1. Field of the Invention
A sealing system for sealing a heat exchanger assembly to an HVAC module.
2. Description of the Prior Art
Heat exchangers are used in automotive systems to either add heat to a flow of air to warm the cabin of a vehicle or to remove heat from the flow of air to cool the cabin. Generally, the heat exchanger is manufactured separately from the vehicle and inserted into the vehicle's HVAC module during the assembly process. The heat exchanger must then be sealed to the HVAC module to restrict air from circumventing the heat exchanger.
One sealing system is disclosed in U.S. Pat. No. 5,219,017, issued to Halstead et al. (hereinafter referred to as Halstead '017). The sealing system of the Halstead '017 patent includes an HVAC module having an interior surface to define a channel for air to flow therethrough. A heat exchanger having an outer periphery is disposed in the channel of the HVAC module. The outer periphery of the heat exchanger defines a connector for supporting the heat exchanger in the channel of the HVAC module to restrict the flow of air from circumventing the heat exchanger.
Although the Halstead '017 system restricts a portion of the flow of air from circumventing the heat exchanger, there is still a need to add additional seals to further restrict the flow of air after the heat exchanger is inserted into the HVAC module.
The invention provides for such a sealing system and wherein the connector is tuned to give the heat exchanger a natural frequency in the range of 20 Hz and 100 Hz for dampening vibrations between the heat exchanger and the HVAC module.
The invention provides for a system that is easier and cheaper to install in the HVAC module of a vehicle than the prior art systems because it locates, secures, locks and seals the heat exchanger to the HVAC module without any additional pieces or manufacturing steps. Further, it can be used with a wide variety of heat exchanger designs, preferably those that have continuously extruded manifolds. It is impervious to air, and decreases the amount of labor required to install the heat exchanger into the HVAC module because seals do not have to be added after the heat exchanger is inserted into the HVAC module to adequately restrict the flow of air from circumventing the heat exchanger. The system also is quieter than the prior art systems by dampening vibrations between the HVAC module and the heat exchanger by substantially reducing the chance that the heat exchanger reaches resonance while the vehicle is in operation. Lastly, it provides for a tighter package that can fit within the constraints on the vehicle.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, the invention is a sealing system for a heat exchanger 20 assembly in an HVAC module 22.
As shown in
A heat exchanger 20, generally indicated, is disposed in the rectangular channel. The heat exchanger 20 has a first manifold 26 and a second manifold 28 extending in spaced and parallel relationship to one another, and each of the first and second manifolds 26, 28 has a heat exchanger width Whe. Each of the first and second manifolds 26, 28 defines an outer manifold surface 30 and an inner manifold surface 32. The outer manifold surfaces 30 face opposite of one another to define a heat exchanger height Hhe being the distance between the outer manifold surfaces 30. The inner manifold surfaces 32 face towards each other.
The heat exchanger width Whe is less than the module width Wm, and the heat exchanger height Hhe is less than the module height Hm for the heat exchanger 20 to fit into the channel of the HVAC module 22.
A plurality of tubes 34 extend in spaced and parallel relationship to one another transversely between the inner manifold surfaces 32 of the first and second manifolds 26, 28 of the heat exchanger 20 for establishing fluid communication between the first and second manifolds 26, 28. Each of the tubes 34 has a cross-section presenting flat sides interconnected by a round front and a round back. A plurality of air fins 35 are disposed between adjacent tubes 34 for transferring heat from the tubes 34 to the flow of air.
As best shown in
The opposing outer manifold surfaces 30 of the first and second manifolds 26, 28 and the first and last outer tube surfaces 38, 42 of the heat exchanger 20 combine to define an outer periphery having a rectangular shape to complement the rectangular shape of the interior surface 24 of the channel of the HVAC module 22.
One of the outer periphery of the heat exchanger 20 and the interior surface 24 of the channel of the HVAC module 22 defines a connector 44, 46 extending toward the other of the outer periphery of the heat exchanger 20 and the interior surface 24 of the channel of the HVAC module 22 for supporting the heat exchanger 20 in the channel of the HVAC module 22 and for sealing the heat exchanger 20 to the channel of the HVAC module 22 to restrict the flow of air from circumventing the heat exchanger 20. The connector 44, 46 is tuned to give the heat exchanger 20 a natural frequency of between 20 and 100 Hz for dampening vibrations between the heat exchanger 20 and the HVAC module 22. More preferably, the connector 44, 46 is tuned to give the heat exchanger 20 a natural frequency of between 45 and 70 Hz, and most preferably, the connector 44, 46 is tuned to give the heat exchanger 20 a natural frequency of between 65 and 70 Hz. The connector 44, 46 may be tuned in a number of ways, e.g. adjusting the material, size, and/or shape of the connector 44, 46. In the exemplary embodiments, the connector 44, 46 includes a plurality of male connecting members 44 and a plurality of female connecting members 46 engaging the male connecting members 44. However, the connector 44, 46 could be any other means of supporting the heat exchanger 20 in the HVAC module 22.
In the exemplary embodiments, the male connecting members 44 are disposed on one of the outer periphery of the heat exchanger 20 and the interior surface 24 of the channel of the HVAC module 22 and extend toward the other of the outer periphery of the heat exchanger 20 and the interior surface 24 of the channel of the HVAC module 22. The other of the outer periphery of the heat exchanger 20 and the channel of the HVAC module 22 defines a plurality of female connecting members 46, generally indicated, engaging the male connecting members 44 for supporting the heat exchanger 20 in the channel of the HVAC module 22 and for sealing the heat exchanger 20 to the channel of the HVAC module 22 to restrict the flow of air from circumventing the heat exchanger 20.
Preferably, one or both of the male and female connecting members 44, 46 is made of a resilient material, e.g. rubber. The material could be moldable and/or extrudable and is typically made of a polymer and an overmolded elastomer. The resilient material acts to seal 48 the heat exchanger 20 to the HVAC module 22 and to dampen vibrations between the heat exchanger 20 and the HVAC module 22 to protect the heat exchanger 20 and to reduce the noise and vibration transmission.
At least one of the male and female connecting members 44, 46 may also define a lip 68 for collecting a condensate from the heat exchanger 20 and draining that condensate. Such a system prevents the buildup of standing water, which could result in bacteria growth, e.g. mold.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
61002315 | Nov 2007 | US |