The present disclosure relates generally to selective deposition of metal oxides on a first metal or metallic surface of a substrate relative to a second dielectric surface of the substrate.
The shrinking device dimensions in semiconductor manufacturing call for new innovative processing approaches. Conventionally, patterning in semiconductor processing involves subtractive processes, in which blanket layers are deposited, masked by photolithographic techniques, and etched through openings in the mask. Additive patterning is also known, in which masking steps precede deposition of the materials of interest, such as patterning using lift-off techniques or damascene processing. In most cases, expensive multi-step lithographic techniques are applied for patterning.
Patterning could be simplified by selective deposition, which has received increasing interest among semiconductor manufacturers. Selective deposition would be highly beneficial in various ways. Significantly, it could allow a decrease in lithography steps, reducing the cost of processing. Selective deposition could also enable enhanced scaling in narrow structures.
In some aspects, methods of selectively depositing metal oxide on a metal surface of a substrate relative to an dielectric surface, such as an oxide surface, are provided. In some embodiments the dielectric surface is selectively passivated relative to the metal surface and the metal oxide is selectively deposited on the metal surface relative to the passivated dielectric surface from vapor phase reactants. In some embodiments the metal surface comprises Al, Cu, Co, Ni, W, Nb, Fe or Mo. In some embodiments the dielectric surface comprises a dielectric transition metal oxide. In some embodiments the dielectric surface comprises aluminum oxide, zirconium oxide, hafnium oxide, titanium oxide, tantalum oxide, yttrium oxide, or lanthanum oxide.
In some embodiments selectively passivating the dielectric surface, such as an oxide surface, comprises exposing the dielectric surface to a silylation agent. In some embodiments the silylation agent is an alkylaminosilane. In some embodiments the silylation agent is a silane. In some embodiments the silylation agent comprises allyltrimethylsilane (TMS-A), chlorotrimethylsilane (TMS-Cl), N-(trimethylsilyl)imidazole (TMS-Im), octadecyltrichlorosilane (ODTCS), hexamethyldisilazane (HMDS), or N-(trimethylsilyl)dimethylamine (TMSDMA).
In some embodiments the dielectric surface comprises aluminum oxide. The aluminum oxide may be deposited using an aluminum precursor comprising trimethyl aluminum (TMA), dimethylaluminumchloride, aluminum trichloride (AlCl3), dimethylaluminum isopropoxide (DMAI), tris(tertbutyl)aluminum (TTBA), tris(isopropoxide)aluminum (TIPA) or triethyl aluminum (TEA). In some embodiments the aluminum oxide is deposited using a heteroleptic aluminum compound comprising an alkyl group and a different ligand, such as a halide. In some embodiments aluminum oxide is deposited by ALD using an aluminum precursor and water.
In some embodiments a passivation blocking layer is formed on the metal surface prior to selectively passivating the dielectric surface. Such a passivation blocking layer may comprise, for example, a self-assembled monolayer (SAM).
Metal oxide can be selectively deposited over a first metal (or metallic) surface relative to a second dielectric surface, such as an oxide surface. In some embodiments the oxide surface is adjacent to the metal surface. In embodiments described herein, the oxide surface may be selectively passivated relative to the metal surface, for example by silylation. Subsequently, a metal oxide layer is selectively deposited on the metal surface relative to the passivated oxide surface. The metal oxide layer may be deposited by a vapor deposition process, such as an atomic layer deposition process. In some embodiments an oxide surface on a substrate is silylated with a silylating agent such as allyltrimethylsilane (TMS-A), chlorotrimethylsilane (TMS-Cl), N-(trimethylsilyl)imidazole (TMS-Im), octadecyltrichlorosilane (ODTCS), hexamethyldisilazane (HMDS), or N-(trimethylsilyl)dimethylamine (TMSDMA), and a metal oxide is subsequently selectively deposited on a metal surface of the substrate relative to the passivated oxide surface. In some embodiments the metal oxide layer may be an aluminum oxide layer, such as an Al2O3 layer. For example, an aluminum oxide layer may be selectively deposited by an ALD process, for example using an aluminum reactant such as trimethyl aluminum (TMA), dimethylaluminumchloride, aluminum trichloride (AlCl3), dimethylaluminum isopropoxide (DMAI), tris(tertbutyl)aluminum (TTBA), tris(isopropoxide)aluminum (TIPA) or triethyl aluminum (TEA) and water as reactants.
In some embodiments a metal or metallic surface of a substrate comprises an elemental metal or metal alloy, while a second, different surface of the substrate comprises a dielectric material, such as an oxide. Examples include silicon oxide-based materials, including grown or deposited silicon dioxide, doped and/or porous oxides, native oxide on silicon, etc. The surface of the dielectric layer is selectively passivated relative to the metal or metallic surface, such as by selective silylation. Subsequently, a metal oxide layer is selectively deposited on the metal or metallic surface relative to the passivated dielectric surface. Examples of the metal oxide that may be deposited include dielectrics, such as zirconium oxide (e.g., ZrO2), hafnium oxide (e.g., HfO2), aluminum oxide (e.g. Al2O3), titanium nitride (e.g., TiN) and titanium oxide (e.g., TiO2). In some embodiments the metal or metallic surface on which the metal oxide is selectively deposited is at least partially adjacent to the dielectric surface that is selectively passivated. For example, at least one portion of a metal or metallic surface may be adjacent to an oxide surface.
In some embodiments, prior to forming the passivation layer on the dielectric surface, such as an oxide surface, the metal or metallic surface can be provided with a passivation blocking layer, such as a self-assembled monolayer (SAM). The passivation blocking layer may facilitate selectivity for the silylation of the dielectric surface, and can be removed thereafter to permit selective deposition of a metal oxide on the metal or metallic surface relative to the silylated dielectric surface.
The passivation layer (silylation) may be removed from the dielectric surface, such as from an oxide surface, following selective deposition of the metal oxide layer over the metal or metallic surface. Conditions may be chosen to avoid damage to surrounding materials on the substrate.
Examples of suitable reactors that may be used in the selective deposition processes described herein include commercially available ALD equipment. In addition to ALD reactors, many other kinds of reactors capable growth of organic passivation layers, including CVD reactors, VDP reactors, and MLD reactors, can be employed.
Substrate Surfaces
According to some aspects of the present disclosure, selective deposition can be used to deposit films of interest, such as metal oxide films, on a metal or metallic surface preferentially relative to an oxide surface, or other dielectric surface. In some embodiments the two surfaces are at least partially adjacent to each other on the substrate. Selective passivation of the oxide surface, such as selective silylation of the oxide surface, relative to the metal or metallic surface, facilitates subsequent selective deposition of a layer of interest, such as a metal oxide layer, on the metal or metallic surface relative to the silylated oxide surface.
For example, one of the surfaces can be a conductive metal or metallic surface of a substrate, while the other surface can be a non-conductive oxide surface of the substrate. In some embodiments, the non-conductive surface comprises —OH groups, such as a silicon oxide-based surface (e.g., low-k materials, including grown and deposited silicon-oxide materials and native oxide over silicon). The oxide surface can be selectively passivated relative to the metal or metallic surface by exposure to a silylating agent and a metal oxide can be subsequently selectively deposited on the metal or metallic surface relative to the silylated oxide surface.
The material differences between the two substrate surfaces are such that vapor deposition methods can selectively passivate the oxide surface relative to the metal or metallic surface. In some embodiments, cyclical vapor deposition is used, for example, cyclical CVD or atomic layer deposition (ALD) processes. In some embodiments, selectivity for the passivation layer can be achieved without passivation/blocking agents on the metal or metallic surface (to receive less of the passivation layer), and/or without catalytic agents on the surface of the oxide layer to receive more of the passivation layer. For example, in embodiments where the first surface is metallic and the second surface is an oxide, the oxide layer can be selectively silylated relative to the metal or metallic surface without pretreatment of the oxide surface or the metal or metallic surface. In other embodiments, the metal or metallic surface is first treated to inhibit passivation (such as silylation) of that surface. For example, a passivation blocking self-assembled monolayer (SAM) can be first formed over a metal or metallic surface relative to an oxide surface, facilitating selective deposition of a passivation layer on the oxide surface relative to the SAM-covered metallic surface. The passivation inhibitor can be removed after selective passivation and prior to deposition of the metal oxide. After selective deposition of the passivation layer is completed, selective deposition of materials of interest, such as metal oxide, can be conducted on the non-passivated metal or metallic surface relative to the passivated surface.
As used herein, unless otherwise specified if a surface is referred to as a metal surface herein, it may be a metal surface or a metallic surface. In some embodiments, the metal or metallic surface may comprise surface oxidation. In some embodiments, the material of the metal surface is electrically conductive with or without surface oxidation. In some embodiments, a metal surface comprises one or more transition metals. In some embodiments, a metal surface comprises one or more of Al, Cu, Co, Ni, W, Nb, Fe, or Mo. In some embodiments a metal surface comprises Cu. In some embodiments a metal surface is a copper surface. In some embodiments, a metallic surface comprises titanium nitride. In some embodiments, the metal surface comprises one or more noble metals, such as Ru. In some embodiments, the metal surface comprises a metal oxide, such as a conductive metal oxide, metal nitride, carbide, boride, or combination thereof. For example, the metal or metallic surface may comprise one or more of RuOx, NbCx, NbBx, NiOx, CoOx, NbOx, MoOx, WOx, WNCx, TaN, or TiN.
In some embodiments, the metal or metallic surface is a surface that can accept or coordinate with a precursor utilized in a selective deposition process of the layer of interest, such as a metal oxide, as described herein.
As mentioned above, in some embodiments, the metal or metallic surface may comprise a passivation block layer thereover. That is, in some embodiments, the metal or metallic surface may comprise a material that inhibits formation of a passivation layer on the metal or metallic surface, for example a self-assembled monolayer (SAM). In some embodiments a deposition process includes forming the passivation block layer on the metal or metallic surface but not on the surface to be passivated.
Passivation of Substrate Surfaces
In some embodiments the oxide (or other dielectric) surface may be passivated. In some embodiments, the passivation is selective for the oxide surface relative to another surface, such as a metal or metallic surface on the same substrate. In some embodiments the oxide surface is silylated by exposure to a vapor phase silylation agent one or more times. For example, in a passivation step a silylation agent may be conducted in to the reaction space and contacted with the oxide surface. The silylating agent may be, for example, a chlorosilane, alkoxysilane, silylhalide, silylcyanate, silylazide, silylisocyanate, silylisothiocyanate, silylsulfonate, silylacetamide, silylcarbodiimide, allysilane, or nitrogen-bearing silane such as a silazane, imidazole or amine. In some embodiments the silylation agent is allyltrimethylsilane (TMS-A), chlorotrimethylsilane (TMS-Cl), N-(trimethylsilyl)imidazole (TMS-Im), octadecyltrichlorosilane (ODTCS), hexamethyldisilazane (HMDS), or N-(trimethylsilyl)dimethylamine (TMSDMA) and silylation comprises exposing the substrate to one or more pulses of the silylating agent. In some embodiments both the metal or metallic surface and oxide surface are contacted with the silylation agent, such as allyltrimethylsilane (TMS-A), chlorotrimethylsilane (TMS-Cl), N-(trimethylsilyl)imidazole (TMS-Im), octadecyltrichlorosilane (ODTCS), hexamethyldisilazane (HMDS), or N-(trimethylsilyl)dimethylamine (TMSDMA). In some embodiments the oxide surface of a substrate is selectively silylated relative to a metal or metallic surface of the substrate.
In some embodiments the silylation agent is an alkylaminosilane. For example, the oxide surface of the substrate may be contacted with an alkylaminosilane having the formula (RI)3Si(NRIIRIII), wherein RI is a linear or branched C1-C5 alkyl group or a linear or branched C1-C4 alkyl group, RII is a linear or branched C1-C5 alkyl group, a linear or branched C1-C4 alkyl group, or hydrogen, and RIII is a linear or branched C1-C5 alkyl group or a linear or branched C1-C4 alkyl group.
In some embodiments the silylation agent is a silane. For example, the oxide surface may be contacted with a silane having the general formula (RI)3SiA, wherein RI is a linear or branched C1-C5 alkyl group or a linear or branched C1-C4 alkyl group, and A is any ligand which is reactive with a silicon containing surface.
The silylation agent may be provided to the reaction chamber holding the substrate in a single pulse or in a sequence of multiple pulses. In some embodiments the silylation agent is provided in a single long pulse or in multiple shorter pulses. The pulses may be provided sequentially. In some embodiments the silylation agent is provided in 1 to 25 pulses of from about 0.1 to about 60 seconds. In between pulses, the silylation agent may be removed from the reaction space. For example, the reaction chamber may be evacuated and/or purged with an inert gas. The purge may be, for example for about 1 to 30 seconds or more.
In some embodiments, the temperature of the silylation process may be, for example, from about 50 to 500° C., or about 100 to about 300° C. The pressure during the silylation process may be, for example, from about 10−5 to about 760 Torr, or in some embodiments from about 1 to 10 Torr or about 0.1 to about 10 Torr.
In some embodiments, the silylation process may be carried out in situ, that is in the same reaction chamber as a subsequent deposition process, for example selective deposition of a metal oxide, such as aluminum oxide, on the non-silylated surface relative to the silylated surface. However, in some embodiments the silylation may be carried out in a separate reaction chamber. In some embodiments the reaction chamber in which the silylation is carried out is part of a cluster tool, including one or more additional reaction chambers. For example, such a cluster tool may include additional reaction chambers for the deposition of the metal oxide, and/or for etching one or more layers. In some embodiments a cluster tool includes separate modules for pretreatment, silylation of the oxide surface, selective deposition of a metal oxide and subsequent post-deposition treatment, such as etching or plasma post-deposition cleaning. In some embodiments the same module can be used for two or more processes.
In some embodiments, the substrate may be pretreated or cleaned prior to or at the beginning of the passivation and/or selective deposition processes. In some embodiments, the substrate may be subjected to a plasma cleaning process prior to or at the beginning of the selective passivation and/or selective deposition processes. In some embodiments, a plasma cleaning process may not include ion bombardment, or may include relatively small amounts of ion bombardment. In some embodiments the substrate surfaces may be exposed to plasma, radicals, excited species, and/or atomic species prior to or at the beginning of the passivation process, and/or the selective metal oxide deposition process. In some embodiments, the substrate surface may be exposed to hydrogen plasma, radicals, or atomic species prior to or at the beginning of the selective passivation process and/or the selective metal oxide deposition process.
Selective Deposition of Metal Oxide on Metal or Metallic Surfaces Relative to Passivated Oxide Surfaces
Metal oxide can be selectively deposited on a metal or metallic surface of a substrate relative to a passivated oxide surface of the substrate. After selectively forming a passivation layer on the oxide surface, in some embodiments a metal oxide is selectively deposited on the second surface by contacting the substrate alternately and sequentially with a first reactant comprising a metal of the metal oxide and a second reactant comprising oxygen. In some embodiments, the second reactant is water. In some embodiments the substrate is contacted sequentially with the first and second reactants, such that metal oxide is selectively deposited on or over the metal or metallic surface (see, e.g.,
In some embodiments the metal reactant is a hydrophobic reactant, comprising one or more hydrophobic ligands. In some embodiments, the hydrophobic reactant comprises two to four hydrophobic ligands. In the case of hydrophobic reactants comprising a metal with a valence/oxidation state of n, in some embodiments, the hydrophobic precursor comprises n−1 or n−2 hydrophobic ligands.
In some embodiments, at least one hydrophobic ligand comprises only C and H. In some embodiments, at least one hydrophobic ligand comprises C, H and Si or Ge, but no additional elements.
In some embodiments, a hydrocarbon ligand comprises one or more of the following:
In some embodiments, a hydrophobic metal reactant comprises no hydrophilic ligands. However, in some embodiments the hydrophobic metal reactant may comprise one or two hydrophilic ligands. In some embodiments, a hydrophilic ligand comprises nitrogen, oxygen and/or a halogen group.
In some embodiments, a hydrophilic ligand is an alkylamine (—NR2, where each R can be alkyl, hydrogen). In some embodiments, the hydrophilic ligand can be —NMe2, —NEtMe, or —NEt2.
In some embodiments, a hydrophilic ligand is an alkoxide, for example —OMe, —OEt, —OiPr, —OtBu.
In some embodiments, a hydrophilic ligand comprises a halide, such as a chloride, fluoride or other halide.
In some embodiments, a hydrophobic precursor comprises the formula:
More generally, in some embodiments, a selective ALD process employs a metal precursor. In some embodiments, the metal of the metal precursor may be selected from the group comprising Al, Ti, Ta, Nb, W, Mo, Hf, Zr, V, Cr, Co, Fe, Ni, Cu, Zn, La, Ce, Y, Ba, Sr, Mg, Ca, or Sc, or mixtures thereof. In some embodiments, the metal may be Al.
In some embodiments, aluminum oxide is selectively deposited and the selective ALD process employs an Al precursor. Examples of Al precursors include trimethyl aluminum (TMA), dimethylaluminumchloride, aluminum trichloride (AlCl3), dimethylaluminum isopropoxide (DMAI), tris(tertbutyl)aluminum (TTBA), tris(isopropoxide)aluminum (TIPA) or triethyl aluminum (TEA). In some embodiments the aluminum precursor is a heteroleptic aluminum compound. In some embodiments the heteroleptic aluminum compound comprises an alkyl group and another ligand, such as a halide, for example Cl. In some embodiments the aluminum compound is dimethylaluminumchloride. In some embodiments the aluminum precursor is an alkyl precursor comprising two different alkyl groups as ligands. In some embodiments the aluminum precursor is a metalorganic compound. In some embodiments the aluminum precursor is an organometallic compound.
In some embodiments, zirconium oxide is selectively deposited using Bis(methylcyclopentadienyl) methoxymethyl zirconium (IV) ((CpMe)2-Zr—(OMe)Me).
In some embodiments, hafnium oxide is deposited using bis(methylcyclopentadienyl) methoxymethyl hafnium (IV) ((CpMe)2-Hf—(OMe)Me).
In some embodiments, the second reactant contributes one or more elements to the material that is selectively deposited. For example, the second reactant can be an oxygen precursor used to deposit a metal oxide.
In some embodiments, the second reactant comprises an oxygen precursor. In some embodiments, the second reactant comprises H2O, O3, H2O2, oxygen plasma, ions, radicals, atomic O or excited species of oxygen.
In some embodiments, other reactants can be utilized that contribute elements other than O to the deposited material. These reactants may be used in addition to a second oxygen reactant, or may themselves serve as a second reactant and contribute oxygen and another element to the deposited film. For example, in some embodiments a nitrogen reactant can be used to contribute nitrogen, a sulfur reactant may be used to contribute sulfur, a carbon reactant may be used to contribute carbon or a silicon reactant may be used to contribute silicon.
In some embodiments a metal oxide thin film, such as aluminum oxide (e.g., Al2O3) is selectively deposited on one or more metal or metallic surfaces, such as a copper, cobalt, titanium nitride or tungsten surfaces, relative to one or more oxide surfaces. In a first step, a substrate comprising the metal surface and the oxide surface is treated to form a passivation layer on the oxide surface by silylation, as described above. For example, in some embodiments the substrate surface(s) may be exposed to a silylating agent, such as allyltrimethylsilane (TMS-A), chlorotrimethylsilane (TMS-Cl), N-(trimethylsilyl)imidazole (TMS-Im), octadecyltrichlorosilane (ODTCS), hexamethyldisilazane (HMDS), or N-(trimethylsilyl)dimethylamine (TMSDMA), which selectively silylates the oxide surface(s). Following formation of the passivation layer on the oxide surface a metal oxide is selectively deposited on the metal or metallic surface relative to the passivated oxide surfaces by a vapor deposition process. Selective deposition may be as described herein. For example, in some embodiments aluminum oxide is selectively deposited by alternately and sequentially contacting the substrate with an aluminum reactant and an oxygen precursor. The aluminum reactant may comprise, for example, trimethyl aluminum (TMA), dimethylaluminumchloride, aluminum trichloride (AlCl3), dimethylaluminum isopropoxide (DMAI), tris(tertbutyl)aluminum (TTBA), tris(isopropoxide)aluminum (TIPA) or triethyl aluminum (TEA). The oxygen precursor may comprise, for example, water. In some embodiments aluminum oxide may be deposited by an atomic layer deposition process in which the substrate is alternately and sequentially contacted with an aluminum reactant and water. In some embodiments the temperature in the reaction chamber during aluminum oxide deposition is from about 150 to about 350° C. In some embodiments the pulse time for the reactants may be from about 0.1 to about 10 seconds, and the purge time between reactant pulses may also be from about 0.1 to about 10 seconds. In some embodiments the reaction chamber pressure may be, for example, from about 10−5 to about 760 Torr, or in some embodiments from about 1 to 10 Torr.
Following selective deposition of the metal oxide, the substrate may be subjected to a post-deposition cleaning step to remove the passivation layer from the oxide surfaces, as mentioned above. In some embodiments the cleaning step may comprise H2 plasma treatment. In some embodiments the cleaning step is carried out at a temperature of about room temperature to about 400° C. In some embodiments plasma power of about 25 to 250 W may be used to generate a plasma in flowing H2, for example at a flow rate of about 10 to 500 sccm. The clean time after deposition of the metal oxide layer may be, for example, from about 0.1 to 600 seconds or more in some embodiments.
In some embodiments a thin metal oxide film, such as aluminum oxide (e.g., Al2O3) is selectively deposited on a metal or metallic surface of a three-dimensional structure relative to one or more passivated oxide surfaces. The three-dimensional structure may comprise, for example, a via or a trench. In some embodiments oxide surfaces may be selectively passivated prior to depositing the metal oxide film. Vapor deposition is then carried out to deposit the metal oxide on the metal surfaces that are not passivated.
Passivation Blocking Layer
A passivation blocking layer can facilitate selective formation of a passivation layer on dielectric material relative to the passivation blocking layer. As noted above, a self-assembled monolayer (SAM) can serve to inhibit silylation of a metal or metallic surface, thus facilitating selective passivation of dielectric surfaces. The term “blocking” is thus merely a label and need not imply 100% deactivation of the organic passivation layer deposition. As noted elsewhere herein, even imperfect selectivity can suffice to obtain a fully selective structure after an etch back process.
Selectivity
Selective passivation and/or selective deposition can be fully selective or partially selective. A partially selective process can be followed by a post-deposition etch that removes all of the deposited material from over one surface without removing all of the deposited material from over a second surface, resulting in a fully selective layer. Thus, in some embodiments the selective deposition need not be fully selective in order to obtain the desired benefits.
Selectivity of deposition (or passivation) on a first surface, here referred to as surface A, relative to a second surface, referred to as surface B, can be given as a percentage calculated by [(deposition on surface A)−(deposition on surface B)]/(deposition on the surface A). Deposition can be measured in any of a variety of ways. For example, deposition may be given as the measured thickness of the deposited material, or may be given as the measured amount of material deposited. In embodiments described herein, an oxide surface (A) can be selectively passivated relative to a metal or metallic surface (B). With respect to passivation, if the passivation results from treatment of the substrate surface rather than deposition of a layer, the amount of passivation can be a measure of available reactive sites on the substrate surface that have reacted with the passivating agent. Subsequently, a metal oxide layer can be selectively deposited on the metal or metallic surface (B) relative to the passivation layer over the oxide surface (A).
In some embodiments, selectivity for the selective formation of the passivation layer on an oxide surface (relative to a metal or metallic surface) is greater than about 10%, greater than about 50%, greater than about 75%, greater than about 85%, greater than about 90%, greater than about 93%, greater than about 95%, greater than about 98%, greater than about 99% or even greater than about 99.5%.
In some embodiments, selectivity of deposition of a metal oxide on the metal or metallic surface (relative to the passivated oxide surface) is greater than about 10%, greater than about 50%, greater than about 75%, greater than about 85%, greater than about 90%, greater than about 93%, greater than about 95%, greater than about 98%, greater than about 99% or even greater than about 99.5%.
In some embodiments, deposition only occurs on one surface and does not occur on the other surface.
In some embodiments, passivation of an oxide surface by silylation relative to a metal or metallic surface of the substrate is at least about 80% selective. In some embodiments, the passivation process is at least about 50% selective. In some embodiments the passivation process is at least about 10% selective. The skilled artisan will appreciate that a partially selective process can result in a fully selective passivation of the oxide surface by a post-deposition etch that removes any silylation from the metal or metallic surface.
In some embodiments, deposition of a metal oxide on a metal or metallic surface of the substrate relative to a silylated oxide surface of the substrate is at least about 80% selective. In some embodiments, deposition of a metal oxide on a metal or metallic surface of the substrate relative to a silylated oxide surface of the substrate is at least about 50% selective. In some embodiments deposition of a metal oxide on a metal or metallic surface of the substrate relative to a silylated oxide surface of the substrate is at least about 10% selective. The skilled artisan will appreciate that a partially selective process can be followed by a post-deposition etch (or other treatment) that removes substantially all of the deposited material from over the silylated oxide surface. Furthermore, the post-deposition treatment can also aid in tailoring the position and/or profile of the selectively deposited layer.
Selective Deposition of Metal Oxide on Metal or Metallic Surfaces
As noted above, any metal oxide deposited on the passivation layer can be removed by a post deposition treatment, such as an etch back process. Because the metal oxide is deposited selectively on the metal surface, any metal oxide left on the passivation surface will be thinner than the metal oxide formed on the metal surface. Accordingly, the post deposition treatment can be controlled to remove all of the metal oxide over the surface comprising the passivation layer without removing all of the metal oxide from over the metal surface. Repeated selective deposition and etching back in this manner can result in an increasing thickness of the metal oxide on the metal surface with each cycle of deposition and etch. Repeated selective deposition and etching back in this manner can also result in increased overall selectivity of the metal oxide on the metal or metallic surface, as each cycle of deposition and etch leaves a clean passivation layer over which the selective metal oxide deposition nucleates poorly. In other embodiments, metal oxide material can be removed during subsequent removal of the passivation layer. For example, either a direct etch or a lift-off method can be used to remove metal oxide from the passivation layer surface in a cyclical selective deposition and removal.
Additional treatments, such as heat or chemical treatment, can be conducted prior to, after or between the foregoing processes. For example, treatments may modify the surfaces or remove portions of the metal, silicon oxide, passivation and metal oxide surfaces exposed at various stages of the process. In some embodiments the substrate may be pretreated or cleaned prior to or at the beginning of the process. In some embodiments, the substrate may be subjected to a plasma cleaning process, as mentioned above.
Although certain embodiments and examples have been discussed, it will be understood by those skilled in the art that the scope of the claims extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof.
This application claims priority to U.S. Provisional application No. 62/833,256, filed Apr. 12, 2019, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4804640 | Kaganowicz | Feb 1989 | A |
4863879 | Kwok | Sep 1989 | A |
4948755 | Mo | Aug 1990 | A |
5288697 | Schrepp et al. | Feb 1994 | A |
5447887 | Filipiak et al. | Sep 1995 | A |
5604153 | Tsubouchi et al. | Feb 1997 | A |
5633036 | Seebauer et al. | May 1997 | A |
5869135 | Vaeth et al. | Feb 1999 | A |
5925494 | Horn | Jul 1999 | A |
6046108 | Liu et al. | Apr 2000 | A |
6416577 | Suntoloa et al. | Jul 2002 | B1 |
6426015 | Xia et al. | Jul 2002 | B1 |
6455414 | Hillman et al. | Sep 2002 | B1 |
6482740 | Soininen et al. | Nov 2002 | B2 |
6586330 | Ludviksson et al. | Jul 2003 | B1 |
6679951 | Soininen et al. | Jan 2004 | B2 |
6759325 | Raaijmakers et al. | Jul 2004 | B2 |
6811448 | Paton | Nov 2004 | B1 |
6844258 | Fair et al. | Jan 2005 | B1 |
6852635 | Satta et al. | Feb 2005 | B2 |
6858533 | Chu et al. | Feb 2005 | B2 |
6878628 | Sophie et al. | Apr 2005 | B2 |
6887795 | Soininen et al. | May 2005 | B2 |
6921712 | Soininen et al. | Jul 2005 | B2 |
6958174 | Klaus et al. | Oct 2005 | B1 |
7041609 | Vaartstra | May 2006 | B2 |
7067407 | Kostamo et al. | Jun 2006 | B2 |
7084060 | Furukawa et al. | Aug 2006 | B1 |
7118779 | Verghese et al. | Oct 2006 | B2 |
7220669 | Hujanen et al. | May 2007 | B2 |
7241677 | Soininen et al. | Jul 2007 | B2 |
7323411 | Blosse | Jan 2008 | B1 |
7405143 | Leinikka et al. | Jul 2008 | B2 |
7425350 | Todd | Sep 2008 | B2 |
7476618 | Kilpela et al. | Jan 2009 | B2 |
7494927 | Kostamo et al. | Feb 2009 | B2 |
7595271 | White | Sep 2009 | B2 |
7611751 | Elers | Nov 2009 | B2 |
7695567 | Fu | Apr 2010 | B2 |
7754621 | Putkonen | Jul 2010 | B2 |
7790631 | Sharma et al. | Sep 2010 | B2 |
7799135 | Verghese et al. | Sep 2010 | B2 |
7910177 | Li | Mar 2011 | B2 |
7914847 | Verghese et al. | Mar 2011 | B2 |
7927942 | Raaijmakers | Apr 2011 | B2 |
7951637 | Weidman et al. | May 2011 | B2 |
7955979 | Kostamo et al. | Jun 2011 | B2 |
7964505 | Khandelwal et al. | Jun 2011 | B2 |
8173554 | Lee et al. | May 2012 | B2 |
8293597 | Raaijmakers | Oct 2012 | B2 |
8293658 | Shero et al. | Oct 2012 | B2 |
8425739 | Wieting | Apr 2013 | B1 |
8466052 | Baek et al. | Jun 2013 | B2 |
8536058 | Kostamo et al. | Sep 2013 | B2 |
8623468 | Lin et al. | Jan 2014 | B2 |
8778815 | Yamaguchi et al. | Jul 2014 | B2 |
8890264 | Dewey et al. | Nov 2014 | B2 |
8956971 | Haukka et al. | Feb 2015 | B2 |
8962482 | Albertson et al. | Feb 2015 | B2 |
8980418 | Darling et al. | Mar 2015 | B2 |
8993404 | Korbrinsky et al. | Mar 2015 | B2 |
9067958 | Romero | Jun 2015 | B2 |
9112003 | Haukka et al. | Aug 2015 | B2 |
9129897 | Pore et al. | Sep 2015 | B2 |
9136110 | Rathsack | Sep 2015 | B2 |
9159558 | Cheng et al. | Oct 2015 | B2 |
9236292 | Romero et al. | Jan 2016 | B2 |
9257303 | Haukka et al. | Feb 2016 | B2 |
9312131 | Bauer et al. | Apr 2016 | B2 |
9349687 | Gates et al. | May 2016 | B1 |
9353139 | Sundermeyer et al. | May 2016 | B2 |
9455138 | Fukazawa et al. | Sep 2016 | B1 |
9490145 | Niskanen et al. | Nov 2016 | B2 |
9502289 | Haukka et al. | Nov 2016 | B2 |
9552979 | Knaepen et al. | Jan 2017 | B2 |
9679808 | Haukka et al. | Jun 2017 | B2 |
9786491 | Suzuki et al. | Oct 2017 | B2 |
9786492 | Suzuki et al. | Oct 2017 | B2 |
9803277 | Longrie et al. | Oct 2017 | B1 |
9805974 | Chen et al. | Oct 2017 | B1 |
9816180 | Haukka et al. | Nov 2017 | B2 |
9895715 | Haukka | Feb 2018 | B2 |
9911595 | Smith et al. | Mar 2018 | B1 |
10014212 | Chen et al. | Jul 2018 | B2 |
10041166 | Longrie et al. | Aug 2018 | B2 |
10047435 | Haukka et al. | Aug 2018 | B2 |
10049924 | Haukka et al. | Aug 2018 | B2 |
10115603 | Niskanen et al. | Oct 2018 | B2 |
10157786 | Haukka et al. | Dec 2018 | B2 |
10186420 | Fukazawa | Jan 2019 | B2 |
10204782 | Maes et al. | Feb 2019 | B2 |
10343186 | Pore et al. | Jul 2019 | B2 |
10373820 | Tois et al. | Aug 2019 | B2 |
10428421 | Haukka et al. | Oct 2019 | B2 |
10443123 | Haukka et al. | Oct 2019 | B2 |
10453701 | Tois et al. | Oct 2019 | B2 |
10480064 | Longrie et al. | Nov 2019 | B2 |
10546741 | Muramaki et al. | Jan 2020 | B2 |
10695794 | Pore et al. | Jun 2020 | B2 |
10847363 | Tapily | Nov 2020 | B2 |
10900120 | Sharma et al. | Jan 2021 | B2 |
20010019803 | Mirkanimi | Sep 2001 | A1 |
20010021414 | Morishima et al. | Sep 2001 | A1 |
20010025205 | Chern et al. | Sep 2001 | A1 |
20020027261 | Blesser et al. | Mar 2002 | A1 |
20020047144 | Nguyen et al. | Apr 2002 | A1 |
20020068458 | Chiang et al. | Jun 2002 | A1 |
20020090777 | Forbes et al. | Jul 2002 | A1 |
20020107316 | Bice et al. | Aug 2002 | A1 |
20030027431 | Sneh et al. | Feb 2003 | A1 |
20030066487 | Suzuki | Apr 2003 | A1 |
20030143839 | Raaijmakers et al. | Jul 2003 | A1 |
20030176559 | Bice et al. | Sep 2003 | A1 |
20030181035 | Yoon et al. | Sep 2003 | A1 |
20030185997 | Hsieh | Oct 2003 | A1 |
20030192090 | Meilland | Oct 2003 | P1 |
20030193090 | Otani et al. | Oct 2003 | A1 |
20040092073 | Cabral | May 2004 | A1 |
20040129558 | Liu et al. | Jul 2004 | A1 |
20040219746 | Vaartstra et al. | Nov 2004 | A1 |
20050012975 | George et al. | Jan 2005 | A1 |
20050112282 | Gordon et al. | May 2005 | A1 |
20050136604 | Al-Bayati et al. | Jun 2005 | A1 |
20050160575 | Gambino et al. | Jul 2005 | A1 |
20050223989 | Lee et al. | Oct 2005 | A1 |
20060019493 | Li | Jan 2006 | A1 |
20060047132 | Shenai-Khatkhate et al. | Mar 2006 | A1 |
20060121271 | Frey et al. | Jun 2006 | A1 |
20060121677 | Parekh et al. | Jun 2006 | A1 |
20060121733 | Kilpela et al. | Jun 2006 | A1 |
20060128150 | Gandikota et al. | Jun 2006 | A1 |
20060141155 | Gordon et al. | Jun 2006 | A1 |
20060156979 | Thakur et al. | Jul 2006 | A1 |
20060176559 | Minoda et al. | Aug 2006 | A1 |
20060199399 | Muscat | Sep 2006 | A1 |
20060226409 | Burr et al. | Oct 2006 | A1 |
20060292845 | Chiang et al. | Dec 2006 | A1 |
20070014919 | Hamalainen et al. | Jan 2007 | A1 |
20070026654 | Huotari et al. | Feb 2007 | A1 |
20070036892 | Haukka et al. | Feb 2007 | A1 |
20070063317 | Kim et al. | Mar 2007 | A1 |
20070098894 | Verghese et al. | May 2007 | A1 |
20070099422 | Wijekoon et al. | May 2007 | A1 |
20070232082 | Balseanu et al. | Oct 2007 | A1 |
20070241390 | Tanaka et al. | Oct 2007 | A1 |
20070251444 | Gros-Jean et al. | Nov 2007 | A1 |
20070292604 | Dordi et al. | Dec 2007 | A1 |
20080032064 | Gordon et al. | Feb 2008 | A1 |
20080066680 | Sherman | Mar 2008 | A1 |
20080072819 | Rahtu | Mar 2008 | A1 |
20080124932 | Tateishi et al. | May 2008 | A1 |
20080179741 | Streck et al. | Jul 2008 | A1 |
20080241575 | Lavoie et al. | Oct 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20090035949 | Niinisto et al. | Feb 2009 | A1 |
20090071505 | Miya et al. | Mar 2009 | A1 |
20090081385 | Heys et al. | Mar 2009 | A1 |
20090203222 | Dussarrat et al. | Aug 2009 | A1 |
20090269507 | Yu et al. | Oct 2009 | A1 |
20090274887 | Millward et al. | Nov 2009 | A1 |
20090275163 | Lacey et al. | Nov 2009 | A1 |
20090311879 | Blasco et al. | Dec 2009 | A1 |
20100015756 | Weidman et al. | Jan 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100147396 | Yamagishi et al. | Jun 2010 | A1 |
20100178468 | Jiang et al. | Jul 2010 | A1 |
20100248473 | Ishizaka et al. | Sep 2010 | A1 |
20100270626 | Raisanen | Oct 2010 | A1 |
20100297474 | Dameron | Nov 2010 | A1 |
20100314765 | Liang et al. | Dec 2010 | A1 |
20110039420 | Nakao | Feb 2011 | A1 |
20110053800 | Jung et al. | Mar 2011 | A1 |
20110120542 | Levy | May 2011 | A1 |
20110124192 | Ganguli et al. | May 2011 | A1 |
20110146568 | Haukka et al. | Jun 2011 | A1 |
20110146703 | Chen et al. | Jun 2011 | A1 |
20110198756 | Thenappan et al. | Aug 2011 | A1 |
20110221061 | Prakash | Sep 2011 | A1 |
20110244680 | Tohnoe et al. | Oct 2011 | A1 |
20110311726 | Liu et al. | Dec 2011 | A1 |
20120032311 | Gates | Feb 2012 | A1 |
20120046421 | Darling et al. | Feb 2012 | A1 |
20120052681 | Marsh | Mar 2012 | A1 |
20120088369 | Weidman et al. | Apr 2012 | A1 |
20120091541 | Suchomel et al. | Apr 2012 | A1 |
20120189868 | Borovik et al. | Jul 2012 | A1 |
20120219824 | Prolier et al. | Aug 2012 | A1 |
20120241411 | Darling et al. | Sep 2012 | A1 |
20120264291 | Ganguli et al. | Oct 2012 | A1 |
20120269970 | Ido et al. | Oct 2012 | A1 |
20130005133 | Lee et al. | Jan 2013 | A1 |
20130078793 | Sun et al. | Mar 2013 | A1 |
20130084700 | Swerts et al. | Apr 2013 | A1 |
20130089983 | Sugita et al. | Apr 2013 | A1 |
20130095664 | Matero et al. | Apr 2013 | A1 |
20130115763 | Takamure et al. | May 2013 | A1 |
20130115768 | Pore et al. | May 2013 | A1 |
20130126815 | Kim et al. | May 2013 | A1 |
20130143401 | Yu et al. | Jun 2013 | A1 |
20130146881 | Yamazaki et al. | Jun 2013 | A1 |
20130157409 | Vaidya | Jun 2013 | A1 |
20130189790 | Li et al. | Jul 2013 | A1 |
20130189837 | Haukka et al. | Jul 2013 | A1 |
20130196502 | Haukka et al. | Aug 2013 | A1 |
20130203267 | Pomarede et al. | Aug 2013 | A1 |
20130280919 | Yuasa et al. | Oct 2013 | A1 |
20130284094 | Pavol et al. | Oct 2013 | A1 |
20130309457 | Rathsack et al. | Nov 2013 | A1 |
20130316080 | Yamaguchi et al. | Nov 2013 | A1 |
20130319290 | Xiao et al. | Dec 2013 | A1 |
20130323930 | Chattopadhyay et al. | Dec 2013 | A1 |
20130330936 | Lachaud | Dec 2013 | A1 |
20140001572 | Bohr et al. | Jan 2014 | A1 |
20140024200 | Kato et al. | Jan 2014 | A1 |
20140091308 | Dasgupta et al. | Apr 2014 | A1 |
20140120738 | Jung et al. | May 2014 | A1 |
20140152383 | Nikonov et al. | Jun 2014 | A1 |
20140190409 | Matsumoto et al. | Jul 2014 | A1 |
20140193598 | Traser et al. | Jul 2014 | A1 |
20140205766 | Lyon et al. | Jul 2014 | A1 |
20140209022 | Inoue et al. | Jul 2014 | A1 |
20140227461 | Darwish et al. | Aug 2014 | A1 |
20140252487 | Stephens et al. | Sep 2014 | A1 |
20140272194 | Xiao et al. | Sep 2014 | A1 |
20140273290 | Somervell | Sep 2014 | A1 |
20140273477 | Niskanen et al. | Sep 2014 | A1 |
20140273514 | Somervell et al. | Sep 2014 | A1 |
20140273523 | Rathsack | Sep 2014 | A1 |
20140273527 | Niskanen et al. | Sep 2014 | A1 |
20150004317 | Dussarrat et al. | Jan 2015 | A1 |
20150004319 | Mizue | Jan 2015 | A1 |
20150004806 | Ndiege et al. | Jan 2015 | A1 |
20150011032 | Kunimatsu et al. | Jan 2015 | A1 |
20150011093 | Singh et al. | Jan 2015 | A1 |
20150037972 | Danek et al. | Feb 2015 | A1 |
20150064931 | Kumagi et al. | Mar 2015 | A1 |
20150083415 | Monroe et al. | Mar 2015 | A1 |
20150087158 | Sugita et al. | Mar 2015 | A1 |
20150093890 | Blackwell et al. | Apr 2015 | A1 |
20150097292 | He et al. | Apr 2015 | A1 |
20150118863 | Rathod et al. | Apr 2015 | A1 |
20150162214 | Thompson et al. | Jun 2015 | A1 |
20150170961 | Romero et al. | Jun 2015 | A1 |
20150179798 | Clendenning et al. | Jun 2015 | A1 |
20150217330 | Haukka et al. | Aug 2015 | A1 |
20150240121 | Sugita et al. | Aug 2015 | A1 |
20150275355 | Mallikarjunan et al. | Oct 2015 | A1 |
20150299848 | Haukka et al. | Oct 2015 | A1 |
20150371866 | Chen et al. | Dec 2015 | A1 |
20150372205 | Kimura et al. | Dec 2015 | A1 |
20150376211 | Girard et al. | Dec 2015 | A1 |
20160005731 | Chen | Jan 2016 | A1 |
20160075884 | Chen | Mar 2016 | A1 |
20160079524 | Do et al. | Mar 2016 | A1 |
20160086850 | Romero et al. | Mar 2016 | A1 |
20160152640 | Kuchenbeiser et al. | Jun 2016 | A1 |
20160172189 | Tapily | Jun 2016 | A1 |
20160186004 | Hustad et al. | Jun 2016 | A1 |
20160190060 | Bristol et al. | Jun 2016 | A1 |
20160222504 | Haukka et al. | Aug 2016 | A1 |
20160247695 | Niskanen et al. | Aug 2016 | A1 |
20160276208 | Haukka et al. | Sep 2016 | A1 |
20160284568 | Morris et al. | Sep 2016 | A1 |
20160293384 | Yan et al. | Oct 2016 | A1 |
20160293398 | Danek et al. | Oct 2016 | A1 |
20160315191 | Tsai et al. | Oct 2016 | A1 |
20160346838 | Fujita et al. | Dec 2016 | A1 |
20160365280 | Brink et al. | Dec 2016 | A1 |
20170037513 | Haukka | Feb 2017 | A1 |
20170040164 | Wang et al. | Feb 2017 | A1 |
20170051405 | Fukazawa et al. | Feb 2017 | A1 |
20170058401 | Blackwell et al. | Mar 2017 | A1 |
20170069527 | Haukka et al. | Mar 2017 | A1 |
20170100742 | Pore et al. | Apr 2017 | A1 |
20170100743 | Pore et al. | Apr 2017 | A1 |
20170107413 | Wang et al. | Apr 2017 | A1 |
20170154806 | Wang et al. | Jun 2017 | A1 |
20170298503 | Maes et al. | Oct 2017 | A1 |
20170301542 | Maes et al. | Oct 2017 | A1 |
20170323776 | Färm et al. | Nov 2017 | A1 |
20170332179 | Bright et al. | Nov 2017 | A1 |
20170352533 | Tois et al. | Dec 2017 | A1 |
20170352550 | Tois et al. | Dec 2017 | A1 |
20170358482 | Chen et al. | Dec 2017 | A1 |
20180010247 | Niskanen et al. | Jan 2018 | A1 |
20180040708 | Narayanan et al. | Feb 2018 | A1 |
20180073136 | Haukka et al. | Mar 2018 | A1 |
20180080121 | Longrie et al. | Mar 2018 | A1 |
20180096888 | Naik et al. | Apr 2018 | A1 |
20180142348 | Yu et al. | May 2018 | A1 |
20180151345 | Haukka | May 2018 | A1 |
20180151355 | Fukazawa | May 2018 | A1 |
20180182618 | Blanquart et al. | Jun 2018 | A1 |
20180222933 | Romero | Aug 2018 | A1 |
20180233350 | Tois | Aug 2018 | A1 |
20180243787 | Haukka et al. | Aug 2018 | A1 |
20180350587 | Jia et al. | Dec 2018 | A1 |
20190017170 | Sharma et al. | Jan 2019 | A1 |
20190057858 | Hausmann et al. | Feb 2019 | A1 |
20190074441 | Kikuchi et al. | Mar 2019 | A1 |
20190100837 | Haukka et al. | Apr 2019 | A1 |
20190155159 | Knaepen et al. | May 2019 | A1 |
20190283077 | Pore et al. | Sep 2019 | A1 |
20190333761 | Tois et al. | Oct 2019 | A1 |
20190341245 | Tois et al. | Nov 2019 | A1 |
20200051829 | Tois et al. | Feb 2020 | A1 |
20200090924 | Wu et al. | Mar 2020 | A1 |
20200105515 | Maes et al. | Apr 2020 | A1 |
20200325573 | Illiberi et al. | Oct 2020 | A1 |
20200395211 | Jia et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
111816547 | Oct 2020 | CN |
0469456 | Feb 1992 | EP |
0880168 | Nov 1998 | EP |
1340269 | Feb 2009 | EP |
3026055 | Jun 2016 | EP |
2001127068 | May 2001 | JP |
2008311603 | Dec 2008 | JP |
2010540773 | Dec 2010 | JP |
2011018742 | Jan 2011 | JP |
2011-187583 | Sep 2011 | JP |
2014-93331 | May 2014 | JP |
201811057 | Jan 2018 | JP |
102001001072 | Feb 2001 | KR |
1020020010821 | Feb 2002 | KR |
20030027392 | Apr 2003 | KR |
1020040056026 | Jun 2004 | KR |
1020050103811 | Nov 2005 | KR |
10-0920033 | Oct 2009 | KR |
10-2010-0093859 | Aug 2010 | KR |
10-2020-0120872 | Oct 2020 | KR |
10-2197048 | Dec 2020 | KR |
2005-39321 | Dec 2005 | TW |
2010-05827 | Feb 2010 | TW |
2010-27766 | Jul 2010 | TW |
2014-39365 | Oct 2014 | TW |
1652734 | Mar 2019 | TW |
WO 2002045167 | Jun 2002 | WO |
WO 2011156705 | Dec 2011 | WO |
WO 2013161772 | Oct 2013 | WO |
WO 2014156782 | Oct 2014 | WO |
WO 2014209390 | Dec 2014 | WO |
WO 2015047345 | Apr 2015 | WO |
WO 2015094305 | Jun 2015 | WO |
WO 2015147843 | Oct 2015 | WO |
WO 2015147858 | Oct 2015 | WO |
WO 2016178978 | Nov 2016 | WO |
WO 2017184357 | Oct 2017 | WO |
WO 2017184358 | Oct 2017 | WO |
WO 2018204709 | Nov 2018 | WO |
WO 2018213018 | Nov 2018 | WO |
Entry |
---|
Priimagi et al (“The Halogen Bond in the Design of Function Supramolecular Molecules: Recent Advances”, Priimagi et al., Accounts of Chemical Research pp. 2686-2695, 2013, vol. 46 No. 11) (Year: 2013). |
Ma (“Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands”, Ma et al, Chem. Commun,. 2011, 47, 7377-7379) (Year: 2011). |
File History of U.S. Appl. No. 16/987,990, filed Aug. 7, 2020. |
File History of U.S. Appl. No. 17/135,001, filed Dec. 28, 2020. |
File History of U.S. Appl. No. 17/113,383, filed Dec. 7, 2020. |
File History of U.S. Appl. No. 17/064,865, filed Oct. 7, 2020. |
Aaltonen et al., “Atomic Layer Deposition of Iridium Thin Films”, Journal of The Electrochemical Society, 151 (8) G489-G492 (2004). |
Au et al., “Selective Chemical Vapor Deposition of Manganese Self-Aligned Capping Layer for Cu Interconnections in Microelectronics”, Journal of the Electrochemical Society, vol. 157, No. 6, 2010, pp. D341-D345. |
Benzotriazole, Wikipedia via https://en.wikipedia.org/wiki/Benzotriazole; pp. 1-5, no date available. |
Bernal-Ramos, et al., “Atomic Layer Deposition of Cobalt Silicide Thin Films Studied by in Situ Infrared Spectroscopy”, Chem. Mater. 2015, 27, pp. 4943-4949. |
Bouteville et al., “Selective R.T.L.P.C.V.D. of Tungsten by Silane Reduction on Patterned PPQ/Si Wafers” Journal De Physique IV, Colloque C2, suppl. au Journal de Physique II, vol. 1, Sep. 1991, pp. C2-857-C2-864. |
Burton, B.B. et al., “Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl)magnesium and H20”. J. Phys. Chem. C, 2009, 113, 1939-1946. |
Burton, B.B., et al., “Si02 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy”. J. Phys. Chem. C, 2009, 113, 8249-8257. |
Carlsson, J., “Precursor Design for Chemical Vapour Deposition”, Acta Chemica Scandinavica, vol. 45, 1991, pp. 864-869. |
Chang et al., “Influences of damage and contamination from reactive ion etching on selective tungsten deposition in a low-pressure chemical-vapor-deposition reactor”, J. Appl. Phys., vol. 80, No. 5, Sep. 1, 1996, pp. 3056-3061. |
Chen et al., Highly Stable Monolayer Resists for Atomic Layer Deposition on Germanium and Silicon, Chem. Matter, vol. 18, No. 16, pp. 3733-3741, 2006. |
Cho et al., “Atomic layer deposition of Al2O3 thin films using dimethylaluminum isopropoxide and water”, Journal of Vacuum Science & Technology A 21, (2003), doi: 10.1116/1.1562184, pp. 1366-1370. |
Coclite, et al.; 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication; Advanced Materials; Oct. 2013; 25; pp. 5392-5423. |
Elam et al., “Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition”, Surface Science, vol. 479, 2001, pp. 121-135. |
Elam et al., “Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces”, Thin Solid Films, vol. 386, 2001 pp. 41-52. |
Ellinger et al., “Selective Area Spatial Atomic Layer Deposition of ZnO, Al2O3, and Aluminum-Doped ZnO Using Poly(vinyl pyrrolidone)”, Chem. Mater. 2014, 26, pp. 1514-1522. |
Fabreguette et al., Quartz crystal microbalance study of tungsten atomic layer deposition using WF6 and Si2H6, Thin Solid Films, vol. 488, 2005, pp. 103-110. |
Farm et al. Selective-Area Atomic Layer Deposition Using Poly( methyl methacrylate) Films as Mask Layers, J. Phys. Chem. C, 2008, 112, pp. 15791-15795. (Year: 2008). |
Farm et al., “Self-Assembled Octadecyltrimethoxysilane Monolayers Enabling Selective-Area Atomic Layer Deposition of Iridium”, Chem. Vap. Deposition, 2006, 12, pp. 415-417. |
Farr, Isaac Vincent; Synthesis and Characterization of Novel Polyimide Gas Separation Membrane Material Systems, Chapter 2; Virginia Tech Chemistry PhD Dissertation; URN# etd-080999-123034; Jul. 26, 1999. |
File History of U.S. Appl. No. 14/612,784, filed Feb. 3, 2015. |
File History of U.S. Appl. No. 15/877,632, filed Jan. 23, 2018. |
File History of U.S. Appl. No. 16/657,307, filed Oct. 18, 2019. |
File History of U.S. Appl. No. 14/687,833, filed Apr. 15, 2015. |
File History of U.S. Appl. No. 16/100,855, filed Aug. 10, 2018. |
File History of U.S. Appl. No. 16/594,365, filed Oct. 7, 2019. |
File History of U.S. Appl. No. 14/628,799, filed Feb. 23, 2015. |
File History of U.S. Appl. No. 15/331,366, filed Oct. 21, 2016. |
File History of U.S. Appl. No. 16/143,888, filed Sep. 27, 2018. |
File History of U.S. Appl. No. 14/817,161, filed Aug. 3, 2015. |
File History of U.S. Appl. No. 14/819,274, filed Aug. 5, 2015. |
File History of U.S. Appl. No. 16/787,672, filed Feb. 11, 2020. |
File History of U.S. Appl. No. 15/432,263, filed Feb. 14, 2017. |
File History of U.S. Appl. No. 16/158,780, filed Oct. 12, 2018. |
File History of U.S. Appl. No. 16/773,064, filed Jan. 27, 2020. |
File History of U.S. Appl. No. 15/221,453, filed Jul. 27, 2016. |
File History of U.S. Appl. No. 16/575,112, filed Sep. 18, 2019. |
File History of U.S. Appl. No. 15/177,195, filed Jun. 8, 2016. |
File History of U.S. Appl. No. 15/795,768, filed Oct. 27, 2017. |
File History of U.S. Appl. No. 16/040,844, filed Jul. 20, 2018. |
File History of U.S. Appl. No. 16/676,017, filed Nov. 6, 2019. |
File History of U.S. Appl. No. 15/581,726, filed Apr. 28, 2017. |
File History of U.S. Appl. No. 15/364,024, filed Nov. 29, 2016. |
File History of U.S. Appl. No. 15/892,728, filed Feb. 9, 2018. |
File History of U.S. Appl. No. 16/605,475, filed Oct. 15, 2019. |
File History of U.S. Appl. No. 16/033,952, filed Jul. 12, 2018. |
File History of U.S. Appl. No. 16/399,328, filed Apr. 30, 2019. |
File History of U.S. Appl. No. 15/971,601, filed May 4, 2018. |
File History of U.S. Appl. No. 16/588,600, filed Sep. 30, 2019. |
File History of U.S. Appl. No. 13/708,863, filed Dec. 7, 2012. |
File History of U.S. Appl. No. 14/737,293, filed Jun. 11, 2015. |
File History of U.S. Appl. No. 15/356,306, filed Nov. 18, 2016. |
File History of U.S. Appl. No. 16/213,479, filed Dec. 7, 2018. |
File History of U.S. Appl. No. 13/702,992, filed Mar. 26, 2013. |
File History of U.S. Appl. No. 14/613,183, filed Feb. 3, 2015. |
File History of U.S. Appl. No. 14/988,374, filed Jan. 5, 2016. |
File History of U.S. Appl. No. 15/609,497, filed May 31, 2017. |
File History of U.S. Appl. No. 16/100,581, filed Aug. 10, 2018. |
Formic Acid, Wikipedia via https://en.wikipedia.org/wiki/Formic_acid; pp. 1-5, no date available. |
George, Steven M., “Atomic Layer Deposition: An Overview”, Chem. Rev. 2010, 110, pp. 111-113. |
Ghosal et al., Controlling Atomic Layer Deposition of Ti02 in Aerogels through Surface Functionalization, Chem. Matter, vol. 21, pp. 1989-1992, 2009. |
Grubbs et al., “Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W”, Thin Solid Films, vol. 467, 2004, pp. 16-27. |
Hashemi et al., “A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal-Dielectric Patterns”, J. Phys. Chem. C 2014, 118, pp. 10957-10962. |
Hashemi et al., “Selective Deposition of Dieletrics: Limits and Advantages of Alkanethiol Blocking Agents on Metal-Dielectric Patterns”, ACS Appl. Mater. Interfaces 2016, 8, pp. 33264-33272. |
Hymes et al., “Surface cleaning of copper by thermal and plasma treatment in reducing and inert ambients”, J. Vac. Sci. Technol. B, vol. 16, No. 3, May/Jun. 1998, pp. 1107-1109. |
International Search Report and Written Opinion dated Feb. 17, 2012 in Application No. PCT/US2011/039970, filed Jun. 10, 2011. |
International Search Report and Written Opinion dated Aug. 8, 2018 in Application No. PCT/US2018/030974, filed May 3, 2018. |
International Search Report and Written Opinion dated Jul. 24, 2018 in Application No. PCT/US2018/030979, filed May 3, 2018. |
Klaus et al., “Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction”, Thin Solid Films, vol. 360, 2000, pp. 145-153. |
Klaus et al., “Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions”, Applied Surface Science 162-163, 2000, pp. 479-491. |
King, “Dielectric Barrier, Etch Stop, and Metal Capping Materials for State of the Art and beyond Metal Interconnects”, ECS Journal of Solid State Science and Technology, vol. 4, Issue 1, pp. N3029-N3047, 2015. |
Kukli et al., “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen”, J. Appl. Phys., vol. 92, No. 10, Nov. 15, 2002, pp. 5698-5703. |
Lecordier et al., “Vapor-deposited octadecanethlol masking layer on copper to enable area selective Hf3N4 atomic layer deposition on dielectrics studied by in situ spectroscopic ellipsometry”, J. Vac. Sci. Technol. A36(3), May/Jun. 2018, pp. 031605-1-031605-8. |
Lee et al., Area-Selective Atomic Layor Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography, Journal of The Electrochemical Society, vol. 156, Issue 9, pp. G125-G128, 2009. |
Lei et al., “Real-time observation and opitimization of tungsten atomic layer deposition process cycle”, J. Vac. Sci. Technol. B, vol. 24, No. 2, Mar./Apr. 2006, pp. 780-789. |
Lemonds, Andrew Michael, “Atomic Layer Deposition and Properties of Refractory Transition Metal-Based Copper-Diffusion Barriers for ULSI Interconnect”, The University of Texas at Austin, 2003, pp. 1-197. |
Lemonds, A.M., “Atomic layer deposition of TaSix thin films on SiO2 using TaF5 and Si2H6”, Thin Solid Films 488, 2005 pp. 9-14. |
Leusink et al., “Growth kinetics and inhibition of growth of chemical vapor deposited thin tungsten films on silicon from tungsten hexafluoride”, J. Appl. Phys., vol. 72, No. 2, Jul. 15, 1992, pp. 490-498. |
Liang, Xuehai, et al., “Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a “Bait and Switch” Surface-Limited Reaction”. Journal of the American Chemical Society, 2011, 133, 8199-8024. |
Lohokare et al., “Reactions of Disilane on Cu(111): Direct Observation of Competitive Dissociation, Disproportionation, and Thin Film Growth Processes”, Langmuir 1995, vol. 11, pp. 3902-3912. |
Low et al., Selective deposition of CVD iron on silicon dioxide and tungsten, Microelectronic Engineering 83, pp. 2229-2233, 2006. |
Mackus et al., Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis, Chem. Matter, vol. 25, pp. 1905-1911, 2013. |
Mackus et al., Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition, Journal of Applied Physics, vol. 107, pp. 116102-1-116102-3, 2010. |
Mackus et al., “The use of atomic layer deposition in advanced nanopatterning”, Nanoscale, 2014, 6, pp. 10941-10960. |
Maluf et al., “Selective tungsten filling of sub-0.25 μm trenches for the fabrication of scaled contacts and x-ray masks”, J. Vac. Sci. Technol. B, vol. 8, No. 3, May/Jun. 1990, pp. 568-569. |
Norrman, et al.; 6 Studies Of Spin-Coated Polymer Films; Annu. Rep. Prag. Chem.; Sect. C; 2005; 101; pp. 174-201. |
Office Action dated Jun. 8, 2017 in Korean Application No. 2013-7000596. |
Overhage et al., Selective Atomic Layer Deposition (SALD) of Titanium Dioxide on Silicon and Copper Patterned Substrates, Journal of Undergraduate Research 4, 29, Mar. 2011 in 4 pages. |
Parulekar et al., Atomic Layer Deposition of Zirconium Oxide on Copper Patterned Silicon Substrate, Journal of Undergraduate Research, vol. 7, pp. 15-17, 2014. |
Parulekar et al., Selective atomic layer deposition of zirconium oxide on copper patterned silicon substrate, pp. 1-6, 2013. |
Prasittichai et al., “Area Selective Molecular Layer Deposition of Polyurea Film”, Applied Materials & Interfaces, 2013, vol. 5, pp. 13391-13396. |
Proslier et al., “Atomic Layer Deposition and Superconducting Properties of NbSi Films”, The Journal of Physical Chemistry C, 2011, vol. 115, No. 50, pp. 1-26. |
Putkonen, et al.; Atomic Layer Deposition Of Polyimide Thin Films; Journal of Materials Chemistry; 2007, 17, pp. 664-669. |
Ratta, Varun; Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides, Chapter 1; Virginia Tech Chemistry PhD Dissertation; URN # etd-051799-162256; Apr. 26, 1999. |
Roberts et al., “Selective Mn deposition on Cu lines”, poster presentation, 12th International Conference on Atomic Layer Deposition, Jun. 19, 2012, Dresden, Germany. |
Sapp, et al.; Thermo-Mechanical and Electrical Characterization of Through-Silicon Vias with a Vapor Deposited Polyimide Dielectric Liner; IEEE; 2012. |
Schmeiber, Decomposition of formic acid, Chemnitz University of Technology, pp. 1-13, Aug. 31, 2011. |
Schmeißer, Reduction of Copper Oxide by Formic Acid an ab-initio study, Chemnitz University of Technology, pp. 1-42, Sep. 2011. |
Selvaraj et al., Selective atomic layer deposition of zirconia on copper patterned silicon substrates using ethanol as oxygen source as well as copper reductant, Journal of Vacuum Science & Technology A, vol. 32, No. 1, pp. 010601-1-010601-4, Jan. 2014. |
Senesky et al., “Aluminum nitride as a masking material for the plasma etching of silicon carbide structures,” 2010, IEEE, pp. 352-355. |
Schuiskly et al., “Atomic Layer Deposition of Thin Films Using O2 as Oxygen Source”, Langmuir, vol. 17, No. 18, 2001, pp. 5508-5512. |
Sundberg, et al.; Organic And Inorganic-Organic Thin Film Structures By Molecular Layer Deposition: A Review; Beilstein J. Nanotechnol; 2014, 5, pp. 1104-1136. |
Suntola, Tuomo, “Thin Films and Epitaxy Part B: Grown mechanism and Dynamics”, Handbook of Crystal Growth vol. 3, Elsevier, 1994, 33 pages. |
Ting, et al., “Selective Electroless Metal Deposition for Integrated Circuit Fabrication”, J. Electrochem. Soc., vol. 136, No. 2, Feb. 1989, pp. 456-462. |
Toirov, et al.; Thermal Cyclodehydration of Polyamic Acid Initiated by UV-Irradiation; Iranian Polymer Journal; vol. 5, No. 1; pp. 1A323:C3286-22; 1996; Iran. |
“Tungsten and Tungsten Silicide Chemical Vapor Deposition”, TimeDomain CVD, Inc., retrieved from link: http://www.timedomaincvd.com/CVD_Fundamentals/films/W_WSi.html, Last modified Jul. 11, 2008. |
Yu et al., “Gas/surface reactions in the chemical vapor deposition of tungsten using WF6/SiH4 mixtures”, J. Vac. Sci. Technol. A, vol. 7, No. 3, May/Jun. 1989, pp. 625-629. |
Vallat et al., Selective deposition of Ta205 by adding plasma etching super-cycles in plasma enhanced atomic layer deposition steps, Journal of Vacuum Science & Technology A, vol. 35, No. 1, pp. 01B104-1-01B104-7, Jan. 2017. |
Vervuurt et al., “Area-selective atomic layer deposition of platinum using photosensitive polyimide”, Nanotechnology 27, 2016, in 6 pages. |
Zhou, et al.; Fabrication Of Organic Interfacial Layers By Molecular Layer Deposition: Present Status And Future Opportunities; Journal of Vacuum Science & Technology; A 31 (4), 040801-1 to 040801-18; 2013. |
Hu et al. “Coating strategies for atomic layer deposition”, Nanotechnol. Rev. 2017; 6(6): pp. 527-547. |
Lin et al., “Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating”, ACS Appl. Mater. Interfaces 2017, 9, 39935-39939, DOI: 10.1021/acsami.7b13896. |
Wang et al., “Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells”, Journal of Materials Chemistry A, 2016, 4, pp. 12080-12087. |
Burton et al., “Rapid SiO2 Atomic Layer Deposition Using Tris(tert-pentoxy)silanol”, Chem. Mater. 2008, 20, pp. 7031-7043. |
Cai et al., “Selective Passivation of Pt Nanoparticles with Enhanced Sintering Resistance and Activity toward CO Oxidation via Atomic Layer Deposition”, ACS Appl. Nano Mater. 2018, 1, 2, pp. 522-530. |
Choi et al., “Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum”, Materials Chemistry and Physics, 142 (2013), pp. 614-618. |
Hausmann et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates”, Science, vol. 298, Oct. 11, 2002, pp. 402-406. |
Mameli et al., Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle, ACS Nano, Aug. 29, 2017, 9303-9311, 11, 9, American Chemical Society. |
Soethoudt et al., “Impact of SiO2 surface composition on trimethylsilane passivation for area-selective deposition”, J. Mater. Chem. C, 2019, 7, pp. 11911-11918. |
Tomczak, Y., In Situ Reaction Mechanism Studies on Atomic Layer Deposition of AlxSiyOz from Trimethylaluminium, Hexakis(ethylamino)disilane, and Water, Chem. Mater., Oct. 12, 2012, 3859-3867, 24, American Chemical Society. |
Number | Date | Country | |
---|---|---|---|
20200325573 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62833256 | Apr 2019 | US |