Securing a transaction between a transponder and a reader

Abstract
A transponder-reader payment system includes a fob including a transponder, and a RFID reader for interrogating the transponder. The system may further include a personalization system for populating onto the fob and RFID reader identifying information and security and authentication keys which may be used during mutual authentication of the fob and the reader and for completing a transaction. In exemplary operation, the fob and RFID reader may be personalized, the fob may be presented to the RFID reader for interrogation, the fob and reader may engage in mutual authentication, and fob identifying information may be provided to the reader for transaction completion. In another exemplary embodiment, operation of the transponder-reader payment system may be controlled by an activation circuit. Further, the fob may be responsive to multiple interrogation signals.
Description
FIELD OF INVENTION

This invention generally relates to a system and method for completing a transaction, and more particularly, to completing a financial transaction using Radio Frequency Identification (RFID) in contact and contactless transactions.


BACKGROUND OF THE INVENTION

Like barcode and voice data entry, RFID is a contactless information acquisition technology. RFID systems are wireless, and are usually extremely effective in hostile environments where conventional acquisition methods fail. RFID has established itself in a wide range of markets, such as, for example, the high-speed reading of railway containers, tracking moving objects such as livestock or automobiles, and retail inventory applications. As such, RFID technology has become a primary focus in automated data collection, identification and analysis systems worldwide.


Of late, companies are increasingly embodying RFID data acquisition technology in a fob or tag for use in completing financial transactions. A typical fob includes a transponder and is ordinarily a self-contained device which may be contained on any portable form factor. In some instances, a battery may be included with the fob to power the transponder. In which case the internal circuitry of the fob (including the transponder) may draw its operating power from the battery power source. Alternatively, the fob may exist independent of an internal power source. In this instance the internal circuitry of the fob (including the transponder) may gain its operating power directly from an RF interrogation signal. U.S. Pat. No. 5,053,774 issued to Schuermann describes a typical transponder RF interrogation system which may be found in the prior art. The Schuermann patent describes in general the powering technology surrounding conventional transponder structures. U.S. Pat. No. 4,739,328 discusses a method by which a conventional transponder may respond to a RF interrogation signal. Other typical modulation techniques which may be used include, for example, ISO/IEC 14443 and the like.


In the conventional fob powering technologies used, the fob is typically activated upon presenting the fob in an interrogation signal. In this regard, the fob may be activated irrespective of whether the user desires such activation. Inadvertent presentation of the fob may result in initiation and completion of an unwanted transaction. Thus, a fob system is needed which allows the fob user to control activation of the fob to limit transactions being undesirably completed.


One of the more visible uses of the RFID technology is found in the introduction of Exxon/Mobil's Speedpass® and Shell's EasyPay® products. These products use transponders placed in a fob or tag which enables automatic identification of the user when the fob is presented at a Point of Sale (POS) device. Fob identification data is typically passed to a third party server database, where the identification data is referenced to a customer (e.g., user) credit or debit account. In an exemplary processing method, the server seeks authorization for the transaction by passing the transaction and account data to an authorizing entity. Once authorization is received by the server, clearance is sent to the point of sale device for completion of the transaction. In this way, the conventional transaction processing method involves an indirect path which causes undue overhead due to the use of the third-party server.


A need exists for a transaction authorization system which allows Fob transactions to be authorized while eliminating the cost associated with using third-party servers.


In addition, conventional fobs are limited in that they must be used in proximity to the Point of Sale device. That is, for fob activation, conventional fobs must be positioned within the area of transmission cast by the RF interrogation signal. More particularly, conventional fobs are not affective for use in situations where the user wishes to conduct a transaction at a point of interaction such as a computer interface.


Therefore, a need exists for a fob embodying RFID acquisition technology, which is capable of use at a point of sale device and which is additionally capable of facilitating transactions via a computer interface connected to a network (e.g., the Internet).


Existing transponder-reader payment systems are also limited in that the conventional fob used in the systems is only responsive to one interrogation signal. Thus, where multiple interrogation signals are used, the fob is only responsive to the interrogation signal to which it is configured. If the RFID reader of the system provides only an interrogation signal to which the fob is incompatible, the fob will not be properly activated.


Therefore, a need exists for a fob which is responsive to more than one interrogation signal.


SUMMARY OF THE INVENTION

Described herein is a system and method for using RFID technology to initiate and complete financial transactions, The transponder-reader payment system described herein may include a RFID reader operable to provide a RF interrogation signal for powering a transponder system, receiving a transponder system RF signal, and providing transponder system account data relative to the transponder system RF signal. The transponder-reader payment system may include a RFID protocol/sequence controller in electrical communication with one or more interrogators for providing an interrogation signal to a transponder, a RFID authentication circuit for authenticating the signal received from the transponder, a serial or parallel interface for interfacing with a point of interaction device, and an USB or serial interface for use in personalizing the RFID reader and/or the transponder. The transponder-reader payment system may further include a fob including one or more transponders (e.g., modules) responsive to the interrogation signal and for providing an authentication signal for verifying that the transponder and/or the RFID reader are authorized to operate within the transponder-reader payment system. In this way, the transponder may be responsive to multiple interrogation signals provided at different frequencies. Further, the transponder may include a USB or serial interface for use with a computer network or with the RFID reader.


The RFID system and method according to the present invention may include a RFID-ready terminal and a transponder which may be embodied in a fob, tag, card or any other form factor (e.g., wristwatch, keychain, cell phone, etc.), which may be capable of being presented for interrogation. In that regard, although the transponder is described herein as embodied in a fob, the invention is not so limited.


The system may further include a RFID reader configured to send a standing RFID recognition signal which may be transmitted from the RFID reader via radio frequency (or electromagnetic) propagation. The fob may be placed within proximity to the RFID reader such that the RFID signal may interrogate the fob and initialize fob identification procedures.


In one exemplary embodiment, as a part of the identification process, the fob and the RFID reader may engage in mutual authentication. The RFID reader may identify the fob as including an authorized system transponder for receiving encrypted information and storing the information on the fob memory. Similarly, the fob, upon interrogation by the RFID reader, may identify the RFID reader as authorized to receive the encrypted and stored information. Where the RFID reader and the fob successfully mutually authenticate, the fob may transmit to the RFID reader certain information identifying the transaction account or accounts to which the fob is associated. The RFID reader may receive the information and forward the information to facilitate the completion of a transaction. In one exemplary embodiment, the RFID reader may forward the information to a point of interaction device (e.g., POS or computer interface) for transaction completion. The mutual authorization process disclosed herein aids in ensuring fob transponder-reader payment system security.


In another exemplary embodiment, the fob according to the present invention, includes means for completing transactions via a computer interface. The fob may be connected to the computer using a USB or serial interface fob account information may be transferred to the computer for use in completing a transaction via a network (e.g., the Internet).


These features and other advantages of the system and method, as well as the structure and operation of various exemplary embodiments of the system and method, are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, wherein like numerals depict like elements, illustrate exemplary embodiments of the present invention, and together with the description, serve to explain the principles of the invention. In the drawings:



FIG. 1A illustrates an exemplary RFID-based system in accordance with the present invention, wherein exemplary components used for fob transaction completion are depicted;



FIG. 1B illustrates an exemplary personalization system in accordance with the present invention;



FIG. 2 is a schematic illustration of an exemplary fob in accordance with the present invention;



FIG. 3 is a schematic illustration of an exemplary RFID reader in accordance with the present invention;



FIG. 4 is an exemplary flow diagram of an exemplary authentication process in accordance with the present invention;



FIG. 5 is an exemplary flow diagram of an exemplary decision process for a protocol/sequence controller in accordance with the present invention;



FIGS. 6A-6B are an exemplary flow diagram of a fob personalization process in accordance with the present invention;



FIGS. 7A-7B are an exemplary flow diagram of a RFID reader personalization process in accordance with the present invention;



FIG. 8 is a flow diagram of an exemplary payment/transaction process in accordance with the resent invention; and



FIG. 9 is another schematic illustration of an exemplary fob in accordance with the present invention.





DETAILED DESCRIPTION

The present invention may be described herein in terms of functional block components, screen shots, optional selections and various processing steps. Such functional blocks may be realized by any number of hardware and/or software components configured to perform to specified functions. For example, the present invention may employ various integrated circuit components, e.g., memory elements, processing elements, logic elements, look-up tables, and the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. Similarly, the software elements of the present invention may be implemented with any programming or scripting language such as C, C++, Java, COBOL, assembler, PERL, extensible markup language (XML), JavaCard and MULTOS with the various algorithms being implemented with any combination of data structures, objects, processes, routines or other programming elements. Further, it should be noted that the present invention may employ any number of conventional techniques for data transmission, signaling, data processing, network control, and the like. For a basic introduction on cryptography, review a text written by Bruce Schneier entitled “Applied Cryptography: Protocols, Algorithms, and Source Code in C,” published by John Wiley & Sons (second edition, 1996), herein incorporated by reference.


In addition, many applications of the present invention could be formulated. The exemplary network disclosed herein may include any system for exchanging data or transacting business, such as the internet, an intranet, an extranet, WAN, LAN, satellite communications, and/or the like. It is noted that the network may be implemented as other types of networks, such as an interactive television network (ITN).


Where required, the system user may interact with the system via any input device such as, a keypad, keyboard, mouse, kiosk, personal digital assistant, handheld computer (e.g., Palm Pilot®, Blueberry®), cellular phone and/or the like. Similarly, the invention could be used in conjunction with any type of personal computer, network computer, work station, minicomputer, mainframe, or the like running any operating system such as any version of Windows, Windows NT, Windows 2000, Windows 98, Windows 95, MacOS, OS/2, BeOS, Linux, UNIX, Solaris or the like. Moreover, although the invention may frequently be described as being implemented with TCP/IP communications protocol, it should be understood that the invention could also be implemented using SNA, IPX, Appletalk, IPte, NetBIOS, OSI or any number of communications protocols. Moreover, the system contemplates, the use, sale, or distribution of any goods, services or information over any network having similar functionality described herein.



FIG. 1A illustrates an exemplary RFID transaction system 100A in accordance with the present invention, wherein exemplary components for use in completing a fob transaction are depicted. In general, the operation of system 100A may begin when fob 102 is presented for payment, and is interrogated by RFID reader 104 or, alternatively, interface 134. Fob 102 and RFID reader 104 may then engage in mutual authentication after which the transponder 102 may provide the transponder identification and/or account identifier to the RFID reader 104 which may further provide the information to the merchant system 130 POS device 110.


System 100A may include a fob 102 having a transponder 114 and a RFID reader 104 in RF communication with fob 102. Although the present invention is described with respect to a fob 102, the invention is not to be so limited. Indeed, system 100 may include any device having a transponder which is configured to communicate with a RFID reader 104 via RF communication. Typical devices may include, for example, a key ring, tag, card, cell phone, wristwatch or any such form capable of being presented for interrogation.


The RFID reader 104 may be configured to communicate using a RFID internal antenna 106. Alternatively, RFID reader 104 may include an external antenna 108 for communications with fob 102, where the external antenna may be made remote to the RFID reader 104 using a suitable cable and/or data link 120. RFID reader 104 may be further in communication with a merchant system 130 via a data link 122. The system 10A may include a transaction completion system including a point of interaction device such as, for example, a merchant point of sale (POS) device 110 or a computer interface (e.g., user interface) 134. In one exemplary embodiment the transaction completion system may include a merchant system 130 including the POS device 110 in communication with a RFID reader 104 (via data link 122). As described more fully below, the transaction completion system may include the user interface 134 connected to a network 136 and to the transponder via a USB connector 132.


Although the point of interaction device is described herein with respect to a merchant point of sale (POS) device, the invention is not to be so limited. Indeed, a merchant POS device is used herein by way of example, and the point of interaction device may be any device capable of receiving fob account data. In this regard, the POS may be any point of interaction device enabling the user to complete a transaction using a fob 102. POS device 110 may be in further communication with a customer interface 118 (via data link 128) for entering at least a customer identity verification information. In addition, POS device 110 may be in communication with a merchant host network 112 (via data link 124) for processing any transaction request. In this arrangement, information provided by RFID reader 104 is provided to the POS device 110 of merchant system 130 via data link 122. The POS device 110 may receive the information (and alternatively may receive any identity verifying information from customer interface 118 via data link 128) and provide the information to host system 112 for processing.


A variety of conventional communications media and protocols may be used for data links 120, 122, 124, and 128. For example, data links 120, 122, 124, and 128 may be an Internet Service Provider (ISP) configured to facilitate communications over a local loop as is typically used in connection with standard modem communication, cable modem, dish networks, ISDN, Digital Subscriber Lines (DSL), or any wireless communication media. In addition, the merchant system 130 including the POS device 110 and host network 112 may reside on a local area network which interfaces to a remote network (not shown) for remote authorization of an intended transaction. The merchant system 130 may communicate with the remote network via a leased line, such as a T1, D3 line, or the like. Such communications lines are described in a variety of texts, such as, “Understanding Data Communications,” by Gilbert Held, which is incorporated herein by reference.


An account number, as used herein, may include any identifier for an account (e.g., credit, charge debit, checking, savings, reward, loyalty, or the like) which may be maintained by a transaction account provider (e.g., payment authorization center) and which may be used to complete a financial transaction. A typical account number (e.g., account data) may be correlated to a credit or debit account, loyalty account, or rewards account maintained and serviced by such entities as American Express, Visa and/or MasterCard or the like. For ease in understanding, the present invention may be described with respect to a credit account. However, it should be noted that the invention is not so limited and other accounts permitting an exchange of goods and services for an account data value is contemplated to be within the scope of the present invention.


In addition, the account number (e.g., account data) may be associated with any device, code, or other identifier/indicia suitably configured to allow the consumer to interact or communicate with the system, such as, for example, authorization/access code, personal identification number (PIN), Internet code, digital certificate, biometric data, and/or other identification indicia. The account number may be optionally located on a rewards card, charge card, credit card, debit card, prepaid card, telephone card, smart card, magnetic stripe card, bar code card, and/or the like. The account number may be distributed and stored in any form of plastic, electronic, magnetic, and/or optical device capable of transmitting or downloading data to a second device. A customer account number may be, for example, a sixteen-digit credit card number, although each credit provider has its own numbering system, such as the fifteen-digit numbering system used by American Express. Each company's credit card numbers comply with that company's standardized format such that the company using a sixteen-digit format will generally use four spaced sets of numbers, as represented by the number “0000 0000 0000 0000”. In a typical example, the first five to seven digits are reserved for processing purposes and identify the issuing bank, card type and etc. In this example, the last sixteenth digit is used as a sum check for the sixteen-digit number. The intermediary eight-to-ten digits are used to uniquely identify the customer. The account number stored as Track 1 and Track 2 data as defined in ISO/IEC 7813, and further may be made unique to fob 102. In one exemplary embodiment, the account number may include a unique fob serial number and user identification number, as well as specific application applets. The account number may be stored in fob 102 inside a database 214, as described more fully below. Database 214 may be configured to store multiple account numbers issued to the fob 102 user by the same or different account providing institutions. Where the account data corresponds to a loyalty or rewards account, the database 214 may be configured to store the attendant loyalty or rewards points data.



FIG. 2 illustrates a block diagram of the many functional blocks of an exemplary fob 102 in accordance with the present invention. Fob 102 may be a RFID fob 102 which may be presented by the user to facilitate an exchange of funds or points, etc., for receipt of goods or services. As described herein, by way of example, the fob 102 may be a RFID fob which may be presented for facilitating payment for goods and/or services.


Fob 102 may include an antenna 202 for receiving an interrogation signal from RFID reader 104 via antenna 106 (or alternatively, via external antenna 108). Fob antenna 202 may be in communication with a transponder 114. In one exemplary embodiment, transponder 114 may be a 13.56 MHz transponder compliant with the ISO/IEC 14443 standard, and antenna 202 may be of the 13 MHz variety. The transponder 114 may be in communication with a transponder compatible modulator/demodulator 206 configured to receive the signal from transponder 114 and configured to modulate the signal into a format readable by any later connected circuitry. Further, modulator/demodulator 206 may be configured to format (e.g., demodulate) a signal received from the later connected circuitry in a format compatible with transponder 114 for transmitting to RFID reader 104 via antenna 202. For example, where transponder 114 is of the 13.56 MHz variety, modulator/demodulator 206 may be ISO/IEC 14443-2 compliant.


Modulator/demodulator 206 may be coupled to a protocol/sequence controller 208 for facilitating control of the authentication of the signal provided by RFID reader 104, and for facilitating control of the sending of the fob 102 account number. In this regard, protocol/sequence controller 208 may be any suitable digital or logic driven circuitry capable of facilitating determination of the sequence of operation for the fob 102 inner-circuitry. For example, protocol/sequence controller 208 may be configured to determine whether the signal provided by the RFID reader 104 is authenticated, and thereby providing to the RFID reader 104 the account number stored on fob 102.


Protocol/sequence controller 208 may be further in communication with authentication circuitry 210 for facilitating authentication of the signal provided by RFID reader 104. Authentication circuitry may be further in communication with a non-volatile secure memory database 212. Secure memory database 212 may be any suitable elementary file system such as that defined by ISO/IEC 7816-4 or any other elementary file system allowing a lookup of data to be interpreted by the application on the chip. Database 212 may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Common database products that may be used to implement the databases include DB2 by IBM (White Plains, N.Y.), any of the database products available from Oracle Corporation (Redwood Shores, Calif.), Microsoft Access or MSSQL by Microsoft Corporation (Redmond, Wash.), or any other database product. Database may be organized in any suitable manner, including as data tables or lookup tables. Association of certain data may be accomplished through any data association technique known and practiced in the art. For example, the association may be accomplished either manually or automatically. Automatic association techniques may include, for example, a database search, a database merge, GREP, AGREP, SQL, and/or the like. The association step may be accomplished by a database merge function, for example, using a “key field” in each of the manufacturer and retailer data tables. A “key field” partitions the database according to the high-level class of objects defined by the key field. For example, a certain class may be designated as a key field in both the first data table and the second data table, and the two data tables may then be merged on the basis of the class data in the key field. In this embodiment, the data corresponding to the key field in each of the merged data tables is preferably the same. However, data tables having similar, though not identical, data in the key fields may also be merged by using AGREP, for example.


The data may be used by protocol/sequence controller 208 for data analysis and used for management and control purposes, as well as security purposes. Authentication circuitry may authenticate the signal provided by RFID reader 104 by association of the RFID signal to authentication keys stored on database 212. Encryption circuitry may use keys stored on database 212 to perform encryption and/or decryption of signals sent to or from the RFID reader 104.


In addition, protocol/sequence controller 208 may be in communication with a database 214 for storing at least a fob 102 account data, and a unique fob 102 identification code. Protocol/sequence controller 208 may be configured to retrieve the account number from database 214 as desired. Database 214 may be of the same configuration as database 212 described above. The fob account data and/or unique fob identification code stored on database 214 may be encrypted prior to storage. Thus, where protocol/sequence controller 208 retrieves the account data, and or unique fob identification code from database 214, the account number may be encrypted when being provided to RFID reader 104. Further, the data stored on database 214 may include, for example, an unencrypted unique fob 102 identification code, a user identification, Track 1 and 2 data, as well as specific application applets.


Fob 102 may be configured to respond to multiple interrogation frequency transmissions provided by RFID reader 104. That is, as described more fully below, RFID reader 104 may provide more than one RF interrogation signal. In this case, fob 102 may be configured to respond to the multiple frequencies by including in fob 102 one or more additional RF signal receiving/transmitting units 226. RF signal receiving/transmitting unit 226 may include an antenna 218 and transponder 220 where the antenna 218 and transponder 220 are compatible with at least one of the additional RF signals provided by RFID reader 104. For example, in one exemplary embodiment, fob 102 may include a 134 KHz antenna 218 configured to communicate with a 134 KHz transponder 220. In this exemplary configuration, an ISO/IEC 14443-2 compliant modulator/demodulator may not be required. Instead, the 134 KHz transponder may be configured to communicate directly with the protocol/sequence controller 208 for transmission and receipt of authentication and account number signals as described above.


In another embodiment, fob 102 may further include a universal serial bus (USB) connector 132 for interfacing fob 102 to a user interface 134. User interface 134 may be further in communication with a POS device 110 via a network 136. Network 136 may be the Internet, an intranet, or the like as is described above with respect to network 112. Further, the user interface 134 may be similar in construction to any conventional input devices and/or computing systems aforementioned for permitting the system user to interact with the system. In one exemplary embodiment, fob 102 may be configured to facilitate online Internet payments. A USB converter 222 may be in communication with a USB connector 232 for facilitating the transfer of information between the modulator/demodulator 206 and USB connector 132. Alternatively, USB converter 222 may be in communication with protocol/sequence controller 208 to facilitate the transfer of information between protocol/sequence controller 208 and USB connector 132.


Where fob 102 includes a USB connector 132, fob 102 may be in communication with, for example, a USB port on user interface 134. The information retrieved from fob 102 may be compatible with credit card and/or smart card technology enabling usage of interactive applications on the Internet. No RFID reader may be required in this embodiment since the connection to POS device 110 may be made using a USB port on user interface 134 and a network 136.


Fob 102 may include means for enabling activation of the fob by the user. In one exemplary embodiment, a switch 230 which may be operated by the user of the fob 102. The switch 230 on fob 102 may be used to selectively or inclusively activate the fob 102 for particular uses. In this context, the term “selectively” may mean that the switch 230 enables the user to place the fob 102 in a particular operational mode. For example, the user may place the fob 102 in a mode for enabling purchase of a good or of a service using a selected account number. Alternatively, the fob may be placed in a mode as such that the fob account number is provided by USB port 132 (or serial port) only and the fob transponder 114 is disabled. In addition, the term “inclusively” may mean that the fob 102 is placed in an operational mode permitting the fob 102 to be responsive to the RF interrogation and interrogation via the USB connector 132. In one particular embodiment, the switch 230 may remain in an OFF position ensuring that one or more applications or accounts associated with the fob 102 are non-reactive to any commands issued by RFID reader 104. As used herein, the OFF position may be termed the “normal” position of the activation switch 230, although other normal positions are contemplated.


In another exemplary embodiment, when the switch 230 is moved from the OFF position, the fob 102 may be deemed activated by the user. That is, the switch 230 may activate internal circuitry in fob 102 for permitting the fob to be responsive to RF signals (e.g., commands from RFID reader 104). In this way, switch 230 may facilitate control of the active and inactive states of the fob 102. Such control increases the system security by preventing inadvertent or illegal use of the fob 102.


In one exemplary embodiment, switch 230 may be a simple mechanical device in communication with circuitry which may electrically prevent the fob from being powered by a RFID reader. That is, when switch 230 is in its normal position, switch 230 may provide a short to the fob 102 internal circuitry, preventing fob 102 from being responsive to interrogation by RF or via the USB connector 230. In this arrangement, the switch 230 may be, for example, a “normally closed” (NC) configured switch, which may be electrically connected to the antenna 202 at the interface of the antenna 202 and the transponder 114. The switch 230 may be depressed, which may open the switch 230 fully activating the antenna 202.


In yet another exemplary embodiment, the fob 102 may include a biometric sensor and biometric membrane configured to operate as switch 230 and activate the fob 102 when provided biometric signal from the fob 102 user. Such biometric signal may be the digital reading of a fingerprint, thumbprint, or the like. Typically, where biometric circuitry is used, the biometric circuitry may be powered by an internal voltage source (e.g., battery). In this case, the switch may not be a simple mechanical device, but a switch which is powered. In yet another exemplary embodiment, switch 230 may be battery powered though no biometric circuitry is present in the fob 102.


In yet another embodiment, the switch 230 may be a logic switch. Where switch 230 is a logic switch the switch 230 control software may be read from the sequence controller 208 to selectively control the activation of the various fob 102 components.



FIG. 3 illustrates an exemplary block diagram of a RFID reader 104 in accordance with an exemplary embodiment of the present invention. RFID reader 104 includes, for example, an antenna 106 coupled to a RF module 302, which is further coupled to a control module 304. In addition, RFID reader 104 may include an antenna 108 positioned remotely from the RFID reader 104 and coupled to RFID reader 104 via a suitable cable 120, or other wire or wireless connection.


RF module 302 and antenna 106 may be suitably configured to facilitate communication with fob 102. Where fob 102 is formatted to receive a signal at a particular RF frequency, RF module 302 may be configured to provide an interrogation signal at that same frequency. For example, in one exemplary embodiment, fob 102 may be configured to respond to an interrogation signal of about 13.56 MHz. In this case, RFID antenna 106 may be 13 MHz and may be configured to transmit an interrogation signal of about 13.56 MHz. That is, fob 102 may be configured to include a first and second RF module (e.g., transponder) where the first module may operate using a 134 kHz frequency and the second RF module may operate using a 13.56 MHz frequency. The RFID reader 104 may include two receivers which may operate using the 134 kHz frequency, the 13.56 MHz frequency or both. When the reader 104 is operating at 134 kHz frequency, only operation with the 134 kHz module on the fob 102 may be possible. When the reader 104 is operating at the 13.56 MHz frequency, only operation with the 13.56 MHz module on the fob 102 may be possible. Where the reader 104 supports both a 134 kHz frequency and a 13.56 MHz RF module, the fob 102 may receive both signals from the reader 104. In this case, the fob 102 may be configured to prioritize selection of the one or the other frequency and reject the remaining frequency. Alternatively, the reader 104 may receive signals at both frequencies from the fob upon interrogation. In this case, the reader 104 may be configured to prioritize selection of one or the other frequency and reject the remaining frequency.


Further, protocol/sequence controller 314 may include an optional feedback function for notifying the user of the status of a particular transaction. For example, the optional feedback may be in the form of an LED, LED screen and/or other visual display which is configured to light up or display a static, scrolling, flashing and/or other message and/or signal to inform the fob 102 user that the transaction is initiated (e.g., fob is being interrogated), the fob is valid (e.g., fob is authenticated), transaction is being processed, (e.g., fob account number is being read by RFID reader) and/or the transaction is accepted or denied (e.g., transaction approved or disapproved). Such an optional feedback may or may not be accompanied by an audible indicator (or may present the audible indicator singly) for informing the fob 102 user of the transaction status. The audible feedback may be a simple tone, multiple tones, musical indicator, and/or voice indicator configured to signify when the fob 102 is being interrogated, the transaction status, or the like.


RFID antenna 106 may be in communication with a transponder 306 for transmitting an interrogation signal and receiving at least one of an authentication request signal and/or an account data from fob 102. Transponder 306 may be of similar description as transponder 114 of FIG. 2. In particular, transponder 306 may be configured to send and/or receive RF signals in a format compatible with antenna 202 in similar manner as was described with respect to fob transponder 114. For example, where transponder 306 is 13.56 MHz RF rated antenna 202 may be 13.56 MHz compatible. Similarly, where transponder 306 is ISO/IEC 14443 rated, antenna 106 may be ISO/IEC 14443 compatible.


RF module 302 may include, for example, transponder 306 in communication with authentication circuitry 308 which may be in communication with a secure database 310. Authentication circuitry 308 and database 310 may be of similar description and operation as described with respect to authentication circuitry 210 and secure memory database 212 of FIG. 2. For example, database 310 may store data corresponding to the fob 102 which are authorized to transact business over system 100. Database 310 may additionally store RFID reader 104 identifying information for providing to fob 102 for use in authenticating whether RFID reader 104 is authorized to be provided the fob account number stored on fob database 214.


Authentication circuitry 308 may be of similar description and operation as authentication circuitry 210. That is, authentication circuitry 308 may be configured to authenticate the signal provided by fob 102 in similar manner that authentication circuitry 210 may be configured to authenticate the signal provided by RFID reader 104. As is described more fully below, fob 102 and RFID reader 104 engage in mutual authentication. In this context, “mutual authentication” may mean that operation of the system 100 may not take place until fob 102 authenticates the signal from RFID reader 104, and RFID reader 104 authenticates the signal from fob 102.



FIG. 4 is a flowchart of an exemplary authentication process in accordance with the present invention. The authentication process is depicted as one-sided. That is, the flowchart depicts the process of the RFID reader 104 authenticating the fob 102, although similar steps may be followed in the instance that fob 102 authenticates RFID reader 104.


As noted, database 212 may store security keys for encrypting or decrypting signals received from RFID reader 104. In an exemplary authentication process, where RFID reader 104 is authenticating fob 102, RFID reader 104 may provide an interrogation signal to fob 102 (step 402). The interrogation signal may include a random code generated by the RFID reader authentication circuit 210, which is provided to the fob 102 and which is encrypted using an unique encryption key corresponding to the fob 102 unique identification code. For example, the protocol/sequence controller 314 may provide a command to activate the authentication circuitry 308. Authentication circuitry 308 may provide from database 310 a fob interrogation signal including a random number as a part of the authentication code generated for each authentication signal. The authentication code may be an alphanumeric code which is recognizable (e.g., readable) by the RFID reader 104 and the fob 102. The authentication code may be provided to the fob 102 via the RFID RF interface 306 and antenna 106 (or alternatively antenna 108).


Fob 102 receives the interrogation signal (step 404). The interrogation signal including the authorization code may be received at the RF interface 114 via antenna 202. Once the fob 102 is activated, the interrogation signal including the authorization code may be provided to the modulator/demodulator circuit 206 where the signal may be demodulated prior to providing the signal to protocol/sequence controller 208. Protocol/sequence controller 208 may recognize the interrogation signal as a request for authentication of the fob 102, and provide the authentication code to authentication circuit 210. The fob 102 may then encrypt the authentication code (step 406). In particular, encryption may be done by authentication circuit 210, which may receive the authentication code and encrypt the code prior to providing the encrypted authentication code to protocol/sequence controller 208. Fob 102 may then provide the encrypted authentication code to the RFID reader 104 (step 408). That is, the encrypted authentication code may be provided to the RFID reader 104 via modulator/demodulator circuit 206, RF interface 114 (e.g., transponder 114) and antenna 202.


RFID reader 104 may then receive the encrypted authentication code and decryption it (step 410). That is, the encrypted authentication code may be received at antenna 106 and RF interface 306 and may be provided to authentication circuit 308. Authentication circuit 308 may be provided a security authentication key (e.g., transponder system decryption key) from database 310. The authentication circuit may use the authentication key to decrypt (e.g., unlock) the encrypted authorization code. The authentication key may be provided to the authentication circuit based on the fob 102 unique identification code. For example, the encrypted authentication code may be provided along with the unique fob 102 identification code. The authentication circuit may receive the fob 102 unique identification code and retrieve from the database 310 a transponder system decryption key correlative to the unique fob 102 identification code for use in decrypting the encrypted authentication code.


Once the authentication code is decrypted, the decrypted authentication code is compared to the authentication code provided by the RFID reader 104 at step 402 (step 412) to verify its authenticity. If the decrypted authorization code is not readable (e.g., recognizable) by the authentication circuit 308, the fob 102 is deemed to be unauthorized (e.g., unverified) (step 416) and the operation of system 100 is terminated (step 418). Contrarily, if the decrypted authorization code is recognizable (e.g., verified) by the fob 102, the decrypted authorization code is deemed to be authenticated (step 412), and the transaction is allowed to proceed (step 414). In one particular embodiment, the proceeding transaction may mean that the fob 102 may authenticate the RFID reader 104, although, it should be apparent that the RFID reader 104 may authenticate the fob 102 prior to the fob 102 authenticating the RFID reader 104.


It should be noted that in an exemplary verification process, the authorization circuit 308 may determine whether the unlocked authorization code is identical to the authorization code provided in step 402. If the codes are not identical then the fob 102 is not authorized to access system 100. Although, the verification process is described with respect to identicality, identicality is not required. For example, authentication circuit 308 may verify the decrypted code through any protocol, steps, or process for determining whether the decrypted code corresponds to an authorized fob 102.


Authentication circuitry 308 may additionally be in communication with a protocol/sequence controller 314 of similar operation and description as protocol/sequence controller 208 of FIG. 2. That is, protocol/sequence device controller 314 may be configured to determine the order of operation of the RFID reader 104 components. For example, FIG. 5 illustrates and exemplary decision process under which protocol/sequence controller 314 may operate. Protocol/sequence controller 314 may command the different components of RFID reader 104 based on whether a fob 102 is present (step 502). For example, if a fob 102 is not present, then protocol/sequence controller 314 may command the RFID reader 104 to provide an uninterrupted interrogation signal (step 504). That is, the protocol/sequence controller may command the authentication circuit 308 to provide an uninterrupted interrogation signal until the presence of a fob 102 is realized. If a fob 102 is present, the protocol/sequence controller 314 may command the RFID reader 104 to authenticate the fob 102 (step 506).


As noted above, authentication may mean that the protocol/sequence controller 314 may command the authentication circuit 308 to provide fob 102 with an authorization code. If a response is received from fob 102, protocol/sequence controller may determine if the response is a response to the RFID reader 104 provided authentication code, or if the response is a signal requiring authentication (step 508). If the signal requires authentication, then the protocol/sequence controller 314 may activate the authentication circuit as described above (step 506). On the other hand, if the fob 102 signal is a response to the provided authentication code, then the protocol/sequence controller 314 may command the RFID reader 104 to retrieve the appropriate security key for enabling recognition of the signal (step 510). That is, the protocol/sequence controller 314 may command the authentication circuit 308 to retrieve from database 310 a security key (e.g., transponder system decryption key), unlock the signal, and compare the signal to the signal provided by the RFID reader 104 in the authentication process (e.g., step 506). If the signal is recognized, the protocol/sequence controller 314 may determine that the fob 102 is authorized to access the system 100. If the signal is not recognized, then the fob is considered not authorized. In which case, the protocol/sequence controller 314 may command the RFID controller to interrogate for authorized fobs (step 504).


Once the protocol/sequence controller determines that the fob 102 is authorized, the protocol/sequence controller 314 may seek to determine if additional signals are being sent by fob 102 (step 514). If no additional signal is provided by fob 102, then the protocol/sequence controller 314 may provide all the components of RFID reader 104 to remain idle until such time as a signal is provided (step 516). Contrarily, where an additional fob 102 signal is provided, the protocol/sequence controller 314 may determine if the fob 102 is requesting access to the merchant point of sale terminal 110 (e.g., POS device) or if the fob 102 is attempting to interrogate the RFID reader 104 for return (e.g., mutual) authorization (step 518). Where the fob 102 is requesting access to a merchant point of sale terminal 110, the protocol/sequence controller 314 may command the RFID reader to open communications with the point of sale terminal 110 (step 524). In particular, the protocol/sequence controller may command the point of sale terminal communications interface 312 to become active, permitting transfer of data between the RFID reader 104 and the merchant point of sale terminal 110.


On the other hand, if the protocol/sequence controller determines that the fob 102 signal is a mutual interrogation signal, then the protocol/sequence controller may command the RFID reader 104 to encrypt the signal (step 520). The protocol/sequence controller 314 may command the encryption authentication circuit 318 to retrieve from database 320 the appropriate encryption key in response to the fob 102 mutual interrogation signal. The protocol/sequence controller 314 may then command the RFID reader 104 to provide the encrypted mutual interrogation signal to the fob 102. The protocol/sequence controller 314 may command the authentication circuit 318 to provide an encrypted mutual interrogation signal for the fob 102 to mutually authenticate. Fob 102 may then receive the encrypted mutual interrogation signal and retrieve from authentication circuitry 212 a RFID reader decryption key.


Although an exemplary decision process of protocol/sequence controller 314 is described, it should be understood that a similar decision process may be undertaken by protocol/sequence controller 208 in controlling the components of fob 102. Indeed, as described above, protocol/sequence controller 314 may have similar operation and design as protocol/sequence controller 208. In addition, to the above, protocol/sequence controllers 208 and 314 may incorporate in the decision process appropriate commands for enabling USB interfaces 222 and 316, when the corresponding device is so connected.


Encryption/decryption component 318 may be further in communication with a secure account number database 320 which stores the security keys necessary for decrypting the encrypted fob account number. Upon appropriate request from protocol/sequence controller 314, encryption/decryption component (e.g., circuitry 318) may retrieve the appropriate security key, decrypt the fob account number and forward the decrypted account number to protocol sequence controller 314 in any format readable by any later connected POS device 110. In one exemplary embodiment, the account number may be forwarded in a conventional magnetic stripe format compatible with the ISO/IEC 7813 standard. Upon receiving the account number in magnetic stripe format, protocol/sequence controller 314 may forward the account number to POS device 110 via a communications interface 312 and data link 122, as best shown in FIG. 1. POS device 110 may receive the decrypted account number and forward the magnetic stripe formatted account number to a merchant network 112 for processing under the merchant's business as usual standard. In this way, the present invention eliminates the need of a third-party server. Further, where the POS device 110 receives a response from network 112 (e.g., transaction authorized or denied), protocol/sequence controller 314 may provide the network response to the RF module 302 for optically and/or audibly communicating the response to the fob 102 user.


RFID reader 104 may additionally include a USB interface 316, in communication with the protocol/sequence controller 314. In one embodiment, the USB interface may be a RS22 serial data interface. Alternatively, the RFID reader 104 may include a serial interface such as, for example, a RS232 interface in communication with the protocol/sequence controller 314. The USB connector 316 may be in communication with a personalization system 116 (shown in FIG. 1B) for initializing RFID reader 104 to system 100 application parameters. That is, prior to operation of system 100, RFID reader 104 may be in communication with personalization system 116 for populating database 310 with a listing of security keys belonging to authorized fobs 102, and for populating database 320 with the security keys to decrypt the fob 102 account numbers placing the account numbers in ISO/IEC 7813 format. In this way, RFID reader 104 may be populated with a unique identifier (e.g., serial number) which may be used by fob authentication circuitry 210 to determine if RFID reader 104 is authorized to receive a fob 102 encrypted account number.



FIG. 1B illustrates an exemplary personalization system 100B, in accordance with the present invention. In general, typical personalization system 100B may be any system for initializing the RFID reader 104 and fob 102 for use in system 10A. With reference to FIG. 1B, the similar personalization process for fob 102 may be illustrated. For example, personalization system 116 may be in communication with fob 102 via RF ISO 14443 interface 114 for populating fob database 212 with the security keys for facilitating authentication of the unique RFID reader 104 identifier. In addition, personalization system 116 may populate on database 212 a unique fob 102 identifier for use by RFID reader 104 in determining whether fob 102 is authorized to access system 100. Personalization system 116 may populate (e.g., inject) the encrypted fob 102 account number into fob database 214 for later providing to an authenticated RFID reader 104.


In one exemplary embodiment, personalization system 116 may include any standard computing system as described above. For example, personalization system 116 may include a standard personal computer containing a hardware security module operable using any conventional graphic user interface. Prior to populating the security key information account number and unique identifying information into the fob 102 or RFID reader 104, the hardware security module may authenticate the fob 102 and RFID reader 104 to verify that the components are authorized to receive the secure information.



FIGS. 6A-6B illustrate an exemplary flowchart of a personalization procedure which may be used to personalize fob 102 and/or RFID reader 104. Although the following description discusses mainly personalization of fob 102, RFID reader 104 may be personalized using a similar process. The personalization process, which occurs between the personalization system 116 and the device to be personalized (e.g., fob 102 or RFID reader 104), may begin, for example at step 602. Mutual authentication may occur between the personalization system 116 and the device to be authenticated in much the same manner as was described above with regard to fob 102 mutually authenticating with RFID reader 104. That is, personalization system 116 may transmit a personalization system 116 identifier to the device to be authenticated which is compared by the device authentication circuitry 210, 308 against personalization system identifiers stored in the device database 212, 310. Where a match does not occur (step 604), the personalization process may be aborted (step 612). Where a match occurs (step 604), the personalization system may prepare a personalization file to be provided to the device to be personalized (step 606). If the personalization system is operated manually, the personalization file may be entered into the personalization system 116 using any suitable system interface such as, for example, a keyboard (step 606). Where the personalization system 116 operator elects to delay the preparation of the personalization files, the system 116 may abort the personalization process (step 610). In this context, the personalization file may include the unique fob 102 or RFID reader 104 identifier, security key for loading into database 212 and 310, and/or security keys for decrypting a fob account number which may be loaded in database 320.


Fob 102 may be personalized by direct connection to the personalization system 116 via RF ISO/IEC 14443 interface 114, or the fob 102 may be personalized using RFID reader 104. Personalization system 116 and RFID reader 104 may engage in mutual authentication and RFID reader 104 may be configured to transmit the fob personalization file to fob 102 via RF. Once the fob 102 is presented to RFID reader 104 (steps 608, 614) for personalization, fob 102 and RFID reader 104 may engage in mutual authentication (step 614). Where the fob 102 is not presented to the RFID reader 104 for personalization, the personalization process may be aborted (step 610).


If the fob 102 is detected, the personalization system 116 may create as a part of the personalization file, a unique identifier for providing to the fob 102 (step 616). The identifier is unique in that one identifier may be given only to a single fob. That is, no other fob may have that same identifier. The fob may then be configured and loaded with that identifier (step 618).


The encrypted fob 102 account number may be populated into fob 102 in the same manner as is described with respect to the fob 102 unique identifier. That is, personalization system 116 may pre-encrypt the account data (step 640) and inject the encrypted account into fob database 214 (step 622). The encrypted account data may be loaded (e.g., injected) into the fob 102 using RFID reader 104 as discussed above.


Once the personalization file is populated into the fob 102, the populated information is irreversibly locked to prevent alteration, unauthorized reading and/or unauthorized access (step 624). Personalization system 116 may then create a log of the personalization file information for later access and analysis by the personalization system 116 user (step 626).


It should be noted that in the event the personalization system 116 process is compromised or interrupted (step 628), the personalization system may send a security alert to the user (step 630) and the personalization process may be aborted (step 612). On the other hand, where no such compromising or interruption exists, the personalization system may be prepared to begin initialization on a second device to be personalized (step 632).



FIGS. 7A-7B illustrate another exemplary embodiment of a personalization process which may be used to personalize RFID reader 104. RFID reader 104 may be in communication with a personalization system 116 via RFID reader USB connection 316 (step 702). Once connected, personalization system 116 may establish communications with the RFID reader 104 and RFID reader 104 may provide personalization system 116 any RFID reader 104 identification data presently stored on the RFID reader 104 (step 704). In accordance with step 708, where the RFID reader 104 is being personalized for the first time (step 706) the RFID reader 104 and the personalization system 116 may engage in mutual authentication as described above with respect to FIGS. 6A-B. After the mutual authentication is complete, personalization system 116 may verify that RFID reader 104 is properly manufactured or configured to operate within system 100. The verification may include evaluating the operation of the RFID reader 104 by determining if the RFID reader will accept predetermined default settings. That is, the personalization system 116 may then provide the RFID reader 104 a set of default settings (step 708) and determine if the RFID reader 104 accepts those settings (step 712). If RFID reader 104 does not accept the default settings, personalization system 116 may abort the personalization process (step 714).


If the personalization system 116 determines that the personalization process is not the first personalization process undertaken by the RFID reader 104 (step 706), personalization system 116 and RFID reader 104 may engage in a mutual authentication process using the existing security keys already stored on RFID reader 104 (step 710). If authentication is unsuccessful (step 712), the personalization system may abort the personalization process (step 714).


Where the personalization system 116 and the RFID reader 104 successfully mutually authenticate, the personalization system 116 may update the RFID reader 104 security keys (step 716). Updating the security keys may take place at any time as determined by a system 100 manager. The updating may take place as part of a routine maintenance or merely to install current security key data. The updating may be performed by downloading firmware into RFID reader 104 (step 718). In the event that the personalization system determines in step 706 that the RFID reader 104 is undergoing an initial personalization, the firmware may be loaded into the RFID reader 104 for the first time. In this context, “firmware” may include any file which enables the RFID reader 102 to operate under system 100 guidelines. For example, such guidelines may be directed toward the operation of RFID reader protocol/sequence controller 314.


Personalization system 116 may then determine if the personalization keys (e.g., security keys, decryption keys, RFID identifier) need to be updated or if the RFID reader 104 needs to have an initial installation of the personalization keys (step 720). If so, then personalization system 116 may download the personalization keys as appropriate (step 722).


Personalization system 116 may then check the RFID reader 104 to determine if the fob 102 identifiers and corresponding security keys should be updated or initially loaded (step 724). If no updating is necessary the personalization system may end the personalization procedure (step 732). Contrarily, if the personalization system 116 determines that the fob 102 identifiers and corresponding keys need to be updated or installed, the personalization system may download the information onto RFID reader 104 (step 726). The information (e.g., fob security keys and identifiers) may be downloaded in an encrypted format and the RFID reader 104 may store the information in the RFID reader database 310 as appropriate (step 728). The personalization system may then create or update a status log cataloging for later use and analysis by the personalization system 116 user (step 730). Upon updating the status log, the personalization process may be terminated (step 732).


It should be noted that, in some instances it may be necessary to repersonalize the RFID reader in similar manner as described above. In that instance, the personalization method described in FIGS. 7A and 7B may be repeated.



FIG. 8 illustrates an exemplary flow diagram for the operation of system 100A. The operation may be understood with reference to FIG. 1A, which depicts the elements of system 100A which may be used in an exemplary transaction. The process is initiated when a customer desires to present a fob 102 for payment (step 802). Upon presentation of the fob 102, the merchant initiates the RF payment procedure via an RFID reader 104 (step 804). In particular, the RFID reader sends out an interrogation signal to scan for the presence of fob 102 (step 806). The RF signal may be provided via the RFID reader antenna 106 or optionally via an external antenna 108. The customer then may present the fob 102 for payment (step 808) and the fob 102 is activated by the RF interrogation signal provided.


The fob 102 and the RFID reader 104 may then engage in mutual authentication (step 810). Where the mutual authentication is unsuccessful, an error message may be provided to the customer via the RFID optical and/or audible indicator (step 814) and the transaction may be aborted (step 816). Where the mutual authentication is successful (step 814), the RFID reader 104 may provide the customer with an appropriate optical and/or audible message (e.g., “transaction processing” or “wait”) (step 818). The fob protocol/sequence controller 208 may then retrieve from database 214 an encrypted fob account number and provide the encrypted account number to the RFID reader 104 (step 820).


The RFID reader 104 may then decrypt the account number and convert the account number into magnetic stripe (ISO/IEC 7813) format (step 822) and provide the unencrypted account number to the merchant system 130 (step 828). In particular, the account number may be provided to the POS 110 device for transmission to the merchant network 112 for processing under known business transaction standards. The POS device 110 may then send an optical and/or audible transaction status message to the RFID reader 104 (step 830) for communication to the customer (step 832).


It should be noted that the transaction account associated with the fob 102 may include a restriction, such as, for example, a per purchase spending limit, a time of day use, a day of week use, certain merchant use and/or the like, wherein an additional verification is required when using the fob outside of the restriction. The restrictions may be personally assigned by the fob 102 user, or the account provider. For example, in one exemplary embodiment, the account may be established such that purchases above $X (i.e., the spending limit) must be verified by the customer. Such verification may be provided using a suitable personal identification number (PIN) which may be recognized by the RFID reader 104 or a payment authorization center (not shown) as being unique to the fob 102 holder (e.g., customer) and the correlative fob 102 transaction account number. Where the requested purchase is above the established per purchase spending limit, the customer may be required to provide, for example, a PIN, biometric sample and/or similar secondary verification to complete the transaction.


Where a verification PIN is used as secondary verification the verification PIN may be checked for accuracy against a corroborating PIN which correlates to the fob 102 transaction account number. The corroborating PIN may be stored locally (e.g., on the fob 102, or on the RFID reader 104) or may be stored on a database (not shown) at the payment authorization center. The payment authorization center database may be any database maintained and operated by the fob 102 transaction account provider.


The verification PIN may be provided to the POS device 110 using a conventional merchant (e.g., POS) PIN key pad 118 in communication with the POS device 110 as shown in FIG. 1, or a RFID keypad in communication with the RFID reader 104. PIN keypad may be in communication with the POS device 110 (or alternatively, RFID reader 104) using any conventional data link described above. Upon receiving the verification PIN, the RFID reader 104 may seek to match the PIN to the corroborating PIN stored on the RFID reader 104 at database 310 or 320. Alternatively, the verification PIN may be provided to a payment authorization center to determine whether the PIN matches the PIN stored on the payment authorization center database which correlates to the fob 102 account. If a match is made, the purchase may no longer be restricted, and the transaction may be allowed to be completed.


In an alternate embodiment, verification of purchases exceeding the established spending limit may involve biometrics circuitry included in fob 102. FIG. 9 is a schematic block diagram of an exemplary fob 102 wherein fob 102 includes a biometric security system 902. Biometric security system 902 may include a biometric sensor 904 for sensing the fingerprint of the fob 102 user. The biometric sensor 902 may be in communication with a sensor interface/driver 906 for receiving the sensor fingerprint and activating the operation of fob 102. In communication with the biometric sensor 904 and sensor interface 906 may be a battery 903 for providing the necessary power for operation of the biometric security system components.


In one exemplary application of the fob 102 including the biometric security system 902, the customer may place his finger on the biometric sensor to initiate the mutual authentication process between the fob 102 and the RFID reader 104, or to provide secondary verification of the user's identity. The sensor fingerprint may be digitized and compared against a digitized fingerprint stored in a database (e.g., security database 212) included on fob 102. Such comparison step may be controlled by protocol/sequence controller 208 and may be validated by authentication circuit 210. Where such verification is made, the mutual authentication between fob 102 and RFID reader 104 may begin, and the transaction may proceed accordingly. Alternatively, the comparison may be made with a digitized fingerprint stored on a database maintained by the fob 102 transaction account provider system (not shown). The digitized fingerprint may be verified in much the same way as is described above with respect to the PIN.


In one exemplary application of the fob 102 including the biometric security system 902, the system 902 may be used to authorize a purchase exceeding the established per purchase spending limit. In this case, where the customer's intended purchase exceeds the spending limit, the customer may be asked to provide assurance that the purchase is authorized. Accordingly, the customer may provide such verification by placing his finger over the biometric sensor 904. The biometric sensor 904 may then digitize the fingerprint and provide the digitized fingerprint for verification as described above. Once verified, fob 102 may provide a transaction authorized signal to RF transponder 202 (or alternatively to transponder 220) for forwarding to RFID reader 104. RFID reader 104 may then provide the transaction authorized signal to the POS device 110 in similar manner as is done with convention PIN driven systems and the POS device 110 may process the transaction under the merchant's business as usual standard.


The preceding detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which show the exemplary embodiment by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the preceding detailed description is presented for purposes of illustration only and not of limitation, and the scope of the invention is defined solely by the appended claims and their legal equivalents when properly read in light of the preceding description. For example, the steps recited in any of the method or process claims may be executed in any order and are not limited to the order presented.

Claims
  • 1. A method to process a transaction at a Point of Sale (POS) device, comprising: receiving a decrypted account number from a reader device to facilitate a payment transaction in response to a mutual authentication of a transponder device and the reader device;transmitting the decrypted account number to a merchant system;receiving a verification Personal Identification Number (PIN) in response to a first purchase restriction associated with the decrypted account number;sending the verification PIN to at least one of the reader device or a payment authorization center to authenticate the verification PIN;receiving a first transaction authorized signal in response to an authentication of the verification PIN; andprocessing the payment transaction.
  • 2. The method of claim 1, further comprising receiving a second transaction authorized signal in response to an authentication of biometric data.
  • 3. The method of claim 2, wherein the biometric data is associated with a second purchase restriction associated with the decrypted account number.
  • 4. The method of claim 2, wherein the processing the payment transaction is responsive to receiving at least one of the first and second transaction authorized signal.
  • 5. The method of claim 1, further comprising transmitting an optical transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 6. The method of claim 1, further comprising transmitting an audible transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 7. The method of claim 1, wherein the transmitting the decrypted account number to the merchant system comprises transmitting the decrypted account number in a magnetic stripe format to the merchant system.
  • 8. A Point of Sale (POS) device, comprising: at least one data link module configured to:receive a decrypted account number from a reader device to facilitate a payment transaction in response to a mutual authentication of a transponder device and the reader device;transmit the decrypted account number to a merchant system;receive a verification Personal Identification Number (PIN) in response to a first purchase restriction associated with the decrypted account number;send the verification PIN to at least one of the reader device or a payment authorization center to authenticate the verification PIN;receive a first transaction authorized signal in response to an authentication of the verification PIN; anda processing module configured to process the payment transaction.
  • 9. The POS device of claim 8, wherein the at least one data link module is further configured to receive a second transaction authorized signal in response to an authentication of biometric data.
  • 10. The POS device of claim 9, wherein the biometric data is associated with a second purchase restriction associated with the decrypted account number.
  • 11. The POS device of claim 9, wherein the processing the payment transaction is responsive to receiving at least one of the first and second transaction authorized signal.
  • 12. The POS device of claim 8, wherein the at least one data link module is further configured to transmit an optical transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 13. The POS device of claim 8, wherein the at least one data link module is further configured to transmit an audible transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 14. The POS device of claim 8, wherein the transmitting the decrypted account number to the merchant system comprises transmitting the decrypted account number in a magnetic stripe format to the merchant system.
  • 15. A non-transitory computer-readable medium storing executable instructions that, when executed, cause a Point of Sale (POS) device to perform operations comprising: receiving a decrypted account number from a reader device to facilitate a payment transaction in response to a mutual authentication of a transponder device and the reader device;transmitting the decrypted account number to a merchant system;receiving a verification Personal Identification Number (PIN) in response to a first purchase restriction associated with the decrypted account number;sending the verification PIN to at least one of the reader device or a payment authorization center to authenticate the verification PIN;receiving a first transaction authorized signal in response to an authentication of the verification PIN; andprocessing the payment transaction.
  • 16. The non-transitory computer-readable medium of claim 15, further comprising receiving a second transaction authorized signal in response to authentication of biometric data associated with a second purchase restriction associated with the decrypted account number.
  • 17. The non-transitory computer-readable medium of claim 16, wherein the processing the payment transaction is responsive to receiving at least one of the first and second transactions authorized signal.
  • 18. The non-transitory computer-readable medium of claim 15, further comprising transmitting an optical transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 19. The non-transitory computer-readable medium of claim 15, further comprising transmitting an audible transaction status message to the reader device in response to transmitting the decrypted account number to the merchant system.
  • 20. The non-transitory computer-readable medium of claim 15, wherein the transmitting the decrypted account number to the merchant system comprises transmitting the decrypted account number in a magnetic stripe format to the merchant system.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of Ser. No. 11/743,907, filed May 3, 2007, now U.S. Pat. No. 8,872,619, which is continuation application of U.S. application Ser. No. 10/192,488, filed Jul. 9, 2002, now U.S. Pat. No. 7,239,226, which claims the benefit of U.S. Provisional App. No. 60/304,216 filed Jul. 10, 2001.

US Referenced Citations (750)
Number Name Date Kind
3376661 Hulett Apr 1968 A
3914762 Klensch Oct 1975 A
4066873 Schatz Jan 1978 A
4206965 McGrew Jun 1980 A
4318554 Anderson et al. Mar 1982 A
4421380 McGrew Dec 1983 A
4443027 McNelly et al. Apr 1984 A
4475308 Heise et al. Oct 1984 A
4507652 Vogt et al. Mar 1985 A
4558211 Berstein Dec 1985 A
4583766 Wessel Apr 1986 A
4589686 McGrew May 1986 A
4593936 Opel Jun 1986 A
4639765 d'Hont Jan 1987 A
4656463 Anders et al. Apr 1987 A
4663518 Borror et al. May 1987 A
4672021 Blumel et al. Jun 1987 A
4700055 Kashkashian, Jr. Oct 1987 A
4717221 McGrew Jan 1988 A
4736094 Yoshida Apr 1988 A
4739328 Koelle et al. Apr 1988 A
4744497 O'Neal May 1988 A
4795894 Sugimoto et al. Jan 1989 A
4829690 Andros May 1989 A
4837422 Dethloff et al. Jun 1989 A
4839504 Nakano Jun 1989 A
4849617 Ueda Jul 1989 A
4868849 Tamaoki Sep 1989 A
4884507 Levy Dec 1989 A
4918432 Pauley et al. Apr 1990 A
4961142 Elliott et al. Oct 1990 A
4984270 LaBounty Jan 1991 A
4998753 Wichael Mar 1991 A
5023782 Lutz et al. Jun 1991 A
5053774 Schuermann et al. Oct 1991 A
5068894 Hoppe Nov 1991 A
5099226 Andrews Mar 1992 A
5101200 Swell Mar 1992 A
5125356 Galante Jun 1992 A
5144667 Pogue, Jr. Sep 1992 A
5197140 Balmer Mar 1993 A
5198647 Mizuta Mar 1993 A
5206488 Teicher Apr 1993 A
5208110 Smith et al. May 1993 A
5212777 Gove et al. May 1993 A
5221838 Gutman et al. Jun 1993 A
5222282 Sukonnik et al. Jun 1993 A
5226989 Sukonnik Jul 1993 A
5234624 Bauer et al. Aug 1993 A
5239654 Ing-Simmons et al. Aug 1993 A
5247304 d'Hont Sep 1993 A
5257656 McLeroy Nov 1993 A
5259649 Shomron Nov 1993 A
5274392 d'Hont et al. Dec 1993 A
5276311 Hennige Jan 1994 A
5285100 Byatt Feb 1994 A
5288978 Iijima Feb 1994 A
5303904 Kemp Apr 1994 A
5304789 Lob et al. Apr 1994 A
5305002 Holodak et al. Apr 1994 A
5308121 Gunn May 1994 A
5326964 Risser Jul 1994 A
5329617 Asal Jul 1994 A
5331138 Saroya Jul 1994 A
5339447 Balmer Aug 1994 A
5349357 Schurmann et al. Sep 1994 A
5351052 d'Hont et al. Sep 1994 A
5359522 Ryan Oct 1994 A
5365551 Snodgrass et al. Nov 1994 A
5371896 Gove et al. Dec 1994 A
5373303 d'Hont Dec 1994 A
5390252 Suzuki Feb 1995 A
5397881 Mannik Mar 1995 A
5407893 Koshizuka et al. Apr 1995 A
5408243 d'Hont Apr 1995 A
5410649 Gove Apr 1995 A
5412192 Hoss May 1995 A
5428363 d'Hont Jun 1995 A
5453747 d'Hont et al. Sep 1995 A
5471592 Gove et al. Nov 1995 A
5477040 Lalonde Dec 1995 A
5479494 Clitherow Dec 1995 A
5479530 Nair et al. Dec 1995 A
5485510 Colbert Jan 1996 A
5488376 Hurta et al. Jan 1996 A
5489411 Jha et al. Feb 1996 A
5489908 Orthmann et al. Feb 1996 A
5490079 Sharpe et al. Feb 1996 A
5491483 d'Hont Feb 1996 A
5491484 Schuermann Feb 1996 A
5491715 Flaxl Feb 1996 A
5493312 Knebelkamp Feb 1996 A
5497121 d'Hont Mar 1996 A
5500651 Schuermann Mar 1996 A
5503434 Gunn Apr 1996 A
5513525 Schurmann May 1996 A
5519381 Marsh et al. May 1996 A
5522083 Gove et al. May 1996 A
5525992 Froschermeier Jun 1996 A
5525994 Hurta et al. Jun 1996 A
5528222 Moskowitz et al. Jun 1996 A
5530232 Taylor Jun 1996 A
5533656 Bonaldi Jul 1996 A
5534857 Laing et al. Jul 1996 A
5541604 Meier Jul 1996 A
5543798 Schuermann Aug 1996 A
5544246 Mandelbaum et al. Aug 1996 A
5548291 Meier et al. Aug 1996 A
5550536 Flaxl Aug 1996 A
5550548 Schuermann Aug 1996 A
5552789 Schuermann Sep 1996 A
5555877 Lockwood et al. Sep 1996 A
5557279 d'Hont Sep 1996 A
5557516 Hogan Sep 1996 A
5561430 Knebelkamp Oct 1996 A
5563582 d'Hont Oct 1996 A
5569187 Kaiser Oct 1996 A
5569897 Masuda Oct 1996 A
5572226 Tuttle Nov 1996 A
5577109 Stimson et al. Nov 1996 A
5578808 Taylor Nov 1996 A
5581630 Bonneau, Jr. Dec 1996 A
5585787 Wallerstein Dec 1996 A
5590038 Pitroda Dec 1996 A
5592150 d'Hont Jan 1997 A
5592405 Gove et al. Jan 1997 A
5592767 Treske Jan 1997 A
5594233 Kenneth et al. Jan 1997 A
5594448 d'Hont Jan 1997 A
5597534 Kaiser Jan 1997 A
5600175 Orthmann Feb 1997 A
5602538 Orthmann et al. Feb 1997 A
5602919 Hurta et al. Feb 1997 A
5604342 Fujioka Feb 1997 A
5606520 Gove et al. Feb 1997 A
5606594 Register et al. Feb 1997 A
5607522 McDonnell Mar 1997 A
5608406 Eberth et al. Mar 1997 A
5608778 Partridge, III Mar 1997 A
5613146 Gove et al. Mar 1997 A
5619207 d'Hont Apr 1997 A
5621199 Calari et al. Apr 1997 A
5621396 Flaxl Apr 1997 A
5621411 Hagl et al. Apr 1997 A
5621412 Sharpe et al. Apr 1997 A
5625366 d'Hont Apr 1997 A
5625370 d'Hont Apr 1997 A
5625695 M'Raihi et al. Apr 1997 A
5629981 Nerlikar May 1997 A
5638080 Orthmann et al. Jun 1997 A
5640002 Ruppert et al. Jun 1997 A
5646607 Schurmann et al. Jul 1997 A
5649118 Carlisle et al. Jul 1997 A
5657388 Weiss Aug 1997 A
5660319 Falcone et al. Aug 1997 A
5673106 Thompson Sep 1997 A
5675342 Sharpe Oct 1997 A
5686920 Hurta et al. Nov 1997 A
5691731 van Erven Nov 1997 A
5692132 Hogan Nov 1997 A
5694596 Campbell Dec 1997 A
5696913 Gove et al. Dec 1997 A
5698837 Furuta Dec 1997 A
5699528 Hogan Dec 1997 A
5700037 Keller Dec 1997 A
5701127 Sharpe Dec 1997 A
5704046 Hogan Dec 1997 A
5705798 Tarbox Jan 1998 A
5705852 Orihara et al. Jan 1998 A
5710421 Kokubu Jan 1998 A
5715399 Bezos Feb 1998 A
5721781 Deo et al. Feb 1998 A
5725098 Seifert et al. Mar 1998 A
5729053 Orthmann Mar 1998 A
5729236 Flaxl Mar 1998 A
5731957 Brennan Mar 1998 A
5732579 d'Hont et al. Mar 1998 A
5745571 Zuk Apr 1998 A
5748137 d'Hont May 1998 A
5748737 Daggar May 1998 A
5757918 Hopkins May 1998 A
5758195 Balmer May 1998 A
5761306 Lewis Jun 1998 A
5761493 Blakeley et al. Jun 1998 A
5768609 Gove et al. Jun 1998 A
5769457 Warther Jun 1998 A
5770843 Rose et al. Jun 1998 A
5773812 Kreft Jun 1998 A
5774882 Keen et al. Jun 1998 A
5777903 Piosenka Jul 1998 A
5778067 Jones et al. Jul 1998 A
5785680 Niezink et al. Jul 1998 A
5789733 Jachimowicz et al. Aug 1998 A
5792337 Padovani et al. Aug 1998 A
5793324 Aslanidis et al. Aug 1998 A
5794095 Thompson Aug 1998 A
5797060 Thompson Aug 1998 A
5797085 Buek et al. Aug 1998 A
5797133 Jones et al. Aug 1998 A
5798709 Flaxl Aug 1998 A
5809142 Hurta et al. Sep 1998 A
5809288 Balmer Sep 1998 A
5809633 Mundigl et al. Sep 1998 A
5825007 Jesadanont Oct 1998 A
5825302 Stafford Oct 1998 A
5826077 Blakeley et al. Oct 1998 A
5826243 Musmanno et al. Oct 1998 A
5828044 Jun et al. Oct 1998 A
5832090 Raspotnik Nov 1998 A
5834756 Gutman et al. Nov 1998 A
5838257 Lambropoulos Nov 1998 A
5838720 Morelli Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5841364 Hagl et al. Nov 1998 A
5842088 Thompson Nov 1998 A
5844218 Kawan et al. Dec 1998 A
5844230 Lalonde Dec 1998 A
5845267 Ronen Dec 1998 A
5851149 Xidos et al. Dec 1998 A
5852812 Reeder Dec 1998 A
5854891 Postlewaite et al. Dec 1998 A
5857152 Everett Jan 1999 A
5858006 Van der AA et al. Jan 1999 A
5859419 Wynn Jan 1999 A
5859587 Alicot et al. Jan 1999 A
5859779 Giordano et al. Jan 1999 A
5864306 Dwyer et al. Jan 1999 A
5864323 Berthon Jan 1999 A
5867100 d'Hont Feb 1999 A
5870031 Kaiser et al. Feb 1999 A
5870723 Pare, Jr. et al. Feb 1999 A
5870915 d'Hont Feb 1999 A
5878215 Kling et al. Mar 1999 A
5878337 Joao et al. Mar 1999 A
5878403 DeFrancesco et al. Mar 1999 A
5880675 Trautner Mar 1999 A
5881272 Balmer Mar 1999 A
5883377 Chapin, Jr. Mar 1999 A
5883810 Franklin et al. Mar 1999 A
5884271 Pitroda Mar 1999 A
5887266 Heinonen et al. Mar 1999 A
5890137 Koreeda Mar 1999 A
5898783 Rohrbach Apr 1999 A
5903830 Joao et al. May 1999 A
5905798 Nerlikar et al. May 1999 A
5912678 Saxena et al. Jun 1999 A
5914472 Foladare et al. Jun 1999 A
5917168 Nakamura et al. Jun 1999 A
5920628 Indeck et al. Jul 1999 A
5923734 Taskett Jul 1999 A
5923884 Peyret et al. Jul 1999 A
5924080 Johnson Jul 1999 A
5929801 Aslanidis et al. Jul 1999 A
5930767 Reber et al. Jul 1999 A
5931917 Nguyen et al. Aug 1999 A
5933624 Balmer Aug 1999 A
5943624 Fox et al. Aug 1999 A
5948116 Aslanidis et al. Sep 1999 A
5950174 Brendzel Sep 1999 A
5950179 Buchanan et al. Sep 1999 A
5953512 Cai et al. Sep 1999 A
5953710 Fleming Sep 1999 A
5955717 Vanstone Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5955969 d'Hont Sep 1999 A
5956024 Strickland et al. Sep 1999 A
5956693 Geerlings Sep 1999 A
5956699 Wong et al. Sep 1999 A
5960416 Block Sep 1999 A
5963924 Williams et al. Oct 1999 A
5969318 Mackenthun Oct 1999 A
5970148 Meier Oct 1999 A
5970470 Walker Oct 1999 A
5974238 Chase, Jr. Oct 1999 A
RE36365 Levine et al. Nov 1999 E
5978840 Nguyen et al. Nov 1999 A
5979757 Tracy et al. Nov 1999 A
5982293 Everett et al. Nov 1999 A
5983200 Slotznick Nov 1999 A
5983208 Haller Nov 1999 A
5987140 Rowney et al. Nov 1999 A
5987155 Dunn et al. Nov 1999 A
5987498 Athing et al. Nov 1999 A
5988497 Wallace Nov 1999 A
5988510 Tuttle Nov 1999 A
5989950 Wu Nov 1999 A
5991608 Leyten Nov 1999 A
5991748 Taskett Nov 1999 A
5991750 Watson Nov 1999 A
5996076 Rowney et al. Nov 1999 A
6002438 Hocevar et al. Dec 1999 A
6002767 Kramer Dec 1999 A
6003014 Lee et al. Dec 1999 A
6005942 Chan et al. Dec 1999 A
6006216 Griffin et al. Dec 1999 A
6011487 Plocher Jan 2000 A
6012049 Kawan Jan 2000 A
6012636 Smith Jan 2000 A
6014645 Cunningham Jan 2000 A
6016476 Maes et al. Jan 2000 A
6016484 Williams et al. Jan 2000 A
6018717 Lee et al. Jan 2000 A
6021943 Chastain Feb 2000 A
6024286 Bradley et al. Feb 2000 A
6029149 Dykstra et al. Feb 2000 A
6029175 Chow Feb 2000 A
6029892 Miyake Feb 2000 A
6032136 Brake, Jr. et al. Feb 2000 A
6036100 Asami Mar 2000 A
6038292 Thomas Mar 2000 A
6038584 Balmer Mar 2000 A
6041410 Hsu et al. Mar 2000 A
6044360 Picciallo Mar 2000 A
6047888 Dethloff Apr 2000 A
6050494 Song et al. Apr 2000 A
6052675 Checchio Apr 2000 A
6058476 Matsuzaki et al. May 2000 A
6058477 Kusakabe May 2000 A
6061344 Wood, Jr. May 2000 A
6064320 d'Hont et al. May 2000 A
6065675 Teicher May 2000 A
6068184 Barnett May 2000 A
6068193 Kreft May 2000 A
6070003 Gove et al. May 2000 A
6072870 Nguyen et al. Jun 2000 A
6073112 Geerlings Jun 2000 A
6073236 Kusakabe et al. Jun 2000 A
6073840 Marion Jun 2000 A
6076296 Schaeffer Jun 2000 A
6078888 Johnson, Jr. Jun 2000 A
6078908 Schmitz Jun 2000 A
RE36788 Mansvelt et al. Jul 2000 E
6085976 Sehr Jul 2000 A
6088683 Jalili Jul 2000 A
6088686 Walker et al. Jul 2000 A
6088755 Kobayashi et al. Jul 2000 A
6089611 Blank Jul 2000 A
6092057 Zimmerman et al. Jul 2000 A
6095567 Buell Aug 2000 A
6098879 Terranova Aug 2000 A
6099043 Story Aug 2000 A
6100804 Brady et al. Aug 2000 A
6101174 Langston Aug 2000 A
6101477 Hohle et al. Aug 2000 A
6102162 Teicher Aug 2000 A
6102672 Woollenweber Aug 2000 A
6104281 Heinrich et al. Aug 2000 A
6105008 Davis et al. Aug 2000 A
6105013 Curry et al. Aug 2000 A
6105865 Hardesty Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6108641 Kenna et al. Aug 2000 A
6109525 Blomqvist et al. Aug 2000 A
6112152 Tuttle Aug 2000 A
6112984 Snavely Sep 2000 A
6115040 Bladow et al. Sep 2000 A
6115360 Quay et al. Sep 2000 A
6116423 Troxtell, Jr. et al. Sep 2000 A
6116505 Withrow Sep 2000 A
6118189 Flaxl Sep 2000 A
6121544 Petsinger Sep 2000 A
6123223 Watkins Sep 2000 A
6129274 Suzuki Oct 2000 A
6130623 MacLellan Oct 2000 A
6133834 Eberth et al. Oct 2000 A
6138913 Cyr et al. Oct 2000 A
6138917 Chapin, Jr. Oct 2000 A
6141651 Riley et al. Oct 2000 A
6144916 Wood et al. Nov 2000 A
6144948 Walker et al. Nov 2000 A
6157722 Lerner Dec 2000 A
6157824 Bailey Dec 2000 A
6163771 Walker et al. Dec 2000 A
6167236 Kaiser et al. Dec 2000 A
6168083 Berger et al. Jan 2001 B1
6173269 Solokl et al. Jan 2001 B1
6173897 Halpern Jan 2001 B1
6173898 Mande Jan 2001 B1
6173899 Rozin Jan 2001 B1
6177859 Tuttle et al. Jan 2001 B1
6177860 Cromer et al. Jan 2001 B1
6179205 Sloan Jan 2001 B1
6179206 Masumori Jan 2001 B1
6185307 Johnson Feb 2001 B1
6188994 Egendorf Feb 2001 B1
6189787 Dorf Feb 2001 B1
6192255 Lewis et al. Feb 2001 B1
6195006 Bowers et al. Feb 2001 B1
6198728 Hulyalkar et al. Mar 2001 B1
6198875 Edenson et al. Mar 2001 B1
6202927 Bashan et al. Mar 2001 B1
6205151 Quay et al. Mar 2001 B1
6206293 Gutman et al. Mar 2001 B1
6213390 Oneda Apr 2001 B1
6213391 Lewis Apr 2001 B1
6215437 Schurmann et al. Apr 2001 B1
6216219 Cai et al. Apr 2001 B1
6219439 Burger Apr 2001 B1
6220510 Everett et al. Apr 2001 B1
D442627 Webb et al. May 2001 S
D442629 Webb et al. May 2001 S
6223984 Renner et al. May 2001 B1
6224109 Yang May 2001 B1
6226382 M'Raihi et al. May 2001 B1
6227447 Campisano May 2001 B1
6230270 Laczko, Sr. May 2001 B1
6232917 Baumer et al. May 2001 B1
6233683 Chan et al. May 2001 B1
6237848 Everett May 2001 B1
6239675 Flaxl May 2001 B1
6240187 Lewis May 2001 B1
6240989 Masoud Jun 2001 B1
6248199 Smulson Jun 2001 B1
6250554 Leo et al. Jun 2001 B1
6250557 Forslund et al. Jun 2001 B1
6257486 Teicher Jul 2001 B1
6259769 Page Jul 2001 B1
6260026 Tomida et al. Jul 2001 B1
6260088 Gave et al. Jul 2001 B1
6263316 Khan et al. Jul 2001 B1
6263446 Kausik et al. Jul 2001 B1
6264106 Bridgelall Jul 2001 B1
6266754 Laczko, Sr. et al. Jul 2001 B1
6267292 Walker et al. Jul 2001 B1
6273335 Sloan Aug 2001 B1
6282522 Davis et al. Aug 2001 B1
D447515 Faenza, Jr. et al. Sep 2001 S
6286763 Reynolds et al. Sep 2001 B1
6289324 Kawan Sep 2001 B1
6290137 Kiekhaefer Sep 2001 B1
6293462 Gangi Sep 2001 B1
6295522 Boesch Sep 2001 B1
6297727 Nelson, Jr. Oct 2001 B1
6304223 Hilton et al. Oct 2001 B1
6309098 Wong Oct 2001 B1
6315193 Hogan Nov 2001 B1
6315195 Ramacchandran Nov 2001 B1
6317721 Hurta et al. Nov 2001 B1
6317755 Rakers et al. Nov 2001 B1
6318636 Reynolds et al. Nov 2001 B1
6323566 Meier Nov 2001 B1
6325285 Baratelli Dec 2001 B1
6325293 Moreno Dec 2001 B1
6326934 Kinzie Dec 2001 B1
6327573 Walker et al. Dec 2001 B1
6329920 Morrison et al. Dec 2001 B1
6330546 Gopinathan et al. Dec 2001 B1
6331972 Harris et al. Dec 2001 B1
6332134 Foster Dec 2001 B1
6339384 Valdes-Rodriguez Jan 2002 B1
6342844 Rozin Jan 2002 B1
6353420 Chung Mar 2002 B1
6353811 Weissman Mar 2002 B1
6364208 Stanford et al. Apr 2002 B1
6367011 Lee et al. Apr 2002 B1
6374245 Park Apr 2002 B1
6377034 Ivanov Apr 2002 B1
6377691 Swift et al. Apr 2002 B1
6378073 Davis et al. Apr 2002 B1
6386444 Sullivan May 2002 B1
6388533 Swoboda May 2002 B2
6390375 Kayanakis May 2002 B2
6400272 Holtzman et al. Jun 2002 B1
6402026 Schwier Jun 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6404341 Reid Jun 2002 B1
6406935 Kayanakis et al. Jun 2002 B2
6411611 Van Der Tuijn Jun 2002 B1
6415978 McAllister Jul 2002 B1
6421650 Goetz et al. Jul 2002 B1
6422462 Cohen Jul 2002 B1
6422464 Terranova Jul 2002 B1
6422472 Thevenot et al. Jul 2002 B1
6424029 Giesler Jul 2002 B1
RE37822 Anthonyson Aug 2002 E
6427910 Barnes et al. Aug 2002 B1
6435415 Catte Aug 2002 B1
6438235 Sims, III Aug 2002 B2
6439455 Everett et al. Aug 2002 B1
6442532 Kawan Aug 2002 B1
6445794 Shefi Sep 2002 B1
6457996 Shih Oct 2002 B1
6466804 Pecen et al. Oct 2002 B1
6471127 Pentz et al. Oct 2002 B2
6473500 Risafi et al. Oct 2002 B1
6480100 Frieden et al. Nov 2002 B1
6480101 Kelly et al. Nov 2002 B1
6480869 Fujioka Nov 2002 B1
6481621 Herrendoerfer et al. Nov 2002 B1
6481632 Wentker et al. Nov 2002 B2
6483427 Werb Nov 2002 B1
6483477 Plonka Nov 2002 B1
6484937 Devaux et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6491229 Berney Dec 2002 B1
6494367 Zacharias Dec 2002 B1
6494380 Jarosz Dec 2002 B2
6505772 Mollett et al. Jan 2003 B1
6507762 Amro et al. Jan 2003 B1
6510983 Horowitz et al. Jan 2003 B2
6510998 Stanford et al. Jan 2003 B1
6513015 Ogasawara Jan 2003 B2
6520542 Thompson et al. Feb 2003 B2
6529880 McKeen et al. Mar 2003 B1
6535726 Johnson Mar 2003 B1
6539101 Black Mar 2003 B1
6546373 Cerra Apr 2003 B1
6547133 DeVries, Jr. et al. Apr 2003 B1
6549912 Chen Apr 2003 B1
6560581 Fox et al. May 2003 B1
6575361 Graves et al. Jun 2003 B1
6577229 Bonneau et al. Jun 2003 B1
6578768 Binder et al. Jun 2003 B1
6581839 Lasch et al. Jun 2003 B1
6587835 Treyz et al. Jul 2003 B1
6588660 Buescher et al. Jul 2003 B1
6589119 Orus et al. Jul 2003 B1
6598024 Walker et al. Jul 2003 B1
6608995 Kawasaki et al. Aug 2003 B1
6609114 Gressel et al. Aug 2003 B1
6609655 Harrell Aug 2003 B1
6609658 Sehr Aug 2003 B1
6623039 Thompson et al. Sep 2003 B2
6626356 Davenport et al. Sep 2003 B2
6628961 Ho et al. Sep 2003 B1
6631849 Blossom Oct 2003 B2
6636833 Flitcroft et al. Oct 2003 B1
6650887 McGregor et al. Nov 2003 B2
6665405 Lenstra Dec 2003 B1
6671358 Seidman et al. Dec 2003 B1
6674786 Nakamura et al. Jan 2004 B1
6679427 Kuroiwa Jan 2004 B1
6681328 Harris et al. Jan 2004 B1
6684269 Wagner Jan 2004 B2
6685089 Terranova et al. Feb 2004 B2
6686847 Mittler Feb 2004 B1
6687714 Kogen et al. Feb 2004 B1
6690930 Dupre Feb 2004 B1
6693513 Tuttle Feb 2004 B2
6704608 Azuma Mar 2004 B1
6705530 Kiekhaefer Mar 2004 B2
6708375 Johnson Mar 2004 B1
6711262 Watanen Mar 2004 B1
6725202 Hurta et al. Apr 2004 B1
6732919 Macklin et al. May 2004 B2
6732936 Kiekhaefer May 2004 B1
6742120 Markakis et al. May 2004 B1
6747546 Hikita Jun 2004 B1
6749123 Lasch et al. Jun 2004 B2
6760581 Dutta Jul 2004 B2
6764014 Lasch et al. Jul 2004 B2
6769718 Warther et al. Aug 2004 B1
6771981 Zalewski et al. Aug 2004 B1
6786400 Bucci Sep 2004 B1
6789012 Childs et al. Sep 2004 B1
6789733 Terranova et al. Sep 2004 B2
6793141 Graham Sep 2004 B1
6799726 Stockhammer Oct 2004 B2
6830193 Tanaka Dec 2004 B2
6842106 Hughes et al. Jan 2005 B2
6851617 Saint et al. Feb 2005 B2
6853087 Neuhaus et al. Feb 2005 B2
6853894 Kolls Feb 2005 B1
6857566 Wankmueller Feb 2005 B2
6859672 Roberts et al. Feb 2005 B2
6895310 Kolls May 2005 B1
6915277 Manchester et al. Jul 2005 B1
6924729 Aschauer et al. Aug 2005 B1
6925565 Black Aug 2005 B2
D509243 Hunter, Jr. et al. Sep 2005 S
6970583 Black Nov 2005 B2
6978369 Wheeler et al. Dec 2005 B2
6978933 Yap et al. Dec 2005 B2
6994262 Warther Feb 2006 B1
7004385 Douglass Feb 2006 B1
7006993 Cheong et al. Feb 2006 B1
7069444 Lowensohn et al. Jun 2006 B2
7070112 Beenau et al. Jul 2006 B2
7093767 Faenza et al. Aug 2006 B2
7103575 Linehan Sep 2006 B1
7119659 Bonalle et al. Oct 2006 B2
7136835 Flitcroft et al. Nov 2006 B1
7146577 Hoffman Dec 2006 B2
7172112 Bonalle et al. Feb 2007 B2
7184747 Bogat Feb 2007 B2
7239226 Berardi Jul 2007 B2
7287695 Wankmueller Oct 2007 B2
7289970 Siegel Oct 2007 B1
7360688 Harris Apr 2008 B1
7363505 Black Apr 2008 B2
7386869 Bastien et al. Jun 2008 B1
7392388 Keech Jun 2008 B2
7419093 Blackson et al. Sep 2008 B1
7801825 Kranzley et al. Sep 2010 B2
8872619 Berardi Oct 2014 B2
20010013542 Horowitz et al. Aug 2001 A1
20010024157 Hansmann et al. Sep 2001 A1
20010030238 Arisawa Oct 2001 A1
20010034565 Leatherman Oct 2001 A1
20010034623 Chung Oct 2001 A1
20010034720 Armes et al. Oct 2001 A1
20010039617 Buhrlen et al. Nov 2001 A1
20020005774 Rudolph et al. Jan 2002 A1
20020011519 Shults Jan 2002 A1
20020013765 Schwartz Jan 2002 A1
20020019807 Halpern Feb 2002 A1
20020026575 Wheeler et al. Feb 2002 A1
20020028704 Bloomfield et al. Mar 2002 A1
20020035548 Hogan et al. Mar 2002 A1
20020040935 Weyant Apr 2002 A1
20020040936 Wentker et al. Apr 2002 A1
20020043566 Goodman et al. Apr 2002 A1
20020052839 Takatori May 2002 A1
20020062284 Kawan May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020077837 Krueger et al. Jun 2002 A1
20020077895 Howell Jun 2002 A1
20020077992 Tobin Jun 2002 A1
20020079367 Montani Jun 2002 A1
20020092914 Pentz et al. Jul 2002 A1
20020095343 Barton et al. Jul 2002 A1
20020095389 Gaines Jul 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020097144 Collins et al. Jul 2002 A1
20020107007 Gerson Aug 2002 A1
20020107742 Magill Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111210 Luciano, Jr. et al. Aug 2002 A1
20020113082 Leatherman et al. Aug 2002 A1
20020116274 Hind et al. Aug 2002 A1
20020120584 Hogan et al. Aug 2002 A1
20020126010 Trimble et al. Sep 2002 A1
20020128980 Ludtke et al. Sep 2002 A1
20020131567 Maginas Sep 2002 A1
20020138425 Shimizu et al. Sep 2002 A1
20020138438 Bardwell Sep 2002 A1
20020140542 Prokoski et al. Oct 2002 A1
20020145043 Challa et al. Oct 2002 A1
20020147913 Lun Yip Oct 2002 A1
20020148892 Bardwell Oct 2002 A1
20020152123 Giordano et al. Oct 2002 A1
20020165931 Greer et al. Nov 2002 A1
20020166891 Stoutenburg et al. Nov 2002 A1
20020176522 Fan Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020178369 Black Nov 2002 A1
20020179704 Deaton Dec 2002 A1
20020185543 Pentz et al. Dec 2002 A1
20020188501 Lefkowith Dec 2002 A1
20020190125 Stockhammer Dec 2002 A1
20020191816 Maritzen et al. Dec 2002 A1
20020192856 Halope et al. Dec 2002 A1
20020193102 Hyppa et al. Dec 2002 A1
20020194303 Suila et al. Dec 2002 A1
20020194503 Faith et al. Dec 2002 A1
20020196963 Bardwell Dec 2002 A1
20030001459 Scott Jan 2003 A1
20030005310 Shinzaki Jan 2003 A1
20030009382 D'Arbeloff et al. Jan 2003 A1
20030014307 Heng Jan 2003 A1
20030014357 Chrisekos et al. Jan 2003 A1
20030014891 Nelms et al. Jan 2003 A1
20030018532 Dudek et al. Jan 2003 A1
20030018893 Hess Jan 2003 A1
20030025600 Blanchard Feb 2003 A1
20030028481 Flitcroft et al. Feb 2003 A1
20030033697 Hicks et al. Feb 2003 A1
20030037851 Hogganvik Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030054836 Michot Mar 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030057226 Long Mar 2003 A1
20030057278 Wong Mar 2003 A1
20030069828 Blazey et al. Apr 2003 A1
20030069846 Maroon Apr 2003 A1
20030112972 Hattick et al. Jun 2003 A1
20030115126 Pitroda Jun 2003 A1
20030120554 Hogan et al. Jun 2003 A1
20030121969 Wankmueller Jul 2003 A1
20030130820 Lane, III Jul 2003 A1
20030132284 Reynolds et al. Jul 2003 A1
20030140228 Binder Jul 2003 A1
20030149662 Shore Aug 2003 A1
20030160074 Pineda Aug 2003 A1
20030163699 Pailles et al. Aug 2003 A1
20030167207 Berardi et al. Sep 2003 A1
20030177347 Schneier et al. Sep 2003 A1
20030183689 Swift et al. Oct 2003 A1
20030183695 Labrec et al. Oct 2003 A1
20030183699 Masui Oct 2003 A1
20030187786 Swift et al. Oct 2003 A1
20030187787 Freund Oct 2003 A1
20030187790 Swift et al. Oct 2003 A1
20030187796 Swift et al. Oct 2003 A1
20030195037 Vuong et al. Oct 2003 A1
20030195842 Reece Oct 2003 A1
20030195843 Matsuda et al. Oct 2003 A1
20030200184 Dominguez et al. Oct 2003 A1
20030218066 Fernandes et al. Nov 2003 A1
20030220876 Burger et al. Nov 2003 A1
20030222153 Pentz et al. Dec 2003 A1
20030225623 Wankmueller Dec 2003 A1
20030225713 Atkinson et al. Dec 2003 A1
20030227550 Manico et al. Dec 2003 A1
20030230514 Baker Dec 2003 A1
20030233334 Smith Dec 2003 A1
20040010462 Moon et al. Jan 2004 A1
20040011877 Reppermund Jan 2004 A1
20040015451 Sahota et al. Jan 2004 A1
20040016796 Hanna et al. Jan 2004 A1
20040026518 Kudo et al. Feb 2004 A1
20040029569 Khan et al. Feb 2004 A1
20040030601 Pond et al. Feb 2004 A1
20040039814 Mills et al. Feb 2004 A1
20040039860 Mills et al. Feb 2004 A1
20040044627 Russell et al. Mar 2004 A1
20040046034 Ey Yamani et al. Mar 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040129787 Saito et al. Jul 2004 A1
20040139021 Reed et al. Jul 2004 A1
20040160310 Chen et al. Aug 2004 A1
20040176071 Gehrmann et al. Sep 2004 A1
20040177045 Brown Sep 2004 A1
20040180657 Yaqub et al. Sep 2004 A1
20040193676 Marks Sep 2004 A1
20040235450 Rosenberg Nov 2004 A1
20040236680 Luoffo et al. Nov 2004 A1
20050004921 Beenau et al. Jan 2005 A1
20050017068 Zalewski et al. Jan 2005 A1
20050023157 Logan Feb 2005 A1
20050033686 Peart et al. Feb 2005 A1
20050035192 Bonalle et al. Feb 2005 A1
20050035847 Bonalle et al. Feb 2005 A1
20050038718 Barnes et al. Feb 2005 A1
20050040272 Argumedo et al. Feb 2005 A1
20050045718 Bortolin et al. Mar 2005 A1
20050065872 Moebs et al. Mar 2005 A1
20050113137 Rodriguez et al. May 2005 A1
20050121512 Wankmueller Jun 2005 A1
20050122209 Black Jun 2005 A1
20050125312 Dearing et al. Jun 2005 A1
20050125317 Winkelman, III, et al. Jun 2005 A1
20050127164 Wankmueller Jun 2005 A1
20050149358 Sacco et al. Jul 2005 A1
20050171905 Wankmueller Aug 2005 A1
20050207002 Liu et al. Sep 2005 A1
20050221853 Silvester Oct 2005 A1
20050232471 Baer Oct 2005 A1
20060077034 Hillier Apr 2006 A1
20060178937 Rau et al. Aug 2006 A1
Foreign Referenced Citations (157)
Number Date Country
689070 Aug 1997 CH
689680 Aug 1999 CH
2847756 May 1980 DE
29702538 Apr 1997 DE
0181770 May 1986 EP
0343829 Nov 1989 EP
0354817 Feb 1990 EP
0358525 Mar 1990 EP
0368570 May 1990 EP
0388090 Sep 1990 EP
0424726 Oct 1990 EP
0403134 Dec 1990 EP
0411602 Feb 1991 EP
0473998 Mar 1992 EP
0481388 Apr 1992 EP
0531605 Mar 1993 EP
0552047 Jul 1993 EP
0560318 Sep 1993 EP
0568185 Nov 1993 EP
0657297 Jun 1995 EP
0721850 Jul 1996 EP
0780839 Jun 1997 EP
0789316 Aug 1997 EP
0866420 Sep 1998 EP
0894620 Feb 1999 EP
0916519 May 1999 EP
0933717 Aug 1999 EP
0949595 Oct 1999 EP
0956818 Nov 1999 EP
0959440 Nov 1999 EP
0984404 Mar 2000 EP
1016947 Jul 2000 EP
1039403 Sep 2000 EP
1104909 Jun 2001 EP
1113387 Jul 2001 EP
1199684 Apr 2002 EP
1251450 Oct 2002 EP
1345416 Sep 2003 EP
1371254 Oct 1974 GB
2108906 May 1985 GB
2240948 Aug 1991 GB
2347537 Sep 2000 GB
62-043774 Mar 1987 JP
62-264999 Nov 1987 JP
63-071794 Apr 1988 JP
63-098689 Apr 1988 JP
63-072721 May 1988 JP
63-175987 Jul 1988 JP
64-004934 Jan 1989 JP
64-087395 Mar 1989 JP
64-087396 Mar 1989 JP
64-087397 Mar 1989 JP
02-130737 May 1990 JP
02-252149 Oct 1990 JP
03001289 Jan 1991 JP
03-290780 Dec 1991 JP
42-005596 Jul 1992 JP
04-303692 Oct 1992 JP
05-069689 Mar 1993 JP
05-254283 Oct 1993 JP
06068647 Mar 1994 JP
06-183187 Jul 1994 JP
06-191137 Jul 1994 JP
06-234287 Aug 1994 JP
07-173358 Jul 1995 JP
07-205569 Aug 1995 JP
08202842 Aug 1996 JP
08-244385 Sep 1996 JP
08241387 Sep 1996 JP
08-324163 Dec 1996 JP
09-050505 Feb 1997 JP
09-052240 Feb 1997 JP
09-274640 Oct 1997 JP
10-129161 May 1998 JP
10-289296 Oct 1998 JP
10302160 Nov 1998 JP
10312485 Nov 1998 JP
10-334206 Dec 1998 JP
10-340231 Dec 1998 JP
11-175640 Jul 1999 JP
11-227367 Aug 1999 JP
11252069 Sep 1999 JP
11-353425 Dec 1999 JP
2000-011109 Jan 2000 JP
2000-015288 Jan 2000 JP
2000-040181 Feb 2000 JP
2000-048153 Feb 2000 JP
2000-067312 Mar 2000 JP
2000137774 May 2000 JP
2000-163538 Jun 2000 JP
2000-177229 Jun 2000 JP
2000-194799 Jul 2000 JP
2000-207641 Jul 2000 JP
2000-222176 Aug 2000 JP
2000-252854 Sep 2000 JP
2000312267 Nov 2000 JP
2001-005931 Jan 2001 JP
2001-504406 Apr 2001 JP
2001-134536 May 2001 JP
2001-160105 Jun 2001 JP
2001-283122 Oct 2001 JP
2001-315475 Nov 2001 JP
2001338251 Dec 2001 JP
2001357362 Dec 2001 JP
2002006061 Jan 2002 JP
2002024914 Jan 2002 JP
2002049942 Feb 2002 JP
2002-109584 Apr 2002 JP
2002099859 Apr 2002 JP
2002109210 Apr 2002 JP
2002-133335 May 2002 JP
2002-157530 May 2002 JP
2002-274087 Sep 2002 JP
2003-288646 Oct 2003 JP
8100776 Mar 1981 WO
8903760 May 1989 WO
9008661 Aug 1990 WO
9216913 Oct 1992 WO
9532919 Dec 1995 WO
9535546 Dec 1995 WO
9618972 Jun 1996 WO
9740459 Oct 1997 WO
9739553 Oct 1997 WO
9828877 Jul 1998 WO
99-03057 Jan 1999 WO
9912136 Mar 1999 WO
9914055 Mar 1999 WO
9927492 Jun 1999 WO
9940548 Aug 1999 WO
9947983 Sep 1999 WO
0010144 Feb 2000 WO
0038088 Jun 2000 WO
0104825 Jan 2001 WO
0115098 Jan 2001 WO
0122351 Mar 2001 WO
0125060 Apr 2001 WO
0143095 Jun 2001 WO
0155955 Aug 2001 WO
0172224 Oct 2001 WO
0177856 Oct 2001 WO
0180473 Oct 2001 WO
0186535 Nov 2001 WO
0190962 Nov 2001 WO
0195243 Dec 2001 WO
0201485 Jan 2002 WO
0213134 Feb 2002 WO
0221903 Mar 2002 WO
02063545 Aug 2002 WO
02065246 Aug 2002 WO
02069221 Sep 2002 WO
02073512 Sep 2002 WO
02086665 Oct 2002 WO
02091281 Nov 2002 WO
02097575 Dec 2002 WO
02101670 Dec 2002 WO
03007623 Jan 2003 WO
2004006064 Jan 2004 WO
Non-Patent Literature Citations (55)
Entry
EP; European Search Report dated Sep. 22, 2011 in Application No. 05729098.3.
JP; Office Action dated Jun. 9, 2011 in Application No. 200680051235.7.
EP; Summons to Attend Oral Proceedings dated Aug. 30, 2011 in Application No. 02748120.9.
JP; Office Action dated Aug. 31, 2011 in Application No. 2006-246143.
JP; Office Action dated May 19, 2010 in Application No. 2008-001633.
JP; Office Action dated May 18, 2010 in Application No. 2007-026166.
Examination Report dated Mar. 8, 2005 for International Patent Application No. 02748120.9.
Office Action dated Oct. 30, 2008 for International Patent Application No. 02748120.9.
European Search Report dated Nov. 16, 2004 for International Patent Application No. 02748120.9.
Examination Report dated Oct. 24, 2007 for International Patent Application No. 02748120.9.
Office Action dated Jun. 28, 2007 for Canadian Patent Application No. 2,452,351.
Office Action dated Jul. 11, 2007 for Mexican Patent Application No. PA/a/2004/000253.
Office Action dated Oct. 16, 2009 for Chinese Patent Application No. 200710305580.5.
Final Office Action dated Dec. 7, 2009 for Japanese Patent Application No. 2006-246143.
Japanese Office Action dated Apr. 14, 2009 for Application No. 2006-246143.
“Magic Wands' to Speed Mobile Sales”, Bob Brewin, Jan. 15, 2001, http://www.computerworld.com/mobiletopics/mobile/story/1, 10801 ,563300.html (4 pages).
“Mobile Speedpass Goes Global as Mobil Singapore Rolls Out Asia's First RFID-Based Pay-At-The-Pump System”, Press Release, Apr. 5, 1999, hllp:l/www.li.com/liris/docs/news_releases/rel12.hlm (3 pages).
“Speedpass Unleashed”, Jun. 4, 2002 hllp:l/www.cardweb.com/cardlraklnews/cf2_20a_97.html (2 pages).
Prophecy Central Update #9, Oct. 10, 1997, http://www.bible-prophecy.com/pcu9.hlm (5 pages).
International Newsletter of the TI RFID Group, Issue 20, 2000 (12 pages).
“CES: Microsoft's Spot Technology has Humble Origins”, by James Niccolai, Jan. 10, 2003, http://archive.inforworld.com/articles/hn/xml/03/01/1 0/03011 Ohnspol.xml?s=IDGNS (3 pages).
“Microsoft: See SPOT Run On Your Wrist”, by Richard Shim, Jun. 5, 2003, http://news.com. com/2100-1 041_3-1013442.hlml?tag=fd_top (1 page).
“Networking: Microsoft SPOT”, by Jeremy A. Kaplan, Jul. 1, 2003, hllp:l/www.pcmag.com/print_article/0,3048,a=43561,00.asp (2 pages).
“Microsoft Launches Smart Personal Object Technology Initiative”, Press Release from COMDEX Fall 2002, Nov. 17, 2002, http://www.Microsoft.com/presspass/features/2002/nov02/11-17SPOT.asp (4 pages).
“Bank Extends RFID Payment Pilot: Bank of America will continue to test its QuickWave RFID payment card for another three months”, RFID Journal, Jan. 23, 2003.
“MasterCard to Test RFID Card: Pilot will test whether consumers, merchants and credit card issuers value “contactless” payments”, RFID Journal, Dec. 20, 2002.
“Vendors Target Amusement Parks: Protecting children and enabling cashless payments make RFID an appealing option for the entertainment industry”, RFID Journal, Nov. 27, 2002.
“Inside's Next-Gen Smart Card: The French company plans to introduce an RFID card that uses a 16-bit microprocessor and new encryption technology”, RFID Journal, Oct. 29, 2002.
“Sony, Philips Creating RFID Link: Consumer electronics giants are jointly developing a new RFID standard for payments and for communication between devices”, RFID Journal, Sep. 17, 2002.
“Japan Gets Digital Ticket System: A national ticket seller and phone company are teaming up to create an electronic ticket”, RFID Journal, Aug. 31, 2002.
“Security for Wireless Java: NTRU, a startup that offers security software, has released of Java version of its NTRU encryption algorithm”, RFID Journal, Jun. 27, 2002.
“Making RFID Payments Ubiquitous: Philips and Visa want people to be able to pay for goods and services anywhere by using RFID chips embedded in the phones and other devices”, RFID Journal, Jun. 2, 2003.
“RFID Smart Cards Gain Ground: The convenience of contactless transactions is driving widespread adoption of contactless smart cards”, RFID Journal, Apr. 9, 2003.
“TI Embraces Prox Card Standard: Texas Instruments ISO 14443 payment platform promises faster data transfer rates and more security”, RFID Journal, Mar. 6, 2003.
“Multiple Frequency Transponders: Volume production of dual-band RFID chips begins”, Frontline Solutions, Jul. 16, 2003.
Functional Specification. Standard Card IC MF1 IC S50, Philips Semiconductors, Product Specification Rev. 5.1 May 2001.
http://www.semiconductors.phillips.com/news/contenl/file_878.html, Apr. 7, 2003.
http://www.palowireless.com/infotooth/whatis.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial/profiles.asp, Apr. 28, 2003.
http://www.polowireless.com/infotooth/lutorial/baseband.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial/lmp.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial/hci.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial/12cap.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorial/rfacomm.asp, Apr. 28, 2003.
http://www.palowireless.com/infotooth/tutorial/sdp.asp. Apr. 28, 2003.
http://www.palowireless.com/infotooth/lutorialk1_gap.asp, Apr. 28, 2003.
“Sony, Phillips to Test RFID Platform”, RFID Journal, May 8, 2003.
USBanker, Article 5, 1995, http://www.banking.com/us-banker/art5.
Financial Technology International Bulletin, V14, n1, p4, Sep. 1996.
Green, Thomas C., “American Express Offers temporary CC numbers for the web,” Sep. 9, 2000, The Register, www.theregister.c.uk/c.
CNN.com, U.S. News, “American Express to offer disposable credit card numbers,” Sep. 8, 2000, Associated Press, www.cnn.c.
Martin, Zack, “One-Time Numbers Stop Web Hackers From Pilfering Data,” Jan. 2001, Card Marketing, Thomson Financial, www.c rdf rum.com.
The Dollar Stretcher, “Disposable Credit Card Numbers,” Jan. 2001, CardRatings.org, www.stretcher.com.
International Search Report and Written Opinion of the International Searching Authority, PCT/US05/26067, dated May 23, 2007.
Related Publications (1)
Number Date Country
20150073997 A1 Mar 2015 US
Provisional Applications (1)
Number Date Country
60304216 Jul 2001 US
Continuations (2)
Number Date Country
Parent 11743907 May 2007 US
Child 14524608 US
Parent 10192488 Jul 2002 US
Child 11743907 US