This is a U.S. national stage of International application No. PCT/EP2019/055591, filed on Mar. 6, 2019, which claims priority to German Application No. 10 2018 203 450.8, filed Mar. 7, 2018, the content of each of which is incorporated herein by reference.
The present invention relates to a seal arrangement and to a fluid control valve. A fluid control valve is to be understood as meaning in particular a cooling water control valve for use in a vehicle. A vehicle is to be understood as meaning any type of vehicle which has to be supplied with a liquid and/or gaseous fuel for operation, but in particular passenger vehicles and/or utility vehicles. Furthermore, the vehicle may also be a partially electric or fully electric vehicle.
Seals as such can have different roles. They can, for example, serve to prevent or at least to limit undesired fluid losses. A fluid can be understood as meaning a liquid and/or gaseous medium.
An object of the present invention is to provide a seal arrangement for use in a fluid control valve, in particular in the form of a cooling water control valve, the seal arrangement complying with the highest demands placed on long-term leak-tightness under known large temperature fluctuations of a combustion engine periphery and/or an electric motor periphery. It is furthermore the intention for the seal arrangement to be producible inexpensively and to permit tolerance compensation over a broad tolerance range.
According to one aspect of the present invention, a seal arrangement for use in a fluid control valve of a vehicle comprises a first, separate seal for sealing abutment against an actuatable valve body of the fluid control valve, a second, separate seal for sealing abutment against a valve housing of the fluid control valve, and a separate, elastically deformable intermediate piece, which is arranged between the first seal and the second seal and which serves for elastically spacing the two seals apart in an axial direction of the seal arrangement. Here, at least in an installed state of the seal arrangement in the fluid control valve, the first seal and the second seal are joined to one another in positively locking fashion in the axial direction of the seal arrangement.
The positively locking joining positions the two seals relative to one another, such that the two seals can be supported against one another.
In one aspect, the first seal and the second seal are joined to one another in positively locking fashion already in an assembled state of the seal arrangement, that is to say after the seal arrangement has been assembled and before the seal arrangement is installed into the fluid control valve. This facilitates both the assembly process and the installation of the seal arrangement.
In another aspect, on two mutually oppositely situated end sides of the two seals, there is formed in each case one encircling projection, wherein the mutually oppositely situated projections engage into one another in positively locking fashion, by at least partially overlapping one another in the axial direction, either already in an assembled state of the seal arrangement—that is to say after the seal arrangement has been assembled and before the seal arrangement is installed into the fluid control valve—or for the first time as a result of the compression of the intermediate piece in an installed state of the seal arrangement in the fluid control valve.
Here, the two encircling projections are arranged or integrally formed on the respective end side of the seal radially at the inside with respect to a seal opening, such that the intermediate piece sealingly encloses the two projections.
Also proposed is a fluid control valve having at least one seal arrangement of the above-described type for sealing off a connection region of the fluid control valve, in particular in the form of a multi-way control valve.
Also proposed is the use of such a fluid control valve as a cooling water control valve.
The invention will be explained in detail in the following text with reference to the illustrations in the figures. Further advantageous refinements of the invention are apparent from the dependent claims and the description below of preferred embodiments. For this purpose:
Identical features or features having an identical effect are denoted by the same reference designations throughout the figures.
The circular-ring-shaped seal arrangement 2 or multi-part seal 2 shown in
The intermediate piece 8 illustrated in the figures (
Here, all of the embodiments described above have in common the fact that, at least on the seal 4, which is provided for statically sealing abutment against an actuatable valve body 28 of a fluid control valve 22 (See e.g.,
Furthermore, all of the embodiments described above have in common the fact that at least the first seal 4 is formed as a hard seal. It is however preferable for the second seal 6 to also be formed as a hard seal. Here, such a hard seal is to be understood as meaning a seal which, in contrast to the intermediate piece 8, is elastically non-deformable at least at the sealing contact point—whether this has a linear and/or areal sealing action. Basically, the hard seal may for example also be manufactured, for example by injection molding, entirely from PTFE (polytetrafluoroethylene) and/or the like. As an alternative to this, it would also be possible for the hard seal to be formed from a plastic that has a correspondingly hard coating, for example of PTFE and/or the like, at the sealing side. To save costs, it would also be possible for the second seal 6 to be formed merely from a plastic that is softer and less expensive in relation to that of the first seal 4.
In contrast, the intermediate piece 8—in the form of a closed encircling profile—is formed from an elastically deformable plastic, for example an elastomer etc., such that the axial spacing of the two seals 4 and 6 can, in accordance with a length tolerance situation to be compensated, be set by a correspondingly elastic deformation of the intermediate piece 8. This elastic deformation furthermore gives rise to the desired bracing of the seal arrangement 2 or multi-part seal 2 in its installed state.
Two hard seals 4 and 6 per se, for example in the form of two PTFE hard seals, in conjunction with the elastomer intermediate piece 8 already form an arrangement of individual parts which can adhere well to one another, and which can be easily installed as a unit into the fluid control valve 22. Furthermore, misalignment of the elastomer intermediate piece 8 during the installation process is advantageously prevented by the two PTFE hard seals 4 and 6.
It is clear from the illustration in
The seal arrangement proposed in the context of this disclosure is firstly producible inexpensively and secondly compensates tolerances over a relatively broad length tolerance range, and does so in conjunction with a long-term sealing action. With regard to the multi-way cooling water control valve 22 (see e.g.,
Although exemplary embodiments have been explained in the above description, it should be noted that numerous modifications are possible. Furthermore, it should be noted that the exemplary embodiments are merely examples which are not intended to limit the scope of protection, the applications and the structure in any way. Instead, the above description gives a person skilled in the art a guideline for the implementation of at least one exemplary embodiment, wherein various changes may be made, especially with regard to the function and arrangement of the component parts described, without departing from the scope of protection as apparent from the claims and combinations of features equivalent thereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 203 450.8 | Mar 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/055591 | 3/6/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/170761 | 9/12/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9518446 | Reid | Dec 2016 | B2 |
Number | Date | Country |
---|---|---|
102449357 | May 2012 | CN |
104685275 | Jun 2015 | CN |
106164548 | Nov 2016 | CN |
107614949 | Jan 2018 | CN |
10 2009 014 047 | Sep 2010 | DE |
10 2015 216 498 | Mar 2016 | DE |
20 2017 000 564 | Mar 2017 | DE |
WO 2016030505 | Mar 2016 | WO |
Entry |
---|
Machine Translation of DE102009014047, retrieved Apr. 23, 2021 (Year: 2010). |
Office Action dated Sep. 3, 2021 issued in Chinese Patent Application No. 201980016757.0. |
Number | Date | Country | |
---|---|---|---|
20210033200 A1 | Feb 2021 | US |