The present invention generally relates to user input devices for power machines. In particular, the present invention relates to a control system on a power machine with a plurality of selectable parameters.
Power machines, such as loaders, typically have a number of power actuators. Such actuators can include, for example, drive actuators which provide traction power to the wheels or tracks of the machine. The actuators can also include those associated with manipulating a primary working tool, such as a bucket. In that case, the actuators include lift and tilt actuators. Of course, a wide variety of other actuators can also be used on such power machines. Examples of such actuators include auxiliary actuators, hand-held or remote tool actuators or other actuators associated with the operation of the power machine itself, or a tool coupled to the power machine.
The various actuators on such power machines have conventionally been controlled by mechanical linkages. For example, when the actuators are hydraulic actuators controlled by hydraulic fluid under pressure, they have been controlled by user input devices such as handles, levers, or foot pedals. The user input devices have been connected to a valve spool (of a valve which controls the flow of hydraulic fluid under pressure to the hydraulic actuator) by a mechanical linkage. The mechanical linkage transfers the user input motion into linear displacement of the valve spool to thereby control flow of hydraulic fluid to the actuator.
Electronic control inputs have also been developed. The electronic inputs include an electronic sensor which senses the position of user actualable input devices (such as hand grips and foot pedals). In the past, such sensors have been resistive-type sensors, such as rotary or linear potentiometers.
In the past, power machines having electronic controls have controlled both speed and steering based on a preset and predetermined control algorithm. Changing the operating parameters was cumbersome often requiring complex reprogramming of the controller.
A control system in accordance with one feature of the present invention includes one or more user inputs, movable by a user in an operator compartment of a power machine. The user inputs can be used to set values for a plurality of settable operating parameters to control direction of movement of the power machine, as well as travel speed.
A pair of steering joysticks 23 (only one of which is shown in
A lift arm 17 is coupled to frame 12 at pivot points 20 (only one of which is shown in
The operator residing in cab 16 manipulates lift arm 17 and bucket 28 by selectively actuating hydraulic cylinders 22 and 32. In prior loaders, such actuation was accomplished by manipulation of foot pedals in cab 16 or by actuation of hand grips in cab 16, both of which were attached by mechanical linkages to valves (or valve spools) which control operation of cylinders 22 and 32. However, in accordance with the present invention, this actuation is accomplished by moving a movable element, such as a joystick, foot pedal or user actuable switch or button on a hand grip on joystick 23 and electronically controlling movement of cylinders 22 and 32 based on the movement of the movable element. In one embodiment, movement of the movable elements is sensed by a controller in the hand grip and is communicated to a main control computer used to control the cylinders and other hydraulic or electronic functions on a loader 10. In another embodiment, certain functions are not sensed by the controller in the hand grip but are communicated directly to the main control computer.
By actuating hydraulic cylinders 22 and causing hydraulic cylinders 22 to increase in length, the operator moves lift arm 17, and consequently bucket 28, generally vertically upward in the direction indicated by arrow 38. Conversely, when the operator actuates cylinder 22 causing it to decrease in length, bucket 28 moves generally vertically downward to the position shown in FIG. 1.
The operator can also manipulate bucket 28 by actuating cylinder 32. This is also illustratively done by pivoting or actuating a movable element (such as a foot pedal or a hand grip on a joystick or a button or switch on a handgrip) and electronically controlling cylinder 32 based on the movement of the element. When the operator causes cylinder 32 to increase in length, bucket 28 tilts forward about pivot points 30. Conversely, when the operator causes cylinder 32 to decrease in length, bucket 28 tilts rearward about pivot points 30. The tilting is generally along an arcuate path indicated by arrow 40.
While this description sets out many primary functions of loader 10, a number of others should be mentioned as well. For instance, loader 10 may illustratively include blinkers or turn signals mounted to the outside of the frame 12. Also loader 10 may include a horn and additional hydraulic couplers, such as front and rear auxiliaries, which may be controlled in an on/off or proportional fashion. Loader 10 may also be coupled to other tools which function in different ways than bucket 28. Therefore, in addition to the hydraulic actuators described above, loader 10 may illustratively include many other hydraulic or electronic actuators as well.
In one illustrative embodiment, loader 10 is an all-wheel steer loader. Each of the wheels is both rotatable and pivotable on the axle on which it is supported. Pivoting movement can be driven using a wide variety of mechanisms, such as a hydraulic cylinder, an electric motor, etc. For the sake of clarity, the present description will proceed with respect to the wheels being individually steered with hydraulic cylinders.
In addition, loader 10 illustratively includes at least two drive motors, one for the pair of wheels on the left side of the vehicle and one for the pair of wheels on the right side of the vehicle. Of course, loader 10 could also include a single drive motor for all four wheels, or a drive motor associated with each wheel.
In one embodiment, left and right joystick 102 and 104 illustratively include hand grips which are described in greater detail in co-pending U.S. patent application Ser. No 09/733,647 entitled HAND GRIP WITH MICROPROCESSOR FOR CONTROLLING A POWER MACHINE, filed Dec. 8, 2000. The handgrips are also discussed briefly with respect to
Joystick position sensors 106 and 108 are illustratively commercially available joystick position sensors which can be controller-implemented and which are coupled to joysticks 102 and 104, respectfully. Joystick sensors 106 and 108 can illustratively sense the X and Y position of joysticks 102 and 104, relative to their central, neutral position. Joystick position sensors 106 and 108 illustratively convert the physical or mechanical movement of joysticks 102 and 104 into an electrical output signal which is provided, through low pass filters 110 and 112, to controller 116.
In one illustrative embodiment, low pass filters 110 and 112 filter out high frequency jitter provided by joystick position sensors 106 and 108. This has the effect of filtering out very rapid movements of joysticks 102 and 104 from the steering and speed functions. In one illustrative embodiment, filters 110 and 112 are configured to filter out changes in joystick position which are above approximately 2.5-3 Hz. This reduces undesirable steering characteristics based on erroneous operator inputs due to vehicle bouncing, or due to other movements which cause unwanted relative movement of the machine and operator.
In one illustrative embodiment, filters 110 and 112 are discrete filters implemented in hardware using one of any number of conventional filtering techniques. Of course, low pass filters 110 and 112 can be implemented in the software associated with controller 116 or the controller in the handgrips of joysticks 102 and 104, as well. In any case, controller 116 is configured to provide output control signals based on input signals from the joysticks which have maintained a steady state for a predetermined amount of time.
Controller 116 in one illustrative embodiment, is a digital computer, microcontroller, or other type of control component with associated memory and time circuitry.
Wheel sensors 118 illustratively include magnetic sensors, Hall effect sensors, or other similar sensors which can sense the speed of rotation of wheels 124. In one illustrative embodiment, there is only a single wheel speed sensor 118 for the left pair of wheels and a single sensor 118 for the right pair of wheels. That sensor, of course, is mounted to only one of the left or right wheels, respectively. However, in another illustrative embodiment, there is a wheel speed sensor 118 configured to sense the rotational speed of each of the wheels 124.
In any case, wheel sensors 118 illustratively provide a pulsed output wherein the frequency of the pulses vary based on wheel speed. In one illustrative embodiment, the wheel speed sensors provided approximately 60 pulses per wheel rotation. Of course, wheel speed sensors 118 can also be mounted adjacent drive motors 128 which drive the wheels. In that case, wheel speed sensors 118 simply senses the speed of rotation of the motor, in any one of a wide variety of conventional fashions.
Control system 100 also illustratively includes steering angle sensors 119. Sensors 119 can be angle encoders located on the pivotable axes of wheels 124, potentiometers, magnetic sensors, or any other type of sensor which provides a signal indicative of the steering angle of each wheel relative to a predetermined position (such as straight ahead).
Actuator inputs 114 are illustratively push buttons, triggers, rocker switches, paddle or slide switches or other thumb or finger actuable inputs which can be located on joysticks 102 and 104 or on the control panel or on other desirable location accessible by the user. Such buttons illustratively include a mode switch 148 for selecting one of a plurality of different steering modes.
For example, given that each of the wheels is independently steerable, loader 10 can be controlled in one of several modes illustrated by
The loader can also illustratively be controlled in coordinated steer mode, illustrated in FIG. 3B. In this mode, the front wheels work together as a pair, and the rear wheels work together as a pair. For example, in order to accomplish a right hand turn, the front wheels turn toward the right while the rear wheels turn to the left causing the loader to turn more sharply.
The loader can also be controlled in a crab steer mode, as illustrated in FIG. 3C. In that mode, again the front wheels act as a single pair of wheels and the rear wheels also act as a single pair. However, in order to accomplish a forward right hand turn, for instance, both the front and rear pairs of wheels turn toward the right. This causes loader 10 to move both forward and to the right in a diagonal direction relative to its longitudinal axis. Similarly, in order to accomplish a forward left-hand turn, both the front and rear pairs of wheels are turned toward the left. Again causing the loader to move in a generally diagonal direction, relative to its longitudinal axis.
Of course, the loader can also be controlled (as illustrated in
The buttons (or actuators 114) also illustratively include a momentary skid steer switch 154. Control is illustrated with respect to
In addition, actuators 114 illustratively include a plurality of settable operating parameters. Controller 116 illustratively controls wheel speed based on joystick position according to a curve such as that shown at 212 in FIG. 5. An initial portion 214 of curve 212 illustrates a deadband portion. The deadband portion is a range of movement of joysticks 102 and 104 around the central, neutral position which will result in no control outputs from controller 116. Once outside the deadband, additional movement of the joystick results in an increased speed output from controller 116.
The settable parameters can include, for example, the maximum speed of the power machine. In other words, when joysticks 102 and 104 are placed in the position, by the user, of maximum displacement to reflect maximum forward or reverse speed, that speed can illustratively be set by the user, or other personnel, prior to use, as indicated by block 216 in FIG. 6. Actuator input 162 for setting maximum speed can simply be a high/low actuator which causes the power machine to operate in a high speed or low speed fashion, or it can be a continuous actuator which causes the maximum speed to vary linearly from a higher speed to a lower speed. Once a new maximum speed value is received, it is reset in controller memory. Controller 116 then adjusts the control algorithm to control according to a new curve 218. This is indicated by blocks 220 and 222 in FIG. 6.
In addition, the rate at which the loader accelerates based on a user input from the joystick can be varied by selecting predefined acceleration curves with a digital switch or by adjusting the curve using a variable input. For example,
This same type of setting can be provided for steering features. For instance, the maximum turning radius of the power machine can be set. In that embodiment, when the user operates the joysticks 102 and 104 to accomplish a tight right or left turn, the maximum degree of turning of the wheels can be set by the operator.
Further, as with the acceleration response, the steering response can be varied as well. For example,
Actuators 114 can also include a deadband input 164. The deadband (214 in
It may also be desirable to change a maximum speed allowed during cornering. Therefore, actuators 114 can also include a steering maximum speed input 166. For instance, during sharp turns, the maximum loader speed allowed may be a slower speed than the maximum speed during straight ahead travel or during shallow turns. It may be desirable to be able to set the maximum steering speed as well.
In another illustrative embodiment, actuators 114 also include trim actuators 150 and 152 (as described with respect to FIGS. 12 and 13). In other words, when loader 10 is traveling across the face of a slope, one or more of the wheels can be trimmed in the up hill direction (such as shown in FIG. 13), to offset the weight of the machine and gravity which tends to pull the machine down hill. In one such embodiment, the trim actuators include a trim on/off button 150 which simply turns on or off the trim function, and a trim right/left button 152 which causes the wheels, when the trim function is enabled, to be turned a predetermined number of degrees to the right or left relative to the longitudinal axis of the vehicle. The switch being turned on and the trim valve being set is illustrated by blocks 260 and 262. Setting the steering angle based on these inputs is shown in block 264. Of course, the trim right/left actuator 152 could also be a rotary actuator, a linear slide-type actuator or another type of actuator, such that the degree of trim can be continuously adjusted. When in the front wheel steer or rear wheel steer modes, only the non-steering wheels will illustratively be trimmed. Of course, the steering wheels could be adjusted as well. In either case, the trim offset will then correspond to the neutral position of the joystick, as indicated by block 266.
Based upon these inputs, controller 116 provides an output to drive pump valves 126 and steering valves 120. In one illustrative embodiment, drive motors 128 and steering cylinders 122 are hydraulically actuated devices. Therefore, steering valves 120 and drive pump valves 126 control the flow of hydraulic fluid under pressure to steering cylinders 122 and drive motors 128, respectively. In order to increase the speed of movement of the loader, drive pump valves 126 are positioned to provide increased flow of hydraulic fluid to drive motors 128 which are, in turn, coupled to wheels 124 through an axle. Similarly, in order to increase or decrease the amount that the wheels are steered relative to the longitudinal axis of the loader, valves 120 are positioned to provide hydraulic fluid under pressure to steering cylinders 122 to either lengthen those cylinders or shorten them. This, of course, causes the wheels to pivot about the axles to which they are mounted, to change the degree of steering associated with those wheels.
In
In one illustrative embodiment, the range of motion (from the solid image to the phantom image shown in both
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application is a continuation-in-part U.S. patent application Ser. No. 09/733,647, filed Dec. 8, 2000, now U.S. Pat. No. 6,550,562 the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
849483 | Magie | Apr 1907 | A |
2748509 | Brown | Jun 1956 | A |
2804158 | Yunker | Aug 1957 | A |
2906358 | Tucker, Sr. | Sep 1959 | A |
2922482 | Fisher | Jan 1960 | A |
3161172 | Kassbohrer | Dec 1964 | A |
3180305 | Gower-Rempel | Apr 1965 | A |
3596730 | Cecce | Aug 1971 | A |
3620321 | Thilobodeau | Nov 1971 | A |
3666034 | Stuller et al. | May 1972 | A |
3977693 | Gamaunt | Aug 1976 | A |
3983950 | Fabian | Oct 1976 | A |
4074784 | Lee et al. | Feb 1978 | A |
4090581 | Miner et al. | May 1978 | A |
4162708 | Johnson | Jul 1979 | A |
4205730 | McColl | Jun 1980 | A |
4237994 | McColl | Dec 1980 | A |
4407381 | Oswald et al. | Oct 1983 | A |
4446941 | Laurich-Trost | May 1984 | A |
4498554 | Young et al. | Feb 1985 | A |
4549610 | van der Lely | Oct 1985 | A |
4782906 | Kole | Nov 1988 | A |
4949805 | Mather et al. | Aug 1990 | A |
5042314 | Rytter et al. | Aug 1991 | A |
5154437 | Inagaki et al. | Oct 1992 | A |
5174115 | Jacobson et al. | Dec 1992 | A |
5261291 | Schoch et al. | Nov 1993 | A |
5263432 | Davis | Nov 1993 | A |
5566586 | Lauer et al. | Oct 1996 | A |
5618156 | Brown | Apr 1997 | A |
5752578 | Kellogg | May 1998 | A |
5764219 | Rutledge et al. | Jun 1998 | A |
5828971 | Dickhans et al. | Oct 1998 | A |
5886418 | Kondo et al. | Mar 1999 | A |
5931881 | Gustin et al. | Aug 1999 | A |
6039133 | Zulu | Mar 2000 | A |
6052633 | Fukuyama et al. | Apr 2000 | A |
6266596 | Hartman et al. | Jul 2001 | B1 |
6446747 | Muller et al. | Sep 2002 | B1 |
Number | Date | Country |
---|---|---|
0 905 326 | Feb 1998 | EP |
770667 | May 1954 | GB |
1 427 410 | Jul 1973 | GB |
2 029 784 | Aug 1979 | GB |
02230410 | Sep 1990 | JP |
WO 9006252 | Jun 1990 | WO |
WO 0037744 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20020074179 A1 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09733647 | Dec 2000 | US |
Child | 09733622 | US |