The disclosure relates to a laminate and sealing member for closing the mouth of a container, and more particularly, to a sealing member suitable for use with fat containing compositions.
It is often desirable to seal the opening of a bottle, jar or other container opening using a sealing member or inner seal to maintain freshness and/or to indicate whether the container has been tampered with. Often a cap or other closure is then screwed or placed on the neck or other container opening. In use, a consumer typically removes the cap or other closure to gain access to the seal and removes or otherwise peels the seal from the container in order to dispense or gain access to its contents.
Initial attempts at sealing a container opening included an induction- or conduction-type inner seal covering the container's opening where the seal generally conformed to the shape of the opening such that a circular container opening was sealed with a round disk approximately the same size as the opening. These prior seals commonly had a lower heat activated sealing layer to secure a periphery of the seal to a rim or upper surface surrounding a container's opening. Upon exposing the seal to heat, the lower layer bonds to the container rim. In many cases, these seals included a foil layer to provide induction heat to activate the lower heat seal layer.
These prior seals tended to provide good sealing, but recent changes have been instituted in a number of countries limiting the types of materials that may come into contact with food and other compositions. For example, previously, a number of sealing members included paraffinic waxes in the heat seal. However, paraffinic waxes are no longer allowed to be in contact with certain foods and other compositions in some countries. Similarly, there are also regulations in a number of countries regarding the permissible migration from containers and seals into compositions, such as food and other comestibles.
Further, certain foods may be especially problematic for maintaining an adequate seal over time. For example, some fatty or fat containing compositions can be problematic as fats, oils, and the like can degrade the seal. This can be particularly problematic during shipping and storage when the contents of the container may be in direct contact with the seal, such as when a container is stored or shipped on its side.
Moreover, many containers are made of materials that may be dissimilar to the sealing member. For example, glass containers may be especially problematic for sealing with polymer containing seals compared to when a polymer containing seal is used with a polymer container. Glass containers also include various treatments and/or coatings for helping preserve the contents of the containers, reduce degradation of the lids, and the like. For example, some glass containers may include hydrophobic coatings, silane coatings, and other coatings that present difficulties for maintain a proper seal.
For simplicity, this disclosure generally refers to a sealing member for use with a container or bottle, but the sealing members herein may be applied to any type of container, bottle, package or other apparatus having a rim or mouth surrounding an access opening to an internal cavity. In this disclosure, reference to upper and lower surfaces and layers of the components of the sealing member refers to an orientation of the components as generally depicted in figures and when the sealing member is in use with a container in an upright position and having an opening at the top of the container. Different approaches to the sealing member will first be generally described, and then more specifics of the various constructions and materials will be explained thereafter.
It will be appreciated that the sealing members described herein, in some cases, function in both a one-piece or two-piece sealing member configuration. A one-piece sealing member generally includes just the sealing member bonded to a container rim. A cap or closure may be also used therewith. A two-piece sealing member includes the sealing member temporarily bonded to a liner. In this construction, the sealing member is bonded to a container's rim, and the liner is configured to separate from the sealing member during heating to be retained in a cap or other closure used on the container. In a two-piece construction, a wax layer, for example, or other layer, may be used to temporarily bond the sealing member to a liner. Other types of releasable layers may also be used to provide a temporary bond between the seal and liner.
It should be appreciated that, in some forms, the sealing members described herein may be suitable for providing a hermetic seal to glass containers that can be removed by the end consumer by pulling the seal from the container. Further, in some forms, the heat sealable layer is suitable for use in direct contact with fatty food (no waxes contained, neither paraffinic nor micro-crystalline) as the requirements of the EU Regulation EC October 2011 for direct contact with fatty food may be met. According to some forms, the seal stability and/or leakage ratio of the sealing member may be improved compared to other sealing members that use wax containing heatseal layers, especially when used in direct contact with fatty materials in the container. Additionally, in some forms, the sealing members may be suitable for use with hydrophilic surfaces.
A sealing member for a container is described herein capable of being heat sealed to a container's mouth or opening, such as on a glass container. Turning to more of the details and as generally shown in the Figures, sealing members are shown. In
The sealing member 10 may also include a polymer layer 18. The polymer layer 18 may be provided to add certain properties, as desired, to the sealing member 10. For example, the polymer layer 10 may be included to provide tear strength to the sealing member, provide insulation, provide a suitable surface to adhering to other layers, and the like.
The details of these components will be discussed in more detail below. Suitable adhesives, such as hot melt adhesives, may be used for the heat sealable layer 14. Such materials may include, but are not limited to, polyesters, polyolefins, polyolefin plastomers, ethylene vinyl acetate, ethylene-acrylic acid copolymers, surlyn, and other suitable materials. The heat sealable layer may include polymer materials that are heat activated to achieve its bonding characteristics.
According to one form, the heat sealable layer may be included in an amount of about 10 to about 50 g/m2. For example, in one form, the heat sealable layer can be included in an amount of about 35 g/m2. By one approach, the heat sealable layer may have a density of about 0.9 to about 1.0 g/cc.
In one form, the heat sealable layer may be a coextrusion of multiple materials. For example, the heat sealable layer may be a coextrusion of an ethylene acrylic acid copolymer and a polyolefin plastomer. For example, such a coextrusion may include Primacore 5980i in combination with Affinity GA 1950, both made by Dow. The amounts of each of these materials may also be varied. For example, the ratio of ethylene acrylic acid copolymer (such as Primacore 5980i) to polyolefin plastomer (such as Affinity GA 1950) may range from about 85:15 to about 95:5. In one form, the ratio of ethylene acrylic acid copolymer (such as Primacore 5980i) to polyolefin plastomer (such as Affinity GA 1950) is about 90:10.
The components of the heat sealable layer, such as ethylene acrylic acid, may be a higher molecular weight material. It is believed that, in some forms, higher molecular weight materials may be more suitable for use with hydrophobic substrates.
The amounts and ratios of the materials may be varied, depending on the types of containers that the sealing member is to be adhered to. For example, glass containers may include different treatments and/or coatings such that the specific ratios of the materials in a coextruded heat sealable member can be varied to achieve a desired seal strength and stability.
By one approach, the heat sealable layer may be a single layer or a multi-layer structure of such materials about 20 to about 40 microns thick. In some forms, the heat sealable layer is coextruded as a coating, such as on the membrane layer. According to one form, a tie layer may be first extruded onto the membrane layer and then the coextruded layer may be applied to the tie layer. The tie layer may help adhere the heat sealable layer to the membrane layer. In one form, the tie layer may be ethylene acrylic acid, such as in an amount of about 7 g/m2, and the coextruded layer may be a polyolefin plastomer with ethylene acrylic acid in a ratio of about 90:10, such as in an amount of about 28 g/m2. As ethylene acrylic acid is in both components, it may help adhere the heat sealable layer to the membrane layer.
The membrane layer may be an induction heating layer or other layer capable of generating heat upon being exposed to an induction current where eddy currents in the layer generate heat. By one approach, the membrane layer may be a metal layer, such as, aluminum foil, tin, and the like. In other approaches, the membrane layer may be a polymer layer in combination with an induction heating layer. The membrane layer may also be or include an atmospheric barrier layer capable of retarding the migration of gases and moisture at least from outside to inside a sealed container and, in some cases, also provide induction heating at the same time. Thus, the membrane layer may be one or more layers configured to provide such functionalities. By one approach, the membrane layer is about 0.3 to about 2 mils of a metal foil, such as aluminum foil, which is capable of providing induction heating and to function as an atmospheric barrier. According to one form, the membrane layer may be about 12 to about 40 μm, and in some forms, about 20 μm.
According to one form, the membrane, such as an aluminum foil, may be corona treated. Corona treatment may help improve the bond between the membrane and the heat sealable layer. In one form, corona treatment may provide improved bonding to the foil and improved bonding to glass side of the heatseal layer. In one form, increased corona treatment level may help increase bonding to both the membrane and glass. In one form, the corona treatment may include about 25 W/m2/min.
Above the membrane layer is one or more polymer layers. In one form, a polymer layer may be included that is a polyolefin or polyester film layer. In some approaches, the polymer layer may be about 5 to about 60 microns thick, though other thicknesses may also be used. The polymer layer may also be copolymers and/or blown film layers. Other polymer support layers may also be included such as PET, nylon, or other structural-type polymer layer(s). The sealing members may also include other layers as needed for a particular application, which may be layers in between the polymer layer and the membrane layer.
By one approach, the polymer layer may include a blend of polyolefin materials, such as a blend of one or more high density polyolefin components combined with one or more lower density polyolefin components. Suitable polymers include but are not limited to, polyethylene, polypropylene, ethylene-propylene copolymers, blends thereof as well as copolymers or blends with higher alpha-olefins. By one approach, the polymer layer is a blend of about 50 to about 70 percent of one or more high density polyolefin materials with the remainder being one or more lower density polyolefin materials. The blend is selected to achieve effective densities to provide both heat sealing to the container as well as separation of the liner from the seal in one piece.
The sealing member may also include other layers or components, such as printing inks, additional polymer layers, foam layers, and the like. For example, multiple polymer film and/or foam layers can be used in combination for the sealing member. In one form, the sealing member may include one or more of polypropylene films, expanded polyethylene, low density polyethylene, and the like.
In some approaches, additional layers may also be included in the sealing member. For instance, thin adhesive layers (not shown) may also be used to secure layers as needed for a particular application or the layers may be composites of coextruded films. In one form, such layers may be about 0.2 to about a 0.5 mil (or less) adhesive, such as a coated ethylene vinyl acetate (EVA), polyolefins, 2-component polyurethane, ethylene acrylic acid copolymers, curable two-part urethane adhesives, epoxy adhesives, ethylene methacrylate copolymers and the like bonding materials.
One form of a multi-layered sealing member is shown in
Yet another form of a sealing member is shown in
As discussed above, the sealing member may also be configured with a backing layer or liner such that the sealing member is considered to have a two-piece construction. With the two-piece construction, the sealing member is temporarily bonded to a liner. In this construction, the sealing member is bonded to a container's rim, and the liner is configured to separate from the sealing member during heating to be retained in a cap or other closure used on the container.
The backing layer may be formed of a layer of food grade cardboard or pulpboard. In an alternative embodiment, the backing layer may be formed from a synthetic material such as a layer of foamed plastic material to which a paper layer has been adhered to the bottom surface. In one form, the backing layer includes an absorbent component. Where a synthetic liner is used, a paper layer may be used as a bottom layer in contact with a wax layer or adhesive which needs to be able to absorb the molten wax. The wax layer or adhesive can be used to adhere the backing layer to at least a portion of the polymer layer or other film or foam layer. In one form, the backing layer may have a thickness of about 600 to about 900 μm. In one form, the backing layer is designed to separate from the sealing member and be retained in the cap as the cap is removed from container.
One form of a two-piece construction is shown in
In one aspect, the sealing members herein may also include a pull or grip tab wholly within a perimeter of the sealing member. One form of this is illustrated in
In use, by pulling on the tab 64, a user can pivot the tab 64 upwardly and use the tab 64 to remove the sealing member 60 from a container rim or other container portion. In one approach, by pulling on the tab 64, the sealing member 60 is removed from the container rim in one piece. Similar tabs are described in a variety of references, such as U.S. Pat. Nos. 9,440,765, 9,913,513, and 9,028,963. The pull tab 64 may be formed as an upper laminate and can include any number of the different layers, similar to the layers discussed herein, including, but not limited to, polymer layers, polymer films, polymer foams, and the like.
The sealing members described herein may be suitable for use with containers holding materials that have fatty elements, oils, and the like. For example, fatty compositions may include materials such as chocolate spreads, nut spreads, spices, compositions containing palm oil, vegetable oil, highly saturated vegetable oil, coconut oil, olive oil, sunflower oil, and the like. It should be appreciated that the sealing member may also be used with other compositions, such as foods containing oils, fats, and the like, therein.
The sealing members herein may be used to seal a variety of different containers, such as glass containers and other types of containers. One embodiment is shown in
The sealing member may be suitable for use with a variety of types of glass, glass treatments, and the like. Type III glass is typically treated in two or three ways—hot end, cold end, and induction treatment. With a “hot-end” treatment of tin or titanium tetrachloride, the thread and land area is shielded in the process, because when applying a metal closure, the tin will react with steel and rust. The treatment is a vapor so there is some reaction on the land area. A “cold-end” treatment includes oleic acid, monostearates, wax, silicon or polyethylenes. This is sprayed between rows of jars typically vertically from below. The land area may again have a little bit of this treatment on it because the treatment may be in the form of a spray. Similarly, it is undesirable to have the treatment on the thread area as this will affect the cap off-torque adversely. An induction treatment can also be added, but these tend to be proprietary to the glass maker and vary greatly in their use.
In certain circumstances, the hydrophobicity of the glass can impact the bond between the sealing member and the glass. For example, increasing hydrophobicity can decrease the bond strength. In these situations, the molecular weight of one or more of the heat sealable layer components can be modified. For example, with increasing hydrophobicity, the molecular weight of ethylene acrylic acid can be lowered to improve the bond.
In one form, the sealing member may be suitable for sealing to Tego Glas RP40 made by Arkema. This is a cold-end treated glass that can be used in operating temperatures above 80° C. where the glass coating does not degrade.
The glass may also include a hydrophobic coating, such as a silane coating. When such coatings are used, the molecular weight of one or more of the heat sealable layer components may be lowered to increase adhesion.
The various layers of the sealing member may be assembled via a heat lamination process forming a sheet of the described layers. Adhesive coating and/or extrusion lamination may also be used for one or more of the layers. During lamination, heating is applied to the web in order to activate the various heat-activated layers in the laminate structure in order to form the sealing member. The resulting laminate sheet of the sealing members can be cut into appropriate sized disks or other shapes as needed to form a vessel closing assembly or tabbed sealing member. The cut sealing member is inserted into a cap or other closure which, in turn, is applied to the neck of a container to be sealed. The screw cap can be screwed onto the open neck of the container, thus sandwiching the sealing member between the open neck of the container and the top of the cap. Heat or induction current or other sealing is then applied to seal the bottom assembly of layers forming the seal portion to the neck of the container.
The following examples are included to illustrate the disclosure herein and not to limit it. Unless otherwise stated herein, all parts and percentages are by weight.
In a first example, sealing members were prepared by coating Primacore 5980i on 29 micron aluminum foil as a tie layer. Next, Primacore 5980i was coextruded with Affinity GA 1950 in a ratio of about 90:10 to provide a coat weight of approximately 28 g/m2. The resulting layered material was then laminated onto a backing liner.
Glass jars were sealed initially to understand the sealing window. The speed was 30 m/min and carried out judging seal strength and overheating evidence. The seal results are summarized in Table 1 below.
To initially test the seal, 8 jars were sealed at 100% power, 4 of which were filled with olive oil and left at ambient temperature. The remaining four were left for the duration of the weekend and vacuum tested two days later. This is summarized in Table 2 below.
The 4 jars filled with olive oil and held at ambient temperature remain sealed with no sign of leakage.
Additional jars were sealed and vacuum tested within 30 minutes. These were sealed at 95% and 100% and retested at −200 mbar and −400 mbar pressures. These results are summarized in Table 3 below:
Table 3 shows the bottle tests were acceptable, nothing showing any failure even beyond 4 minutes at the lowest pressure.
Further jars were sealed with olive oil and also a mixture of olive oil and Palm oil in a ratio of 90:10 with induction heating at both 100% and 95% power, some held at ambient and some held at 30° C. 90% Rh.
Additionally, the peel stability of the material was also checked. This is displayed in
Additional testing was performed on other types and treatments of glass. Some of the treatments included hydrophobic coatings, hydrophilic coatings, and untreated glass.
Migration of various components of the heat sealable layer were also analyzed. More specifically, many countries have various limits on the amount of migration of the seal components into the material/food in the container. More specifically, samples of a heat sealing member having Primacore 5980i in combination with Affinity GA 1950 in a ratio of about 90:10 were tested for migration of each of the components.
For example, the migration of the ethylene acrylic acid copolymer and polyolefin plastomer was tested for 10 days at 60° C. into vegetable oil. The results are shown in Table 4 below.
The limit of migration was 3 mg/kg such that the samples were acceptable.
Determination of residual acrylic acid content, by extraction into acetonitrile twice to ensure full extraction is shown in Table 5 below.
In many countries, the limit for acrylic acid migration is 6 mg/kg, therefore the samples were compliant with the requirement.
In view of the migration testing, it is believed that the heat sealable layer is suitable for use with fatty materials as the components used in the heat sealable layer have limited migration.
It will be understood that various changes in the details, materials, and arrangements of the process, liner, seal, and combinations thereof, which have been herein described and illustrated in order to explain the nature of the products and methods, may be made by those skilled in the art within the principle and scope of the embodied product as expressed in the appended claims. For example, the seals may include other layers within the laminate as needed for a particular application. Adhesive layers not shown in the Figures may also be used, if needed, to secure various layers together.
This application is a U.S. national phase application filed under 35 U.S.C. § 371 of International Application Number PCT/US2017/058721, filed Oct. 27, 2017, designating the United States, which claims the benefit of U.S. Provisional Application No. 62/414,565, filed Oct. 28, 2016.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/058721 | 10/27/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/081533 | 5/3/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1818379 | Cain | Aug 1931 | A |
2768762 | Guinet | Oct 1956 | A |
3235165 | Jackson | Feb 1966 | A |
3292828 | Stuart | Dec 1966 | A |
3302818 | Balocca et al. | Feb 1967 | A |
3460310 | Adcock et al. | Aug 1969 | A |
3556816 | Nughes | Jan 1971 | A |
3964670 | Amneus | Jun 1976 | A |
3990603 | Brochman | Nov 1976 | A |
4133796 | Bullman | Jan 1979 | A |
4206165 | Dukess | Jun 1980 | A |
4266687 | Cummings | May 1981 | A |
4396655 | Graham et al. | Aug 1983 | A |
4556590 | Martin | Dec 1985 | A |
4582735 | Smith | Apr 1986 | A |
4588099 | Diez | May 1986 | A |
4595116 | Carlsson | Jun 1986 | A |
4596338 | Yousif | Jun 1986 | A |
4636273 | Wolfersperger | Jan 1987 | A |
4666052 | Ou-Yang | May 1987 | A |
4693390 | Hekal | Sep 1987 | A |
4735335 | Torterotot | Apr 1988 | A |
4741791 | Howard | May 1988 | A |
4762246 | Ashley | Aug 1988 | A |
4770325 | Gordon | Sep 1988 | A |
4771903 | Levene et al. | Sep 1988 | A |
4781294 | Croce | Nov 1988 | A |
4801647 | Wolfe, Jr. | Jan 1989 | A |
4811856 | Fischman | Mar 1989 | A |
4818577 | Ou-Yang | Apr 1989 | A |
4837061 | Smits | Jun 1989 | A |
4863061 | Moore | Sep 1989 | A |
4867881 | Kinzer | Sep 1989 | A |
4889731 | Williams | Dec 1989 | A |
4934544 | Han | Jun 1990 | A |
4938390 | Markva | Jul 1990 | A |
4960216 | Giles | Oct 1990 | A |
4961986 | Galda | Oct 1990 | A |
5004111 | McCarthy | Apr 1991 | A |
5015318 | Smits | May 1991 | A |
5053457 | Lee | Oct 1991 | A |
5055150 | Rosenfeld | Oct 1991 | A |
5057365 | Finkelstein | Oct 1991 | A |
5071710 | Smits | Dec 1991 | A |
5098495 | Smits | Mar 1992 | A |
RE33893 | Elias | Apr 1992 | E |
5106124 | Volkman | Apr 1992 | A |
5125529 | Torterotot | Jun 1992 | A |
5131556 | Iioka | Jul 1992 | A |
5149386 | Smits | Sep 1992 | A |
5178967 | Rosenfeld | Jan 1993 | A |
5197618 | Goth | Mar 1993 | A |
5217790 | Galda | Jun 1993 | A |
5226281 | Han | Jul 1993 | A |
5261990 | Galda | Nov 1993 | A |
5265745 | Pereyra | Nov 1993 | A |
5433992 | Galda | Jul 1995 | A |
5513781 | Ullrich | May 1996 | A |
5514442 | Galda | May 1996 | A |
5560989 | Han | Oct 1996 | A |
5598940 | Finkelstein | Feb 1997 | A |
5601200 | Finkelstein | Feb 1997 | A |
5615789 | Finkelstein | Apr 1997 | A |
5618618 | Murschall | Apr 1997 | A |
5669521 | Wiening | Sep 1997 | A |
5683774 | Faykish | Nov 1997 | A |
5702015 | Giles | Dec 1997 | A |
5709310 | Kretz | Jan 1998 | A |
5776284 | Sykes | Jul 1998 | A |
5851333 | Fagnant | Dec 1998 | A |
5860544 | Brucker | Jan 1999 | A |
5871112 | Giles | Feb 1999 | A |
5887747 | Burklin | Mar 1999 | A |
5915577 | Levine | Jun 1999 | A |
5975304 | Cain | Nov 1999 | A |
5976294 | Fagnant | Nov 1999 | A |
6056141 | Navarini | May 2000 | A |
6082566 | Yousif | Jul 2000 | A |
6096358 | Murdick | Aug 2000 | A |
6131754 | Smelko | Oct 2000 | A |
6139931 | Finkelstein | Oct 2000 | A |
6158632 | Ekkert | Dec 2000 | A |
6194042 | Finkelstein | Feb 2001 | B1 |
6290801 | Krampe | Sep 2001 | B1 |
6312776 | Finkelstein | Nov 2001 | B1 |
6378715 | Finkelstein | Apr 2002 | B1 |
6458302 | Shifflet | Oct 2002 | B1 |
6461714 | Giles | Oct 2002 | B1 |
6544615 | Otten | Apr 2003 | B2 |
6548302 | Mao | Apr 2003 | B1 |
6602309 | Vizulis | Aug 2003 | B2 |
6627273 | Wolf | Sep 2003 | B2 |
6669046 | Sawada | Dec 2003 | B1 |
6699566 | Zeiter | Mar 2004 | B2 |
6705467 | Kancsar | Mar 2004 | B1 |
6722272 | Jud | Apr 2004 | B2 |
6767425 | Meier | Jul 2004 | B2 |
6790508 | Razeti | Sep 2004 | B2 |
6866926 | Smelko | Mar 2005 | B1 |
6902075 | OBrien | Jun 2005 | B2 |
6916516 | Gerber | Jul 2005 | B1 |
6955736 | Rosenberger | Oct 2005 | B2 |
6959832 | Sawada | Nov 2005 | B1 |
6974045 | Trombach | Dec 2005 | B1 |
7128210 | Razeti | Oct 2006 | B2 |
7182475 | Kramer | Feb 2007 | B2 |
7217454 | Smelko | May 2007 | B2 |
RE39790 | Fuchs | Aug 2007 | E |
7316760 | Nageli | Jan 2008 | B2 |
7448153 | Maliner | Nov 2008 | B2 |
7531228 | Perre | May 2009 | B2 |
7648764 | Yousif | Jan 2010 | B2 |
7713605 | Yousif | May 2010 | B2 |
7731048 | Teixeira Alvares | Jun 2010 | B2 |
7740730 | Schedl | Jun 2010 | B2 |
7740927 | Yousif | Jun 2010 | B2 |
7789262 | Niederer | Sep 2010 | B2 |
7798359 | Marsella | Sep 2010 | B1 |
7819266 | Ross | Oct 2010 | B2 |
7838109 | Declerck | Nov 2010 | B2 |
7850033 | Thorstensen-Wolf | Dec 2010 | B2 |
8025171 | Cassol | Sep 2011 | B2 |
8057896 | Smelko | Nov 2011 | B2 |
8129009 | Morris | Mar 2012 | B2 |
8201385 | McLean | Jun 2012 | B2 |
8308003 | O'Brien | Nov 2012 | B2 |
8329288 | Allegaert | Dec 2012 | B2 |
8348082 | Cain | Jan 2013 | B2 |
8541081 | Ranganathan | Sep 2013 | B1 |
8715825 | Thorstensen-Woll | May 2014 | B2 |
8906185 | McLean | Dec 2014 | B2 |
8944264 | Frishman | Feb 2015 | B2 |
9028963 | Thorstensen-Woll | May 2015 | B2 |
9102438 | Thorstensen-Woll | Aug 2015 | B2 |
9193513 | Thorstensen-Woll | Nov 2015 | B2 |
9221579 | Thorstensen-Woll | Dec 2015 | B2 |
9227755 | Thorstensen-Woll | Jan 2016 | B2 |
9440765 | Thorstensen-Woll | Sep 2016 | B2 |
9440768 | Thorstensen-Woll | Sep 2016 | B2 |
9533805 | McLean | Jan 2017 | B2 |
9676513 | Thorstensen-Woll | Jun 2017 | B2 |
20010023870 | Mihalov | Sep 2001 | A1 |
20010031348 | Jud | Oct 2001 | A1 |
20020028326 | Lhila | Mar 2002 | A1 |
20020068140 | Finkelstein | Jun 2002 | A1 |
20030087057 | Blemberg | May 2003 | A1 |
20030168423 | Williams | Sep 2003 | A1 |
20030196418 | O'Brien | Oct 2003 | A1 |
20040028851 | Okhai | Feb 2004 | A1 |
20040043238 | Wuest | Mar 2004 | A1 |
20040109963 | Zaggia | Jun 2004 | A1 |
20040197500 | Swoboda | Oct 2004 | A9 |
20040211320 | Cain | Oct 2004 | A1 |
20050003155 | Huffer | Jan 2005 | A1 |
20050048307 | Schubert | Mar 2005 | A1 |
20050208242 | Smelko | Sep 2005 | A1 |
20050208244 | Delmas | Sep 2005 | A1 |
20050218143 | Niederer | Oct 2005 | A1 |
20050279814 | Drummond | Dec 2005 | A1 |
20060000545 | Nageli | Jan 2006 | A1 |
20060003120 | Nageli | Jan 2006 | A1 |
20060003122 | Nageli | Jan 2006 | A1 |
20060068163 | Giles | Mar 2006 | A1 |
20060124577 | Ross | Jun 2006 | A1 |
20060151415 | Smelko | Jul 2006 | A1 |
20060278665 | Bennett | Dec 2006 | A1 |
20070003725 | Yousif | Jan 2007 | A1 |
20070007229 | Yousif | Jan 2007 | A1 |
20070065609 | Korson | Mar 2007 | A1 |
20070267304 | Portier | Nov 2007 | A1 |
20070298273 | Thies | Dec 2007 | A1 |
20080026171 | Gullick | Jan 2008 | A1 |
20080073308 | Yousif | Mar 2008 | A1 |
20080103262 | Haschke | May 2008 | A1 |
20080135159 | Bries | Jun 2008 | A1 |
20080145581 | Tanny | Jun 2008 | A1 |
20080156443 | Schaefer | Jul 2008 | A1 |
20080169286 | McLean | Jul 2008 | A1 |
20080231922 | Thorstensen-Woll | Sep 2008 | A1 |
20080233339 | Thorstensen-Woll | Sep 2008 | A1 |
20080233424 | Thorstensen-Woll | Sep 2008 | A1 |
20090078671 | Triquet | Mar 2009 | A1 |
20090208729 | Allegaert | Aug 2009 | A1 |
20090304964 | Sachs | Dec 2009 | A1 |
20100009162 | Rothweiler | Jan 2010 | A1 |
20100030180 | Deckerck | Feb 2010 | A1 |
20100047552 | McLean | Feb 2010 | A1 |
20100059942 | Rothweiler | Mar 2010 | A1 |
20100116410 | Yousif | May 2010 | A1 |
20100155288 | Harper | Jun 2010 | A1 |
20100170820 | Leplatois | Jul 2010 | A1 |
20100193463 | OBrien | Aug 2010 | A1 |
20100213193 | Helmlinger | Aug 2010 | A1 |
20100221483 | Gonzalez Carro | Sep 2010 | A1 |
20100290663 | Trassl | Nov 2010 | A1 |
20100314278 | Fonteyne | Dec 2010 | A1 |
20110000917 | Wolters | Jan 2011 | A1 |
20110005961 | Leplatois | Jan 2011 | A1 |
20110089177 | Thorstensen-Woll | Apr 2011 | A1 |
20110091715 | Rakutt | Apr 2011 | A1 |
20110100949 | Grayer | May 2011 | A1 |
20110100989 | Cain | May 2011 | A1 |
20110138742 | McLean | Jun 2011 | A1 |
20110147353 | Kornfeld | Jun 2011 | A1 |
20110152821 | Kornfeld | Jun 2011 | A1 |
20120000910 | Ekkert | Jan 2012 | A1 |
20120043330 | McLean | Feb 2012 | A1 |
20120067896 | Daffner | Mar 2012 | A1 |
20120070636 | Thorstensen-Woll | Mar 2012 | A1 |
20120103988 | Wiening | May 2012 | A1 |
20120111758 | Lo | May 2012 | A1 |
20120241449 | Frischmann | Sep 2012 | A1 |
20120285920 | McLean | Nov 2012 | A1 |
20120312818 | Ekkert | Dec 2012 | A1 |
20130020324 | Thorstensen-Wolf | Jan 2013 | A1 |
20130020328 | Duan et al. | Jan 2013 | A1 |
20130045376 | Chen | Feb 2013 | A1 |
20130121623 | Lyzenga | May 2013 | A1 |
20130177263 | Duan | Jul 2013 | A1 |
20140001185 | McLean | Jan 2014 | A1 |
20140061196 | Thorstensen-Woll | Mar 2014 | A1 |
20140061197 | Thorstensen-Woll | Mar 2014 | A1 |
20140186589 | Chang | Jul 2014 | A1 |
20140224800 | Thorstensen-Woll | Aug 2014 | A1 |
20150053680 | Yuno et al. | Feb 2015 | A1 |
20150197385 | Wei | Jul 2015 | A1 |
20150225116 | Thorstensen-Woll | Aug 2015 | A1 |
20150321808 | Thorstensen-Woll | Nov 2015 | A1 |
20160185485 | Thorstensen-Woll et al. | Jun 2016 | A1 |
20170253373 | Thorstensen-Woll | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
501393 | Aug 2006 | AT |
11738 | Apr 2011 | AT |
8200231 | Sep 2003 | BR |
0300992 | Nov 2004 | BR |
2015992 | Jan 1991 | CA |
2203744 | Oct 1997 | CA |
2297840 | Feb 1999 | CA |
1301289 | Jun 2001 | CN |
1639020 | Jul 2005 | CN |
103193026 | Jul 2013 | CN |
104853994 | Aug 2015 | CN |
102006030118 | May 2007 | DE |
10204281 | Aug 2007 | DE |
102007022935 | Apr 2009 | DE |
202009000245 | Apr 2009 | DE |
0135431 | Mar 1985 | EP |
0577432 | Jan 1994 | EP |
0668221 | Aug 1995 | EP |
0826598 | Mar 1998 | EP |
0826599 | Mar 1998 | EP |
0905039 | Mar 1999 | EP |
0717710 | Apr 1999 | EP |
0915026 | May 1999 | EP |
0706473 | Aug 1999 | EP |
1075921 | Feb 2001 | EP |
1199253 | Apr 2002 | EP |
0803445 | Nov 2003 | EP |
1462381 | Sep 2004 | EP |
1199253 | Mar 2005 | EP |
1577226 | Sep 2005 | EP |
1814744 | Aug 2007 | EP |
1834893 | Sep 2007 | EP |
1837288 | Sep 2007 | EP |
1839898 | Oct 2007 | EP |
1839899 | Oct 2007 | EP |
1857275 | Nov 2007 | EP |
1873078 | Jan 2008 | EP |
1445209 | May 2008 | EP |
1918094 | May 2008 | EP |
1935636 | Jun 2008 | EP |
1968020 | Sep 2008 | EP |
1992476 | Nov 2008 | EP |
2014461 | Jan 2009 | EP |
2230190 | Sep 2010 | EP |
2292524 | Mar 2011 | EP |
2599735 | Jun 2013 | EP |
2916157 | Nov 2008 | FR |
2943322 | Sep 2010 | FR |
1216991 | Dec 1970 | GB |
2353986 | Mar 2001 | GB |
2501967 | Nov 2013 | GB |
H09110077 | Apr 1997 | JP |
100711073 | Apr 2007 | KR |
100840926 | Jun 2008 | KR |
100886955 | Mar 2009 | KR |
05002905 | Feb 2006 | MX |
2010001867 | Apr 2010 | MX |
201217237 | May 2012 | TW |
9905041 | Feb 1999 | WO |
0066450 | Nov 2000 | WO |
2005009868 | Feb 2005 | WO |
2006018556 | Feb 2006 | WO |
2006021291 | Mar 2006 | WO |
2006073777 | Jul 2006 | WO |
2006108853 | Oct 2006 | WO |
2008027029 | Mar 2008 | WO |
2008027036 | Mar 2008 | WO |
2008039350 | Apr 2008 | WO |
2008118569 | Oct 2008 | WO |
2008125784 | Oct 2008 | WO |
2008125785 | Oct 2008 | WO |
2008148176 | Dec 2008 | WO |
2009092066 | Jul 2009 | WO |
2010115811 | Oct 2010 | WO |
2011039067 | Apr 2011 | WO |
2012079971 | Jun 2012 | WO |
2012113530 | Aug 2012 | WO |
2012152622 | Nov 2012 | WO |
2012172029 | Dec 2012 | WO |
2013134665 | Sep 2013 | WO |
2015119988 | Aug 2015 | WO |
2017155946 | Sep 2017 | WO |
Entry |
---|
Patent Cooperation Treaty, International Search Report and Written Opinion of the International Search Authority for International Application PCT/US2017/058721 dated Jan. 17, 2018, 14 pages. |
U.S. Appl. No. 15/554,240, entitled “Enhancements for Tabbed Seal,” filed Sep. 9, 2019. |
U.S. Appl. No. 16/736,912, entitled “Tabbed Seal Concepts,” filed Jan. 8, 2020, which published as US 2020/0140176 A1 on May 7, 2020, which is a Continuation of U.S. Appl. No. 15/554,240, entitled “Tabbed Seal Concepts,” which entered the U.S. national phase from International Application No. PCT/US2016/020666, filed on Mar. 3, 2016, which published as US 2018/0079576 A1 on Mar. 22,2018. |
U.S. Appl. No. 15/107,560, entitled “Dual Aluminum Tamper Indicating Tabbed Sealing Member,” which entered the U.S. national phase from International Application No. PCT/US2015/014363, filed on Feb. 4, 2015, which published as US 2016/0325896 A1 on Nov. 10, 2016. |
U.S. Appl. No. 15/554,240, entitled “Tabbed Seal Concepts,” which entered the U.S. national phase from International Application No. PCT/US2016/020666, filed on Mar. 3, 2016, which published as US 2018/0079576 A1 on Mar. 22, 2018. |
U.S. Appl. No. 15/794,719, entitled “Tabbed Inner Seal,” filed Oct. 26, 2017, which published as US 2018/0118439 A1 on May 3, 2018. |
U.S. Appl. No. 15/998,855, entitled “Tabbed Seal for Beverage Pod,” filed Aug. 17, 2018, which published as US 2019/0055070 A1 on Feb. 21, 2019. |
U.S. Appl. No. 16/197,753, entitled “Inner Seal With a Sub Tab Layer,” filed Nov. 21, 2018, which is a continuation of U.S. Appl. No. 15/598,780, entitled “Inner Seal With a Sub Tab Layer,” filed May 18, 2017, which published as US 2017/0253373 A1 on Sep. 7, 2017 and issued as U.S. Pat. No. 10/150,589 B2 on Dec. 11, 2018, which is a continuation of U.S. Appl. No. 14/208,122, entitled “Inner Seal With a Saub Tab Layer,” filed Mar. 13, 2014, which published as US 2014/0263323 A1 on Sep. 18, 2014 and issued as U.S. Pat. No. 9,676,513 B2 on Jun. 13, 2017. |
U.S. Appl. No. 16/262,406, entitled “Tamper Evident Tabbed Sealing Member Having a Foamed Polymer Layer,” filed Jan. 30, 2019, which is a division of U.S. Appl. No. 14/706,263, entitled “Tamper Evident Tabbed Sealing Member Having a Foamed Polymer Layer,” filed May 7, 2015, which published as US 2015/0232229 A1 on Aug. 20, 2015 and issued as U.S. Pat. No. 10,196,174 on Feb. 5, 2019, which is a Divsion of U.S. Appl. No. 13/603,998, entitled “Tamper Evident Tabbed Sealing Member Having a Foamed Polymer Layer,” which published as US 2014/0061196 A1 on Mar. 6, 2014 and issued as U.S. Pat. No. 9,028,963 B2 on May 12, 2015. |
U.S. Appl. No. 16/345,002, entitled “Single Aluminum Tamper Indicating Tabbed Sealing Member,” which entered the U.S. national phase from International Application No. PCT/US2024/058521, filed on Oct. 26, 2017. |
European Patent Office, Extended European Search Report for European Application EP 17865829.0 dated Apr. 8, 2020, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190276209 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62414565 | Oct 2016 | US |