The invention relates to the field of sealed and thermally insulating tanks carried on a ship and fitted with a loading/unloading tower to load the fluid into the tank and/or to unload the fluid.
Sealed and thermally insulating storage tanks for liquefied natural gas (LNG) carried on a ship and fitted with a loading/unloading tower are known in the prior art. The loading/unloading tower has a tripod structure, i.e. a structure comprising three vertical pylons that are fastened to one another by cross members. Each of the vertical pylons is hollow. Two of the pylons thus form an unloading line from the tank, and for this purpose each pylon is associated with an unloading pump carried by the loading/unloading tower, close to the lower end thereof. The third pylon forms an emergency well enabling an emergency pump and an unloading line to be lowered in the event of failure of the other unloading pumps. The loading/unloading tower also carries loading lines that are not one of the three pylons. Such loading/unloading towers are for example described in documents KR20100103266 and KR20130017704.
When at sea, under the action of the swell, the liquefied gas storage tanks are subjected to the phenomenon of load sloshing. These phenomena can be very violent inside the tank and consequently generate significant forces in the tank and notably on the equipment, such as the loading/unloading tower.
The risk of suffering sloshing phenomena of significant amplitude is reduced if the filling rate of the tank is close to maximum, or if the tank only contains a residual amount of liquefied gas. Thus, the filling rate of liquefied natural gas carrier tanks used to transport liquefied gas is close to maximum on the outbound journey and said tanks only contain a residual amount of liquefied gas on the return journey, in order to limit the risk of suffering from significant sloshing phenomena.
This is not the case for tanks used to store liquefied gas that is used as fuel by the ship, notably to propel the ship, since the filling level of the tank is necessarily susceptible to variation over the entire filling range. Furthermore, such tanks are usually smaller such that the dimensional constraints applicable to the equipment of the tank, and notably on the loading/unloading tower, are greater.
Furthermore, the loading/unloading towers in the prior art are not entirely satisfactory, in particular because the mechanical strength thereof is not optimal for applications liable to involve substantial sloshing phenomena, such as maritime applications in which the liquefied gas is used as fuel.
One idea at the heart of the invention is to propose a sealed and thermally insulating storage tank for a fluid that is carried on board a ship and fitted with a loading/unloading tower, that occupies limited space, and that has improved mechanical strength with regard to sloshing phenomena.
According to a first aspect, the invention provides a sealed and thermally insulating storage tank for a fluid that is anchored in a load-bearing structure that is built into a ship, the ship having a longitudinal direction, the tank having a loading/unloading tower suspended from a ceiling wall of the load-bearing structure, the loading/unloading tower including first, second and third vertical pylons defining a prism of triangular section, each pylon having a lower end, the loading/unloading tower also having a base that extends horizontally and that is fastened to the lower end of the first, second and third pylons; the loading/unloading tower carrying at least a first pump that is fastened to the base and fitted with a suction member; the tank having a support foot that is fastened to the load-bearing structure in a zone of the bottom wall of the tank that extends the prism of triangular section, said support foot being arranged to guide a vertical translational movement of the loading/unloading tower; the tank having at least one first sump that is formed in the bottom wall of the tank and that houses the suction member of the first pump, the first pump being arranged outside the triangular prism and being aligned with the support foot in a first transverse plane that is orthogonal to the longitudinal direction of the ship.
Thus, since the first pump and the support foot are aligned transversely, i.e. in the preferential direction of the sloshing phenomena, the bending or torsion stresses liable to be exerted as a result of the sloshing phenomena on the loading/unloading tower and consequently on the multi-layer structure of the ceiling wall and/or the bottom wall in the zones adjacent to said loading/unloading tower are reduced.
Furthermore, since the first pump is arranged outside the prism of triangular section defined by the three pylons, the dimensions of the pylons of the loading/unloading tower can be limited while enabling the first pump to have a suction member seated in a sump, which also helps to further limit the stresses liable to be applied to the loading/unloading tower as a result of the sloshing phenomena.
Such an arrangement of the pump and of the loading/unloading tower is therefore compact and particularly resistant to sloshing phenomena.
According to another alternative embodiment, the first plane in which the first pump and the support foot are aligned is not orthogonal to the longitudinal direction of the ship, but inclined in relation to said longitudinal direction by an angle other than 90° and between 75° and 105°, preferably between 80° and 100°. It has indeed been observed that such an arrangement also helps to significantly reduce the bending or torsion stresses liable to be exerted as a result of the sloshing phenomena on the loading/unloading tower.
According to advantageous embodiments, such a tank may have one or more of the following features:
According to one embodiment, the first sump is centered or substantially centered on the axis of the first pump.
According to one embodiment, the loading/unloading tower carries a second pump that is fastened to the base and fitted with a suction member, the second pump being arranged outside the triangular prism and being aligned with the first pump and the support foot in the first transverse plane (P2).
According to one embodiment, the tank has a second sump that is formed in the bottom wall of the tank and that houses the suction member of the second pump.
According to one embodiment, the second sump is centered on the axis of the second pump.
According to one embodiment, the first sump is positioned away from the support foot by a distance equal to or greater than 1 m. According to one embodiment, the second sump is positioned away from the support foot by a distance equal to or greater than 1 m. The above features thus ensure the acceptable mechanical strength of the bottom wall of the tank while enabling the suction member of one pump and preferably of both to be housed in a sump.
According to one embodiment, the first and second pylons are aligned in a second transverse plane that is orthogonal to the longitudinal direction of the ship.
According to one embodiment, the third pylon extends in a longitudinal plane that is equidistant from the first and second pylons.
According to one embodiment, the diameter of the third pylon is greater than the diameter of the first and second pylons.
According to one embodiment, the third pylon forms an emergency well enabling an emergency pump and an unloading line to be lowered.
According to one embodiment, the loading/unloading tower carries a third pump that is fastened to the base, the third pump being aligned with said first and second pylons in the second transverse plane and arranged between said first and second pylons. This helps to protect the third pump against sloshing phenomena.
According to one embodiment, the suction member of the third pump is not immersed in a sump. This helps to limit the space occupied and notably makes it possible to position the loading/unloading tower closer to a rear wall of the tank than if a sump is required between the loading/unloading tower and said rear wall.
According to one embodiment, the first pump is linked to a first unloading line that extends vertically along the loading/unloading tower, the first unloading line being aligned with said first and second pylons in the second transverse plane and arranged between the first and second pylons. This helps to protect the first unloading line against sloshing phenomena.
According to one embodiment, the second pump is linked to a second unloading line that extends vertically along the loading/unloading tower, the second unloading line being aligned with said first and second pylons in the second transverse plane (P1) and arranged between the first and second pylons.
According to one embodiment, the third pump is linked to a third unloading line that extends vertically along the loading/unloading tower, the third unloading line being aligned with said first and second pylons in the second transverse plane and arranged between the first and second pylons.
According to one embodiment, each of the pumps is linked to one of the unloading lines by means of a connection device fitted with an expansion joint.
According to one embodiment, the base has at least one first lateral flange that projects in the transverse direction beyond the prism of triangular section and to which the first pump is fastened. Thus, fastening the first pump to the loading/unloading tower does not increase or only barely increases the susceptibility of the loading/unloading tower to sloshing phenomena.
According to one embodiment, the base has a second lateral flange that projects in the transverse direction beyond the prism of triangular section and to which the second pump is fastened.
According to one embodiment, the base has a central stiffening structure, said central stiffening structure having two stiffening members that are inclined in relation to the longitudinal direction of the ship, one of the stiffening members extending in a straight line between the third pylon and the first pylon, and preferably from the third pylon to the first pylon, and the other stiffening member extending in a straight line between the second pylon and the third pylon, preferably from the second pylon to the third pylon. Stiffening members having this structure are particularly efficient in distributing forces over the entire structure.
According to one embodiment, the central stiffening structure is arranged between the first and second lateral flanges.
According to one embodiment, the central stiffening structure also has a plurality of stiffening members that extend transversely to the longitudinal direction of the ship between the two stiffening members inclined in relation to the longitudinal direction of the ship.
According to one embodiment, the first lateral flange has a half-box housing the first pump, the half-box having a horizontal bottom on which fastening lugs for said first pump are fastened, the bottom having a cutout through which said first pump can pass.
According to one embodiment, the second lateral flange has a half-box housing the second pump, the half-box having a horizontal bottom on which fastening lugs for said second pump are fastened, the bottom having a cutout through which said second pump can pass.
According to one embodiment, each half-box also has two transversely oriented vertical walls and one longitudinally oriented vertical wall, the horizontal bottom being linked to the transversely oriented vertical walls and to the longitudinally oriented vertical wall.
According to one embodiment, the first lateral flange and/or the second lateral flange have stiffening members that extend transversely to the longitudinal direction of the ship.
According to one embodiment, the first, second and third pylons are fastened to one another by cross members.
According to one embodiment, the loading/unloading tower is fitted with a radar device to measure the level of liquefied gas in the tank, the radar device including an emitter and a waveguide that extends over substantially the entire height of the tank, the waveguide being fastened using support members to the cross members that link the third pylon to the first pylon or the second pylon, the support members extending in a third transverse plane that is orthogonal to the longitudinal direction of the ship. Thus, the support members extend in the preferential direction of the sloshing phenomena such as to work primarily in traction/compression and not in flexion under the effect of the sloshing phenomena, which helps to improve the mechanical strength thereof.
According to one embodiment, the first pump and/or the second pump are arranged wholly outside the prism of triangular section.
According to one embodiment, the support foot, the first sump and optionally the second sump are placed between the directrices of two transverse corrugations, and more specifically centered therebetween.
According to a second aspect, the invention also provides a sealed and thermally insulating storage tank for a fluid that is anchored in a load-bearing structure that is built into a ship, the ship having a longitudinal direction, the tank having a loading/unloading tower suspended from a ceiling wall of the load-bearing structure, the loading/unloading tower including first, second and third vertical pylons, each pylon having a lower end, the loading/unloading tower also having a base that extends horizontally and that is fastened to the lower end of the first, second and third pylons; the loading/unloading tower also carrying at least a first pump that is fastened to the base and fitted with a suction member; the base having a central stiffening structure, said central stiffening structure having two stiffening members that are inclined in relation to the longitudinal direction of the ship, one of the stiffening members extending in a straight line from the third pylon to the first pylon, and the other stiffening member extending in a straight line from the second pylon to the third pylon.
A central stiffening structure including such stiffening members is particularly efficient in distributing forces over the entire structure.
According to advantageous embodiments, such a tank may have one or more of the following features:
According to one embodiment, the first, second and third vertical pylons define a prism of triangular section.
According to one embodiment, the tank has a support foot that is fastened to the load-bearing structure in a zone of the bottom wall of the tank that extends the prism of triangular section, said support foot being arranged to guide a vertical translational movement of the loading/unloading tower.
According to one embodiment, the first pump is arranged outside the triangular prism.
According to one embodiment, the loading/unloading tower has a second pump arranged outside the triangular prism.
According to one embodiment, the first pump and the second pump are aligned in a first transverse plane (P2) that is orthogonal to the longitudinal direction of the ship.
According to one embodiment, the base has at least one first lateral flange that projects in the transverse direction beyond the prism of triangular section and to which a first pump is fastened.
According to one embodiment, the base has a second lateral flange that projects in the transverse direction beyond the prism of triangular section and to which the second pump is fastened.
According to one embodiment, the central stiffening structure is arranged between the first and second lateral flanges.
According to one embodiment, the central stiffening structure also has a plurality of stiffening members that extend transversely to the longitudinal direction of the ship between the two stiffening members inclined in relation to the longitudinal direction of the ship.
According to one embodiment, the first lateral flange has a half-box housing the first pump, the half-box having a horizontal bottom on which fastening lugs for said first pump are fastened, the bottom having a cutout through which said first pump can pass.
According to one embodiment, the second lateral flange has a half-box housing the second pump, the half-box having a horizontal bottom on which fastening lugs for said second pump are fastened, the bottom having a cutout through which said second pump can pass.
According to one embodiment, each half-box also has two transversely oriented vertical walls and one longitudinally oriented vertical wall, the horizontal bottom being linked to the transversely oriented vertical walls and to the longitudinally oriented vertical wall.
According to one embodiment, the first lateral flange and/or the second lateral flange have stiffening members that extend transversely to the longitudinal direction of the ship.
According to one embodiment, the first and second pylons are aligned in a second transverse plane that is orthogonal to the longitudinal direction of the ship.
According to one embodiment, the third pylon extends in a longitudinal plane that is equidistant from the first and second pylons.
According to one embodiment, the invention also provides a ship including a load-bearing structure and one of the aforementioned tanks anchored in said load-bearing structure.
According to one embodiment, the invention also provides a method for loading onto or unloading from such a ship, in which a fluid is channeled through insulated pipes to or from an onshore or floating storage facility to or from the tank on the ship.
According to one embodiment, the invention also provides a transfer system for a fluid, the system including the aforementioned ship, insulated pipes arranged to connect the tank installed in the hull of the ship to an onshore or floating storage facility and a pump for driving a fluid through the insulated pipes to or from the onshore or floating storage facility to or from the tank on the ship.
The invention can be better understood, and additional objectives, details, features and advantages thereof are set out more clearly, in the detailed description below of several specific embodiments of the invention given solely as non-limiting examples, with reference to the drawings attached.
By convention, an orthonormal frame defined in the figures by the two axes x and y is used to describe the elements of the tank. The axis x represents a longitudinal direction of the ship and the axis y represents a transverse axis perpendicular to the longitudinal direction of the ship.
The tank 1 is anchored in a load-bearing structure 3 built into a ship. The load-bearing structure 3 is for example formed by the double hull of a ship, but can also more generally be formed by any type of rigid partition having appropriate mechanical properties. The tank 1 can be used to transport liquefied gas or to receive liquefied gas used as fuel to power the ship.
According to one embodiment, the tank 1 is a membrane tank. In such a tank 1, each wall comprises, successively from outside to inside in the thickness direction of the wall, a secondary thermally insulating barrier 4 comprising insulating elements bearing against the load-bearing structure 3, a secondary sealing membrane 5 anchored to the insulating elements of the secondary thermally insulating barrier 4, a primary thermally insulating barrier 6 comprising the insulating elements bearing against the secondary sealing membrane 5 and a primary sealing membrane 7 anchored to the insulating elements of the primary thermally insulating barrier 5 and designed to be in contact with the fluid contained in the tank 1.
By way of example, each wall can notably be a Mark III wall as described for example in FR2691520, an NO96 wall as described for example in FR2877638, or a Mark V wall as described for example in WO14057221.
The loading/unloading tower 2 is installed in the vicinity of the rear wall 8 of the tank 1, which helps to optimize the quantity of cargo that can be unloaded by the loading/unloading tower 2, since ships are usually tilted backwards through the specific use of ballast, notably in order to limit vibrations.
The loading/unloading tower 2 is suspended from an upper wall 9 of the load-bearing structure 3. According to a preferred embodiment, the upper wall 9 of the load-bearing structure 3, in the vicinity of the rear wall 8, has a rectangular parallelepipedic space (not shown) that projects upwards, referred to as the liquid dome. The liquid dome is formed by two transverse walls (front and rear) and by two side walls that extend vertically and project upwards from the upper wall 9. The liquid dome also has a horizontal cover 10, shown in
The loading/unloading tower 2 extends over substantially the entire height of the tank 1. The loading/unloading tower 2 has a tripod structure, i.e. a structure comprising three vertical pylons 11, 12, 13 that are fastened to one another by cross members 14. Each of the pylons 11, 12, 13 is hollow and passes through the cover 10 of the liquid dome.
The three pylons 11, 12, 13 define a prism of triangular section with the cross members 14. According to one embodiment, the three pylons 11, 12, 13 are equidistant from one another such that the section of the prism is an equilateral triangle. Advantageously, the three pylons 11, 12, 13 are arranged such that at least one of the faces of the prism lies in a transverse plane P1 that is orthogonal to the longitudinal direction x of the ship. In other words, two of the pylons 11, 12 are aligned in the transverse plane P1. More specifically, the two pylons 11, 12 that are aligned in the transverse plane P1 are the two rear pylons, i.e. the pylons closest to the rear wall 8 of the tank 1.
As shown in
Furthermore, in the embodiment shown, the two pylons 11, 12 form sleeves for electrical power supply cables, used notably to power the unloading pumps carried by the loading/unloading tower 2. Furthermore, the installation includes three unloading ducts 15, 16, 17, shown in
According to an alternative embodiment (not shown), the two pylons 11, 12 are each connected to an unloading pump and form an unloading line. The loading/unloading tower 2 is then fitted with sleeves for electrical power supply cables that are arranged in the transverse plane P1 and placed between the two pylons 11, 12.
Furthermore, in the embodiment shown, the loading/unloading tower 2 is also fitted with two loading lines 21, 22 that are fastened to the front pylon. One of the two loading lines 21, shown only in
Furthermore, the loading/unloading tower 2 is fitted with a radar device 24, shown in
The loading/unloading tower 2 is also fitted with a base 27, notably shown in
Each of the unloading pumps 18, 19, 20 is connected to one of the unloading lines 15, 16, 17 described above. As shown in
The central pump 19 is arranged, in the transverse plane P1, between the pylons 11, 12, which helps to protect said pump from sloshing phenomena. The two side pumps 18, 20 are aligned with one another in a transverse plane P2 that is orthogonal to the longitudinal direction x of the ship.
The side pumps 18, 20 are arranged outside the triangular prism formed by the three pylons 11, 12, 13. This leaves enough distance between the side pumps 18, 20 to enable the suction member thereof to be seated in the sumps 30 (described below) without thereby further increasing the dimensions of the loading/unloading tower 2. Indeed, to ensure acceptable mechanical strength of the walls of the tank 1, there must be a minimum distance between the equipment interrupting the multi-layer structure of the walls, such as the sumps 30 or the support foot 31 of the loading/unloading tower 2. Consequently, with a support foot 31 (described below) positioned in the zone of the bottom wall 23 opposite the central axis of the loading/unloading tower 2, the sumps 30 designed to house the suction member of the side pumps 18, 20 must be far enough away from the central axis of the loading/unloading tower 2 to ensure that the mechanical performance of the bottom wall 23 of the tank 1 is not adversely affected.
According to one embodiment, the distance in the transverse direction y between the two side pumps 18, 20 is greater than 2 m, for example in the region of 4 m to 5 m. Furthermore, to ensure the adequate mechanical strength of the bottom wall 23, the minimum distance between a sump 30 and the support foot 31 is greater than 1 m. Advantageously, if the primary sealing membrane 7 is a corrugated membrane, the distance between a sump 30 and the support foot 31 is greater than three waveforms extending in the longitudinal direction of the ship. The sumps 30 are designed to keep the suction members of the side pumps 18, 20 immersed in a certain quantity of liquefied gas, regardless of any sloshing phenomena in said liquefied gas, to ensure said side pumps 18, 20 remain primed and/or are not damaged. A sump 30 according to an example embodiment is shown in
According to an embodiment that is not shown, in order to increase the capacity of the sump 30, the load-bearing structure 3 of the bottom wall 23 has a circular opening through which the sump 30 is engaged and that enables the sump 30 to project outside the plane of the load-bearing structure 3 of the bottom wall 23. In this case, a hollow cylindrical bowl is fastened to the load-bearing structure 3 about the opening and projects towards the outside of the load-bearing structure 3 in order to form an extension structure that provides an additional space to house the sump 30.
In the embodiment shown, only the side pumps 18, 20 are immersed in the sumps 30. Thus, when the level of liquefied gas in the tank drops beneath a threshold, the central pump 19 cannot be used and these side pumps 18, 20 are used exclusively to unload the liquefied gas. Such an arrangement is notably advantageous in that it enables the central pump 19 to be positioned between the two pylons 11, 12 and in that it enables the loading/unloading tower 2 to be positioned closer to the rear wall 8 than if a sump 30 is required between the loading/unloading tower and the rear wall 8 of the tank 1.
The structure of the base 27 is described below with reference to
Furthermore, the base 27 has a central stiffening structure 37 used to increase the stiffness of the base 27, thereby increasing the resistance of the loading/unloading tower 2 to sloshing phenomena. The central stiffening structure 37 has two stiffening members 38, 39 that are inclined in relation to the longitudinal direction x of the ship, each extending in a straight line between the central axis of one of the pylons 11, 12 and the central axis of the pylon 13. Such an arrangement providing significant stiffness is notably enabled by the positioning of the side pumps 18, 20 outside the prism of triangular section defined by the three pylons 11, 12, 13.
Furthermore, the central stiffening structure 37 has several stiffening members 40, 41, 42, 43 that extend transversely and join the two inclined stiffening members 38, 39. The central stiffening structure 37 also has stiffening members 44 that extend in the longitudinal direction between the transversely extending stiffening members 40, 41, 42, 43. In the embodiment illustrated, the base 27 is a flat sheet and the stiffening members 38, 39, 40, 41, 42, 43, 44 are metal beams that are welded to the flat sheet.
The base 27 also has two lateral flanges 45, 46 that project in the transverse direction y beyond the prism of triangular section defined by the three pylons 11, 12, 13. The lateral flanges 45, 46 fasten the side pumps 18, 20 to the base 27 outside the triangular prism formed by the three pylons 11, 12, 13.
As shown in
The lateral flanges 45, 46 are also provided with stiffening members, for example formed by vertical plates, that extend in the transverse direction and stiffening members, for example formed by vertical plates, that extend from the half-boxes 47, 48 towards one of the pylons 11, 12, 13.
The base 27 also includes a central flange 53 that is positioned between the two pylons 11, 12. The central flange 53 has a cutout through which the body of the central pump 19 is positioned. The central pump 19 has fastening lugs to fasten said pump to the central flange 53 about the cutout.
As shown schematically in
Furthermore, as shown in
Furthermore, if the primary sealing membrane 7 is a corrugated membrane, as shown in
With reference to
In a known manner, the loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, using appropriate connectors, to a sea or port terminal to transfer a cargo of LNG to or from the tank 71.
To create the pressure required to transfer the liquefied gas, pumps carried on board the ship 70 and/or pumps installed at the onshore facility 77 and/or pumps installed at the loading/unloading point 75 are used.
Although the invention has been described in relation to several specific embodiments, it is evidently in no way limited thereto and it includes all of the technical equivalents of the means described and the combinations thereof where these fall within the scope of the invention.
Use of the verb “comprise” or “include”, including when conjugated, does not exclude the presence of other elements or other steps in addition to those mentioned in a claim.
In the claims, reference signs between parentheses should not be understood to constitute a limitation to the claim.
Number | Date | Country | Kind |
---|---|---|---|
1853794 | May 2018 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2019/050979 | 4/25/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/211550 | 11/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6405540 | Dhellemmes | Jun 2002 | B1 |
6581352 | Amirsoleymani | Jun 2003 | B1 |
20110162310 | Garofalo | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2691520 | Nov 1993 | FR |
2877638 | May 2006 | FR |
2017525898 | Sep 2017 | JP |
10-20100103266 | Sep 2010 | KR |
20100103266 | Sep 2010 | KR |
10-20100115096 | Oct 2010 | KR |
20130017704 | Feb 2013 | KR |
10-20130036405 | Apr 2013 | KR |
10-20140101082 | Aug 2014 | KR |
10-20150013972 | Feb 2015 | KR |
20150012664 | Feb 2015 | KR |
20150012664 | Feb 2015 | KR |
20150013972 | Feb 2015 | KR |
20150015731 | Feb 2015 | KR |
20150068806 | Jun 2015 | KR |
20150127959 | Nov 2015 | KR |
10-20160119343 | Oct 2016 | KR |
20160146185 | Dec 2016 | KR |
20170036178 | Apr 2017 | KR |
20180000860 | Mar 2018 | KR |
14057221 | Apr 2014 | WO |
2016001142 | Jan 2016 | WO |
Entry |
---|
English machine translation of KR 2015-0012664 (Year: 2015). |
English machine translation of KR 2015-0013972 (Year: 2015). |
English machine translation of KR 2015/0068806 (Year: 2015). |
International Search Report for corresponding PCT application No. PCT/FR2019/050979, dated Sep. 24, 2019. |
Number | Date | Country | |
---|---|---|---|
20210247026 A1 | Aug 2021 | US |