The present invention relates to sealing devices and, more particularly, to sealing devices for providing a seal between an opening in an object and an elongate article such as a cable.
It is often necessary to form a seal between an elongate object such as a cable and an opening in an object such as a pipe or splice enclosure. For example, in a telecommunications infrastructure, electrical connectors or splices may be housed in enclosures to protect them from harsh environments. It may be necessary or desirable to seal the enclosure against the ingress of water or the like. In particular, the enclosure may be provided with a sealing device to form a seal about each cable or wire at its entry into the enclosure.
According to embodiments of the present invention, a sealing assembly for forming a seal about an elongate object includes a resilient seal member and a loading mechanism. The seal member includes an inner wall surface defining a channel to receive the elongate object. The inner wall surface includes at least one annular rib extending into the channel to engage the elongate object. The loading mechanism is adapted to selectively apply a compressive load to the seal member such that the inner wall surface is expanded inwardly to exert a sealing pressure on the elongate object.
According to further embodiments of the present invention, an enclosure assembly for use with an elongate object includes a housing and a sealing assembly for forming a seal about an elongate object. The sealing assembly includes a resilient seal member and a loading mechanism. The seal member includes an inner wall surface defining a channel to receive the elongate object. The inner wall surface includes at least one annular rib extending into the channel to engage the elongate object. The loading mechanism is adapted to selectively apply a compressive load to the seal member such that the inner wall surface is expanded inwardly to exert a sealing pressure on the elongate object. The housing member is mountable on the sealing assembly to form an enclosed chamber.
According to further embodiments of the present invention, a method for forming a seal about an elongate object includes inserting the elongate object into a channel of a resilient seal member, the seal member including an inner wall surface defining the channel and including at least one annular rib extending into the channel; and selectively applying a compressive load to the seal member such that the inner wall surface is expanded inwardly to exert a sealing pressure on the elongate object.
According to further embodiments of the present invention, a sealing assembly for forming a seal about an elongate object includes a resilient seal member and a loading mechanism. The seal member includes an inner wall surface defining a channel to receive the elongate object. The seal member is formed of a material having a durometer of no harder than about 30 Shore A. The loading mechanism is adapted to selectively apply a compressive load to the seal member such that the inner wall surface is expanded inwardly to exert a sealing pressure on the elongate object.
Further features, advantages and details of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments that follow, such description being merely illustrative of the present invention.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that when an element is referred to as being “coupled” or “connected” to another element, it can be directly coupled or connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly coupled” or “directly connected” to another element, there are no intervening elements present. Like numbers refer to like elements throughout. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
With reference to
The sealing assembly 100 includes a base member 110, a plurality of resilient seal members 130, and a plurality of loading mechanisms 160. The base member 110, the seal members 130 and the loading mechanisms 160 form five sealing subassemblies 101 (
With reference to
The base member 110 may be formed of any suitable material. According to some embodiments, the base member 110 is a molded polymeric material. Suitable polymeric materials include polyolefins (e.g., polyethylene, polypropylene and copolymers thereof), acrylonitrile butadiene styrene copolymers (ABS), polybutylene terephthalate, nylon, polycarbonate, polyvinyl chloride and alloys or combinations of the aforementioned polymers or similar engineering polymers.
With reference to
According to some embodiments, the material of the seal members 130 has a durometer no harder than 70 Shore A. According to some embodiments, the seal members 130 are formed of material having a durometer no harder than 30 Shore A. According to some embodiments, the durometer is between about 30 and 10 Shore A. According to some embodiments, the durometer is between about 25 and 15 Shore A.
The seal members 130 may be of unitary construction as illustrated. As illustrated, the seal members 130 are substantially identical and one will be described hereinafter, it being appreciated that the description that follows applies equally to the remaining seal members 130. However, according to further embodiments, the seal members 130 may differ from one another in material and/or configuration.
Referring now to
The outer diameter D3 (
The channels 140 may be substantially identical or different. Referring to
According to some embodiments, the pitch P (
According to some embodiments, the depth H (
According to some embodiments, the inner diameter D1 (
According to some embodiments, the length L1 (
Each of the sealing subassemblies 101 includes a loading mechanism 160 associated with the corresponding cavity 118 and seal member 130. Each loading mechanism 160 includes a pressure plate or member 150, a bolt 162 and a nut 164.
As shown in
The pressure member 150 (
The nut 164 is internally threaded and threadedly engages the shank 162B. The diameter of the nut 164 is oversized relative to the diameter of the hole 157 such that the nut 164 can abut and apply an axially compressive load to the front side 152 of the pressure member 150.
The bolt 162 and the nut 164 may be formed of any suitable material. According to some embodiments, the bolt 162 and the nut 164 are formed of a metal such as steel. The pressure member 150 may be formed of any suitable material. According to some embodiments, the pressure member 150 is formed of a rigid polymeric material. According to some embodiments, the pressure member 150 is formed of stainless steel, aluminum, polymeric materials or glass reinforced polymeric materials such as poly (oxymethylene), polyvinylchloride, polypropylene, nylon, or polybutylene terephthalate. The pressure member 150 may be formed of a molded material.
According to some embodiments, the diameters of the openings 118A and 156 are substantially the same as or larger than the diameter D2 (
With reference to
As noted above, the enclosure assembly 50 and the sealing assembly 100 may be used with any suitable elongate object, and are particularly contemplated for use with cables such as the cable 10 illustrated (
The enclosure assembly 50 may be used and assembled in the following manner. The enclosure assembly 50 may be mounted in a pressurized or non-pressurized cabinet, for example. Generally, one or more cables 10 are inserted through the base member 110 as discussed in more detail below. The inserted ends of the cables 10 are connected to a connector block or otherwise terminated or addressed, and the cover 52 is mounted on the base member 110. The clamp 56 is applied about the cover 52 to secure the cover 52 to the base member 110.
According to some embodiments, the seal member 130 is not loaded by the loading mechanism 160 while the cable 10 is being inserted. Alternatively, the seal member 130 may be partially axially compressed by the loading mechanism 160 while the cable 10 is being inserted.
Once the cable 10 is in place, the user can rotate the nut 164 to axially displace or push the pressure member 150 toward the bottom wall 118B as shown in
One or more additional cables 10 may be inserted through the other channels 140 of the seal member 130 before tightening the loading mechanism 160. When the nut 164 is rotated, each of the channels 140 will simultaneously contract to form a seal about the respective cable 10.
The channels 140 that are not used to receive cables may be plugged with plug rods, stoppers or the like, which may form seals with the seal member 130 in the same manner as with a cable. Additionally or alternatively, the seal member 130 may include an integral wall, skin, or other feature that extends across each channel 140 to seal the channel 140 until the wall, etc., is cut or pierced.
According to some embodiments, the loading mechanism 160 is adapted to provide a load on the seal member 130 of at least about 40 pounds. According to some embodiments, the loading mechanism 160 is adapted to provide a load of between about 40 and 80 pounds. According to some embodiments, the loading mechanism 160 is adapted to axially compress the seal member 130 to a length L2 (
The threaded arrangement of the bolt 162 and nut 164 may allow for a continuous range of adjustment of the compressive load within a prescribed range. A positive stop may be provided to limit the adjustment of the loading mechanism 160. For example, the shank 162B may be only partly threaded.
The sealing assembly 100 may provide a number of advantages. Because the seal member 130 can be subsequently compressed, the channels 140 can be formed of large enough diameter to allow for relatively easy insertion of the cables 10. Cable insertion may also be facilitated by the self-lubricating material of the seal member 130.
A good seal can be formed about each cable 10 and between the seal member 130 and the base member 110 for an extended range of cable sizes. The quality of the seal can be made substantially consistent without regard for the size of the cable (within the prescribed range). The loading mechanism 160 allows for the seal member 130 to be customized to fit the cable 10. It is not necessary to mount a bushing, spacer or the like on the cable 10 in order to properly fit the diameter of the cable to the channel 140. Cables of different sizes can be mounted in respective channels 140 of the seal member 130.
The security of the seal provided between the cable 10 and the seal member 130 can be augmented by the supplemental sealing pressure induced by the loading mechanism 160. Accordingly, an improved seal can be provided to withstand greater pressures (e.g., water level).
The pressure applied to the cable 10 can be selectively set so that a good seal is provided, but the cable 10 is not overloaded or overcompressed. Such overloading may damage the cable 10, particularly in the case of optical fibers.
Cables can be inserted, removed, and re-inserted (the same or a different cable) into the channels 140. The loading mechanism 160 can be loosened to facilitate removal and re-insertion. Once re-inserted, the loading mechanism can be used to form an improved seal about the cable as described above.
With reference to
When the loading mechanism 260 of the sealing assembly 200 is in the compressing position as shown in
Other types of biasing members may be used. For example, the biasing member may include a Belleville washer, an elastomeric spring member, or a movable containment structure (e.g., a bladder) filled with a compressible gas.
With reference to
With reference to
When the sealing assembly 400 is assembled, a cable 10 can be placed in a selected one of the channels 440 by pushing or inserting the cable 10 in a laterally or radially inward direction E as indicated in
While a cable 10 has been described above for the purposes of illustration, it will be appreciated that other elongate articles or objects may be sealed as well. For example, the sealing assemblies 100 may be used to form seals about mini tubes.
Various modifications may be made to the devices and methods described above. For example, the base member 110 may include more or fewer sealing subassemblies 101. Each sealing subassembly 101 may be provided with more or fewer passages to receive more or fewer cables or other elongate objects. The shapes of the passages 140 may be changed to complement cables or other elongate objects of other cross-sectional shapes (e.g., square, oval, etc.).
Other arrangements of threaded members may be employed to selectively displace the pressure member 150. For example, the bolt 162 may be replaced with an integrally and unitarily molded post. The bolt 162 may be replaced with a nut and the nut 164 with a threaded bolt. Other mechanisms, including non-threaded mechanisms, may be used to adjustably load the pressure member 150.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the invention.