon for transferring heat primarily from the fixed scroll 104 and the orbiting scroll 106 to the housing 102 for evacuation by conduction or a fan (not shown) integrated into the housing 102. A shaft 134 may be connected to the orbiting scroll plate 106. A motor (not shown) may be connected to the shaft 134 to rotate the shaft 134 and in turn rotate the orbiting scroll plate 106. The motor may be magnetically connected to the shaft 134 by a magnetic coupling 136. The magnetic coupling 136 is used for transmitting the torque from the motor to the orbiting scroll plate 106 for appropriate rotation without leakage of the working fluid to the atmosphere. Generally, the motor supplies rotation to the magnetic coupling 136 which then imparts rotation and torque to the shaft 134 and the orbiting scroll plate 106 for usage as a compressor or vacuum pump while a generator (not shown) supplies rotation to the orbiting scroll plate 106 when the device 100 is used as an expander.
Again, although one idler shaft 108 is shown, typically there are three idler shafts that are preferably spaced approximately 120° from each other around the outside of the scroll plates 104 and 106. Although the idler shafts 108 is shown positioned between the fixed scroll plate 104 and the orbiting scroll plate 106, the idler shaft 108 could just as easily be located between the orbiting scroll plate 106 and the housing 102.
Although not shown, it is contemplated that the scrolls 28 and 32 or the scrolls 118 and 122 can be readily sealed with tip seals (not shown) in acceptable conventional manners and using acceptable conventional materials, including elastomeric sealing materials. U.S. Pat. No. 6,511,308 discloses several examples of acceptable manners and materials for tip seals, which manners and materials should not be considered or treated as being limiting or exhaustive, however.
From the aforementioned description, a scroll device from the machine class of scroll compressors, pumps, and expanders has been described. This scroll device is uniquely capable of expanding or compressing a fluid cyclically to evacuate a line, device, or space connected to the pump without intrusion of the nearby atmosphere. During operation, the scroll device generates heat within its fixed and orbiting scrolls which is dissipated through cooperating fins upon the surrounding housing. The scroll device may receive its motive power directly from a motor or alternatively from a motor connected to a magnetic coupling, further minimizing the incidence of atmospheric intrusion within the housing and the working fluid. The present disclosure and its various components may adapt existing equipment and may be manufactured from many materials including but not limited to cast metal, metal sheets and foils, elastomers, steel plates, polymers, high density polyethylene, polypropylene, polyvinyl chloride, nylon, ferrous and non-ferrous metals, their alloys, and composites.
From all that has been said, it will be clear that there has thus been shown and described herein a scroll device having a pressure plate. It will become apparent to those skilled in the art, however, that many changes, modifications, variations, and other uses and applications of the subject scroll device having a pressure plate are possible and contemplated. All changes, modifications, variations, and other uses and applications which do not depart from the spirit and scope of the disclosure are deemed to be covered by the disclosure, which is limited only by the claims which follow.
This patent application is a non-provisional of the provisional application having Ser. No. 62/392,395, filed on May 31, 2016; and this application also claims priority as a continuation-in-part to the non-provisional patent application having Ser. No. 14/999,427, filed on May 4, 2016, as a continuation-in-part, and which latter application is a non-provisional of the provisional application having Ser. No. 62/179,437, filed on May 7, 2015.
Number | Name | Date | Kind |
---|---|---|---|
801182 | Creux | Oct 1905 | A |
2079118 | Hingst | May 1937 | A |
2330121 | Heintz | Sep 1943 | A |
2968157 | Cronan | Jan 1961 | A |
3011694 | Mulhouse et al. | Dec 1961 | A |
3470704 | Kantor | Oct 1969 | A |
3613368 | Doerner | Oct 1971 | A |
3802809 | Vulliez | Apr 1974 | A |
3842596 | Gray | Oct 1974 | A |
3986799 | McCullough | Oct 1976 | A |
3986852 | Doerner et al. | Oct 1976 | A |
3994635 | McCullough | Nov 1976 | A |
3994636 | McCullough et al. | Nov 1976 | A |
3999400 | Gray | Dec 1976 | A |
4065279 | McCullough | Dec 1977 | A |
4069673 | Lapeyre | Jan 1978 | A |
4082484 | McCullough | Apr 1978 | A |
4157234 | Weaver et al. | Jun 1979 | A |
4192152 | Armstrong et al. | Mar 1980 | A |
4300875 | Fischer et al. | Nov 1981 | A |
4340339 | Hiraga et al. | Jul 1982 | A |
4382754 | Shaffer et al. | May 1983 | A |
4395885 | Cozby | Aug 1983 | A |
4411605 | Sauls | Oct 1983 | A |
4415317 | Buttersworth | Nov 1983 | A |
4416597 | Eber et al. | Nov 1983 | A |
4436495 | McCullough | Mar 1984 | A |
4457674 | Kawano et al. | Jul 1984 | A |
4462771 | Teegarden | Jul 1984 | A |
4472120 | McCullough | Sep 1984 | A |
4477238 | Terauchi | Oct 1984 | A |
4511091 | Vasco | Apr 1985 | A |
4673339 | Hayano et al. | Jun 1987 | A |
4718836 | Pottier et al. | Jan 1988 | A |
4722676 | Sugimoto | Feb 1988 | A |
4726100 | Etemad et al. | Feb 1988 | A |
4730375 | Nakamura et al. | Mar 1988 | A |
4732550 | Suzuki et al. | Mar 1988 | A |
4802831 | Suefuji et al. | Feb 1989 | A |
4867657 | Kotlarek et al. | Sep 1989 | A |
4875839 | Sakata et al. | Oct 1989 | A |
4892469 | McCullough et al. | Jan 1990 | A |
5013226 | Nishida | May 1991 | A |
5037280 | Nishida et al. | Aug 1991 | A |
5040956 | Barito et al. | Aug 1991 | A |
5044904 | Richardson, Jr. | Sep 1991 | A |
5051079 | Richardson, Jr. | Sep 1991 | A |
5082430 | Guttinger | Jan 1992 | A |
5108274 | Kakuda et al. | Apr 1992 | A |
5127809 | Amata et al. | Jul 1992 | A |
5142885 | Utter et al. | Sep 1992 | A |
5160253 | Okada et al. | Nov 1992 | A |
5214932 | Abdelmalek | Jun 1993 | A |
5222882 | McCullough | Jun 1993 | A |
5232355 | Fujii et al. | Aug 1993 | A |
5242284 | Mitsunaga | Sep 1993 | A |
5258046 | Haga et al. | Nov 1993 | A |
5338159 | Riffe et al. | Aug 1994 | A |
5417554 | Kietzman et al. | May 1995 | A |
5449279 | Hill | Sep 1995 | A |
5466134 | Shaffer et al. | Nov 1995 | A |
5496161 | Machida et al. | Mar 1996 | A |
5609478 | Utter | Mar 1997 | A |
5616015 | Liepert | Apr 1997 | A |
5632612 | Shaffer | May 1997 | A |
5632613 | Shin et al. | May 1997 | A |
5752816 | Shaffer | May 1998 | A |
5759020 | Shaffer | Jun 1998 | A |
5803723 | Suefuji et al. | Sep 1998 | A |
5836752 | Calhoun et al. | Nov 1998 | A |
5842843 | Haga | Dec 1998 | A |
5855473 | Liepert | Jan 1999 | A |
5857844 | Lifson et al. | Jan 1999 | A |
5873711 | Lifson | Feb 1999 | A |
5938419 | Honma et al. | Aug 1999 | A |
5951268 | Pottier et al. | Sep 1999 | A |
5961297 | Naga et al. | Oct 1999 | A |
5987894 | Claudet | Nov 1999 | A |
6008557 | Dornhoefer et al. | Dec 1999 | A |
6050792 | Shaffer | Apr 2000 | A |
6068459 | Clarke et al. | May 2000 | A |
6074185 | Protos | Jun 2000 | A |
6129530 | Shaffer | Oct 2000 | A |
6179590 | Honma et al. | Jan 2001 | B1 |
6186755 | Haga | Feb 2001 | B1 |
6190145 | Fujioka et al. | Feb 2001 | B1 |
6193487 | Ni | Feb 2001 | B1 |
6283737 | Kazikis et al. | Sep 2001 | B1 |
6379134 | Iizuka | Apr 2002 | B2 |
6434943 | Garris | Aug 2002 | B1 |
6439864 | Shaffer | Aug 2002 | B1 |
6464467 | Sullivan et al. | Oct 2002 | B2 |
6511308 | Shaffer | Jan 2003 | B2 |
6712589 | Mori et al. | Mar 2004 | B2 |
6736622 | Bush et al. | May 2004 | B1 |
6905320 | Satoh et al. | Jun 2005 | B2 |
6922999 | Kimura et al. | Aug 2005 | B2 |
7124585 | Kim et al. | Oct 2006 | B2 |
7249459 | Hisanaga et al. | Jul 2007 | B2 |
7306439 | Unami | Dec 2007 | B2 |
7314358 | Tsuchiya | Jan 2008 | B2 |
7458152 | Sato | Dec 2008 | B2 |
7458414 | Simon | Dec 2008 | B2 |
7836696 | Uno et al. | Nov 2010 | B2 |
7942655 | Shaffer | May 2011 | B2 |
7980078 | McCutchen et al. | Jul 2011 | B2 |
8007260 | Yanagisawa | Aug 2011 | B2 |
8087260 | Ogata et al. | Jan 2012 | B2 |
8186980 | Komai et al. | May 2012 | B2 |
8328544 | Iwano et al. | Dec 2012 | B2 |
8484974 | Monson et al. | Jul 2013 | B1 |
8668479 | Shaffer | Mar 2014 | B2 |
8674525 | Van Den Bossche et al. | Mar 2014 | B2 |
9022758 | Roof et al. | May 2015 | B2 |
9028230 | Shaffer | May 2015 | B2 |
9074598 | Shaffer et al. | Jul 2015 | B2 |
9784139 | Shaffer et al. | Oct 2017 | B2 |
9885358 | Shaffer | Feb 2018 | B2 |
10221852 | Shaffer et al. | Mar 2019 | B2 |
20010043878 | Sullivan et al. | Nov 2001 | A1 |
20020011332 | Oh et al. | Jan 2002 | A1 |
20020071779 | Moroi et al. | Jun 2002 | A1 |
20030017070 | Moroi et al. | Jan 2003 | A1 |
20030138339 | Scancarello | Jul 2003 | A1 |
20030223898 | Fujioka et al. | Dec 2003 | A1 |
20040020206 | Sullivan et al. | Feb 2004 | A1 |
20040255591 | Hisanga et al. | Dec 2004 | A1 |
20050031469 | Yanagisawa et al. | Feb 2005 | A1 |
20060016184 | Simon | Jan 2006 | A1 |
20060045783 | Yanagisawa et al. | Mar 2006 | A1 |
20060130495 | Dieckmann et al. | Jun 2006 | A1 |
20070108934 | Smith et al. | May 2007 | A1 |
20070172373 | Ni | Jul 2007 | A1 |
20070231174 | Ishizuki | Oct 2007 | A1 |
20080159888 | Nakayama et al. | Jul 2008 | A1 |
20080193311 | Helies | Aug 2008 | A1 |
20090148327 | Carter et al. | Jun 2009 | A1 |
20090246055 | Stehouwer et al. | Oct 2009 | A1 |
20100111740 | Ni | May 2010 | A1 |
20100254835 | Kane et al. | Oct 2010 | A1 |
20100287954 | Harman et al. | Nov 2010 | A1 |
20110129362 | Kameya et al. | Jun 2011 | A1 |
20110256007 | Shaffer | Oct 2011 | A1 |
20120134862 | Hockliffe et al. | May 2012 | A1 |
20130232975 | Shaffer et al. | Sep 2013 | A1 |
20140023540 | Heidecker et al. | Jan 2014 | A1 |
20170045046 | Afshari | Feb 2017 | A1 |
20170051741 | Shaffer et al. | Feb 2017 | A1 |
20170074265 | Asami et al. | Mar 2017 | A1 |
20170362962 | Shaffer et al. | Dec 2017 | A1 |
20180163725 | Valdez et al. | Jun 2018 | A1 |
20180163726 | Shaffer et al. | Jun 2018 | A1 |
20180216498 | Shaffer et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
105402134 | Mar 2016 | CN |
460936 | Jun 1928 | DE |
19957425 | Aug 2000 | DE |
0513824 | Nov 1992 | EP |
0780576 | Jun 1997 | EP |
3 239 526 | Jan 2017 | EP |
0513827 | Oct 1939 | GB |
2002455 | Feb 1979 | GB |
1575684 | Sep 1980 | GB |
S56-019369 | Feb 1981 | JP |
S57-171002 | Oct 1982 | JP |
H05-157076 | Jun 1993 | JP |
H07-109981 | Apr 1995 | JP |
H07-324688 | Dec 1995 | JP |
WO 2004008829 | Jan 2004 | WO |
WO 2009050126 | Apr 2009 | WO |
WO 2015164453 | Oct 2015 | WO |
Entry |
---|
“Heat Pump and Refrigeration Cycle,” Wikipedia, last updated May 10, 2013, 4 pages [retrieved online from: en.wikipedia.org/wiki/Heat_pump_and_refrigeration_cycle]. |
“Involute,” Wikipedia, last modified Jun. 2, 2012, 5 pages [retrieved online from: en.wikipedia.org/wiki/Involute]. |
“Oldham Coupler,” Wikipedia, last modified, Feb. 9, 2010, 2 pages [retrieved online from: en.wikipedia.org/wiki/Oldham_coupler]. |
“Organic Rankine Cycle,” Wikipedia, last modified May 19, 2013, 4 pages [retrieved online from: en.wikipedia.org/wiki/Organic_Rankine_Cycle]. |
“Rankine Cycle,” Wikipedia, last modified Apr. 29, 2013, 4 pages [retrieved online from: en.wikipedia.org/wiki/Rankine_cycle]. |
“Scroll Compressor,” Wikipedia, last modified Apr. 24, 2013, 3 pages [retrieved online from: en.wikipedia.org/wiki/Scroll_compressor]. |
“Thrust Bearing,” Wikipedia, last modified Dec. 19, 2012, 2 pages [retrieved online from: en.wikipedia.org/wiki/Thrust_bearing]. |
International Search Report and Written Opinion for Interiantional (PCT) Patent Application No. PCT/US2018/064427, dated Feb. 5, 2019 14 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US01/43523, dated Jun. 5, 2002 1 page. |
International Search Report for International (PCT) Patent Application No. PCT/US01/50377, dated May 13, 2002 1 page. |
Partial Search Report for European Patent Application No. 13003663.5, dated May 28, 2014 5 pages. |
Extended Search Report for European Patent Application No. 13003663.5, dated Sep. 3, 2014 11 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US14/00076, dated Dec. 17, 2014 6 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US18/00118, dated Sep. 24, 2018 19 pages. |
Official Action for U.S. Appl. No. 11/703,585, dated Dec. 18, 2009 7 pages. |
Official Action for U.S. Appl. No. 11/703,585, dated Jul. 20, 2010 7 pages. |
Notice of Allowance for U.S. Appl. No. 11/703,585, dated Feb. 4, 2011 4 pages. |
Official Action for U.S. Appl. No. 12/930,140, dated Jan. 14, 2013 22 pages. |
Official Action for U.S. Appl. No. 12/930,140, dated Jun. 13, 2013 21 pages. |
Notice of Allowance for U.S. Appl. No. 12/930,140, dated Oct. 24, 2013 12 pages. |
Official Action for U.S. Appl. No. 13/066,261, dated Feb. 11, 2013 5 pages Restriction Requirement. |
Notice of Allowance for U.S. Appl. No. 13/066,261, dated Apr. 4, 2013 13 pages. |
Official Action for U.S. Appl. No. 13/987,486, dated Dec. 16, 2013 5 pages Restriction Requirement. |
Official Action for U.S. Appl. No. 13/987,486, dated Apr. 23, 2014 13 pages. |
Official Action for U.S. Appl. No. 13/987,486, dated Oct. 20, 2014 11 pages. |
Notice of Allowance for U.S. Appl. No. 13/987,486, dated Jan. 5, 2015 5 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 13/987,486, dated Feb. 20, 2015 8 pages. |
Official Action for U.S. Appl. No. 14/544,874, dated Dec. 23, 2016 5 pages Restriction Requirement. |
Official Action for U.S. Appl. No. 14/544,874, dated Jan. 26, 2017 9 pages. |
Official Action for U.S. Appl. No. 14/544,874, dated Jul. 21, 2017 6 pages |
Notice of Allowance for U.S. Appl. No. 14/544,874, dated Sep. 28, 2017 5 pages. |
Official Action for U.S. Appl. No. 15/330,223, dated Nov. 15, 2017 6 pages Restriction Requirement. |
Official Action for U.S. Appl. No. 15/330,223, dated Feb. 7, 2018 10 pages. |
Official Action for U.S. Appl. No. 15/330,223, dated Aug. 7, 2018 10 pages. |
Official Action for U.S. Appl. No. 15/330,223, dated Jan. 11, 2019 14 pages. |
Official Action for U.S. Appl. No. 14/507,779, dated Apr. 8, 2014 17 pages. |
Official Action for U.S. Appl. No. 13/507,779, dated Dec. 1, 2014 17 pages. |
Notice of Allowance for U.S. Appl. No. 14/507,779, dated Mar. 6, 2015 8 pages. |
Official Action for U.S. Appl. No. 13/986,349, dated Jan. 21, 2015 25 pages. |
Official Action for U.S. Appl. No. 13/986,349, dated Aug. 12, 2015 20 pages. |
Official Action for U.S. Appl. No. 14/756,594, dated Mar. 29, 2017 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/756,594, dated Jun. 5, 2017 8 pages. |
Official Action for U.S. Appl. No. 15/731,929, dated Jan. 31, 2019 11 pages. |
Official Action for U.S. Appl. No. 14/999,427, dated Oct. 5, 2017 6 pages Restriction Requirement. |
Official Action for U.S. Appl. No. 14/999,427, dated Feb. 9, 2018 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/999,427, dated Sep. 21, 2018 18 pages. |
Official Action for U.S. Appl. No. 15/373,979, dated Jan. 29, 2019 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170268514 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62179437 | May 2015 | US | |
62392395 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14999427 | May 2016 | US |
Child | 15731324 | US |