Self-aligned multi-dielectric-layer lift off process for laser diode stripes

Information

  • Patent Grant
  • 8728842
  • Patent Number
    8,728,842
  • Date Filed
    Tuesday, March 20, 2012
    12 years ago
  • Date Issued
    Tuesday, May 20, 2014
    10 years ago
Abstract
A method for forming a laser diode structure. The method includes providing a laser diode material having a surface region. A multilayer dielectric mask structure comprising alternating first and second dielectric layers is formed overlying the surface region. The method forms a laser diode structure using the multilayer dielectric mask structure as a mask. The method selectively removes a portion of the first dielectric layer to form one or more undercut regions between the second dielectric layers. A passivation layer overlies the multilayer dielectric mask structure and the undercut region remained intact. The dielectric mask structure is selectively removed, exposing a top surface region of the laser diode structure. A contact structure is formed overlying at least the exposed top surface region.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to optical devices and related methods. More particularly, the present invention provides a method and device for emitting electromagnetic radiation for optical devices using non-polar or semipolar gallium containing substrates such as GaN, AN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices.


In the late 1800's, Thomas Edison invented the lightbulb. The conventional lightbulb, commonly called the “Edison bulb,” has been used for over one hundred years. The conventional light bulb uses a tungsten filament enclosed in a glass bulb sealed in a base, which is screwed into a socket. The socket is coupled to an AC power source or a DC power source. The conventional light bulb can be found commonly in houses, buildings, and outdoor lighting applications, and other areas requiring light. Unfortunately, drawbacks exist with the conventional Edison light bulb. That is, the conventional light bulb dissipates much thermal energy leading to inefficiencies. More than 90% of the energy used for the conventional light bulb dissipates as thermal energy. Additionally, the conventional light bulb routinely fails often due to thermal expansion and contraction of the filament element.


To overcome some of the drawbacks of the conventional light bulb, fluorescent lighting has been developed. Fluorescent lighting uses an optically clear tube structure filled with a halogen gas. A pair of electrodes is coupled between the halogen gas and couples to an alternating power source through a ballast. Once the gas has been excited, it discharges to emit light. Often times, the optically clear tube is coated with phosphor materials. Many building structures use fluorescent lighting and, more recently, fluorescent lighting has been fitted onto a base structure, which couples into a standard socket.


Solid state lighting techniques have also been used. Solid state lighting relies upon semiconductor materials to produce light emitting diodes, commonly called LEDs. At first, red LEDs were demonstrated and introduced into commerce. Red LEDs use Aluminum Indium Gallium Phosphide (or AlInGaP) semiconductor materials. Most recently, Shuji Nakamura pioneered the use of InGaN materials to produce LEDs emitting light in the blue color range for blue LEDs. The blue colored LEDs lead to innovations such as the BlueRay™ DVD player, solid state white lighting, and other developments. Other colored LEDs have also been proposed.


High intensity green LEDs based on GaN have been proposed and even demonstrated with limited success. Unfortunately, achieving high intensity, high-efficiency GaN-based green LEDs has been problematic. The performance of optolectronic devices fabricated on conventional c-plane GaN suffer from strong internal polarization fields, which leads to poor radiative recombination efficiency. Since this phenomenon becomes more pronounced in InGaN layers with increased indium content for increased wavelength emission, extending the performance of GaN-based LEDs to the green regime has been difficult. Furthermore, increased indium content in a GaN film often requires reduced growth temperature leading to poorer crystal quality of high-indium-content InGaN films. The difficulty of achieving a high intensity green LED has lead scientists and engineers to the term “green gap” to describe the generally unavailability of such green LED. These and other limitations may be described throughout the present specification and more particularly below.


From the above, it is seen that techniques for improving optical devices is highly desired.


SUMMARY OF THE INVENTION

The present invention is directed to optical devices and related methods. More particularly, the present invention provides a method and device for emitting electromagnetic radiation for optical devices using non-polar or semipolar gallium containing substrates such as GaN, AN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices


In a specific embodiment, a method for forming a laser diode structure is provided. The method includes providing a laser diode material structure having a surface region. The laser diode material structure includes an underclad layer, an upper clad layer and an active layer sandwiched between the under clad layer and the upper clad layer. A multilayer dielectric stack is deposited overlying the surface region. In a specific embodiment, the multilayer dielectric stack includes an alternating layers of at least a first dielectric layer and a second dielectric layer. The method selectively removes a portion of the multilayer dielectric stack to form a dielectric mask structure using a pattern and etch process. A portion of the upper clad layer is removed using the dielectric mask structure as a mask to form a laser diode structure. In a specific embodiment, the laser diode structure has an exposed sidewall region and a top region. In a specific embodiment, a portion of each of the first dielectric layer is selectively removed to form an undercut region between the second dielectric layers. A passivation layer is formed conformingly overlying at least the exposed sidewall region, and the dielectric mask structure while maintaining the undercut region unfilled. The dielectric mask structure is removed to expose the top surface region of the laser diode structure using a selective etch process. In a specific embodiment, the undercut region allows the selective etch process to occur in a lateral direction. The method forms a contact structure overlying at least the top surface region.


In an alternative embodiment, a method of processing an optical device is provided. The method includes providing a gallium and nitrogen containing substrate material having a surface region. The method forms a multi-layered stack region overlying the surface region. The multi-layered stack region includes at least a first dielectric layer and an overlying second dielectric layer in a specific embodiment. The first dielectric layer overlies the surface region in a specific embodiment. The multi-layered stack region is patterned to form a patterned mask structure and a ridge region is formed using the patterned mask structure as mask. The method includes selectively removing one or more portions of the patterned mask structure in a specific embodiment.


Many benefits can be achieved by ways of the present invention. For example, the multilayer mask structure eliminates the use of a photoresist material to expose a top surface region. The top surface region allows for a contact structure to form for the optical device structure according to one or more embodiments. In addition, the multilayer mask structure also provides for a thick dielectric mask without incurring stress on the optical device structure according to one or more embodiments. Depending on the embodiment, one or more of these benefits can be achieved. Further detail of the method and the benefits can be found throughout the present specification and particularly below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is simplified diagram illustrating a conventional method of forming a laser diode stripe.



FIG. 2 is simplified process flow diagram illustrating a method of forming a laser diode stripe according to an embodiment of the present invention.



FIG. 3-13 are simplified diagram illustrating the method of forming a laser diode stripe according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to optical devices and related methods. More particularly, the present invention provides a method and device for emitting electromagnetic radiation for optical devices using non-polar or semipolar gallium containing substrates such as GaN, AN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes (e.g., red, green, blue), solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices.


As used herein, the term gallium nitride substrate material is associated with Group III-nitride based materials including GaN, InGaN, AlGaN, or other Group III containing alloys or compositions that are used as starting materials. Such starting materials include polar GaN substrates (i.e., substrate where the largest area surface is nominally an (h k l) plane wherein h=k=0, and l is non-zero), non-polar GaN substrates (i.e., substrate material where the largest area surface is oriented at an angle ranging from about 80-100 degrees from the polar orientation described above towards an (h k l) plane wherein l=0, and at least one of h and k is non-zero) or semi-polar GaN substrates (i.e., substrate material where the largest area surface is oriented at an angle ranging from about +0.1 to 80 degrees or 110-179.9 degrees from the polar orientation described above towards an (h k l) plane wherein l=0, and at least one of h and k is non-zero). Of course, there can be other meanings understood by one of ordinary skill in the art, including modifications, alternatives, and variations.


This specification describes improved methods to fabricate laser stripes using a dielectric lift process according to one or more embodiments. A desired result of this process is to efficiently remove a blanket coated passivation layer such as ZrO2, Ta2O5 or amorphous silicon from the laser diode ridge tops to expose a clean surface for metal contact. There are several benefits to our proposed technique relative to conventional self-aligned lift-off methods that rely on a single dielectric layer or photoresist to remove the passivation layer. Self-aligned photoresist-based processes begin with the patterning of the photoresist into the desired laser stripe geometry, followed by the etching of the laser stripe pattern into the semiconductor below using the resist as the etch mask. This is followed by a blanket deposition of one or more passivation layers and a lift-off step such that the resist lifts off the passivation layer(s) from the ridge top exposing the semiconductor only in this region. The benefit to this process is that undercut resist profiles can be easily achieved such that lift-off of the passivation layer(s) is trivial and does not require mechanical assistance such as an ultrasonic bath.


A drawback to this method is that the photoresist mask can lead to the formation of chemical resistant polymers during the semiconductor etch, which can create issues in subsequent processing steps and reduce device yield. To avoid this problem a thick (+1 μm) dielectric mask can be patterned using photoresist, after which the photoresist is removed such that only dielectric remains on the sample during the semiconductor etch step according to one or more embodiments. The dielectric material should be thick to withstand the semiconductor etch step and to facilitate lift-off of the passivation layer. After the semiconductor etch, the thick dielectric layer remains on the ridge tops during a blanket coating of the passivation layer. Next the sample is placed in an ultrasonic bath and submerged in an etch agent such as buffered hydrofluoric acid, commonly called “BHF.” The ultrasonic action delaminates the thick dielectric mask layer from the ridge tops, lifting off the passivation layer on top of the dielectric mask layer, leaving exposed semiconductor material only on the tops of the ridges.


A drawback to this process is that it relies on mechanical removal of the dielectric mask layer, which is rather aggressive and can lead to microstructural issues in the semiconductor such as propagation of the micro-cracks. Furthermore, some of the thick dielectric layers used in this process often suffer from excessive strain leading to premature delamination such that the pattern fidelity is degraded during the patterning step or bare ridge tops are exposed during coating of the passivation layer.


In a specific embodiment, the present self-aligned process is shown in detail in the Figures that accompany the present specification. One or more of difference between the present process and the process that uses a thick dielectric layer is that our process uses a multi-layer dielectric stack according to one or more embodiments. By depositing alternating layers of two different dielectrics such as SixNy and SiO2 (or other suitable materials) and then patterning the laser stripe geometry into this layer stack, we avoid using photoresist during the semiconductor etch step. Of course, there can be other combinations of different materials depending upon the specific embodiment. After this etch is complete, the sample is subjected to an acid dip that will preferentially etch one dielectric relative to the other. In our example, SiO2 will etch 2-10 times faster than SixNy in buffered HF. This will result in undercutting of the SixNy layer according to a specific embodiment.


When the passivation layer such as ZrO2, Ta2O5, or amorphous silicon is deposited using a directional deposition method such as electron-beam deposition or sputtering, the passivation layer will be discontinuous on the sides of the dielectric stack as shown according to a specific embodiment. These discontinuities will allow a liquid etchant to penetrate into the dielectric layers and remove both the dielectric and passivation layers from the ridge tops. In this process no aggressive mechanical assistance will be needed for lift-off. Furthermore, since alternating dielectric layers are used, strain compensation can be realized if the two alternating dielectric layers have opposite strain polarities such as SiO2 and SixNy, among other materials. This will allow for thick stacks to be deposited without the delamination issues that result from a single thick layer. Thus, our process solves the problem of photoresist presence during the semiconductor etch step, eliminates the need for aggressive mechanical assistance, and allows for thick dielectric layers to withstand the etch. These and other details of the present invention are described throughout the present specification and more particularly below.


One or more keys to the process according to a specific embodiment are outlined below:

  • 1. The dielectric layers have the same or similar dry etch properties such that vertical sidewalls can be achieved according to one or more embodiments.
  • 2. The dielectric layers have different wet etch rates to achieve the undercutting effect such as, for example, SixNy and SiO2 etched in BHF according to one or more embodiments.
  • 3. The dielectric layers preferentially etch relative to the passivation layer, which remains intact during the lift-off process according to one or more embodiments. For example, BHF will not attack high-quality ZrO2, Ta2O5, or amorphous silicon, but will etch SixNy and SiO2.


It is important to note that in the attachment showing an example of our proposed process, the dielectric layers are shown with approximately equal thickness and with one possibility for the order and number of layers according to a specific embodiment. There are several other dielectric stack configurations that could be advantageous. For example, a thicker uppermost layer may be desired to withstand the semiconductor etch step and undercut step, the number of undercut layers does not have to be two as in our example, and the bottom most layer does not necessarily have to be an undercut layer. Other embodiments of this invention include using a multilayer passivation layer scheme, such as a first layer contacting the semiconductor surface comprised of SiO2 and a second layer such ZrO2, Ta2O5, or amorphous silicon that will protect the first layer from the etchant solution during the lift-off process. There are many degrees of freedom in this process that will offer great flexibility. It is our goal to claim all possible dielectric stack sequences (or other types of stacked sequences) for the purpose of a self-aligned ridge process. Of course, there can be many variations, modifications, and alternatives.



FIG. 1 is a simplified diagram illustrating a conventional self-aligned lift-off method to form a laser diode stripe structure. The conventional method relies on a single dielectric layer or photoresist to remove the passivation layer. As shown, a self-aligned photoresist-based processes begin with the patterning of a photoresist 112 into the desired laser stripe geometry (Step 102), followed by the etching (Step 104) of the laser stripe pattern 114 into the semiconductor below using the resist as the etch mask. This is followed by a blanket deposition (Step 106) of a passivation layer 116 and a lift-off step (Step 108) such the resist lifts off the passivation layer from the ridge top exposing the semiconductor only in this region. A feature to this process is that undercut resist profiles can be easily achieved such that lift-off of the passivation layer is trivial and does not require mechanical assistance such as an ultrasonic bath. A drawback to this method is that the photoresist mask can lead to the formation of chemical resistant polymers 118 during the semiconductor etch. Such defects reduce device yield and affect device reliability.


A method for forming a laser diode stripe structure according to an embodiment of the present invention may be outlined as follow.

    • (1) Start
    • (2) Providing a laser diode structure including an under clad layer, an upper clad layer and an active layer sandwiched between the under clad layer and the upper clad layer;
    • (3) Depositing a multilayer dielectric stack comprising alternating layers of a first dielectric layer and a second dielectric layer overlying the laser diode structure;
    • (4) Selectively removing a portion of the multilayer dielectric stack to form a multilayer dielectric stack structure using a pattern and etch process;
    • (5) Removing a portion of the upper clad layer while maintaining the multilayer dielectric stack structure, exposing a surface region and forming an upper clad layer ridge structure, the upper clad layer ridge structure including an exposed side wall region and a top region;
    • (6) Selectively removing a portion of each of the first dielectric layer to form one or more undercut region between the second dielectric layers;
    • (7) Depositing one or more passivation layers overlying the surface region of the upper layer, the exposed sidewall region, and the multilayer dielectric stack structure, while the undercut regions remained substantially intact (in one or more embodiments, the layers are conformingly overlying the surface region);
    • (8) Removing the multilayer dielectric stack structure using a selective etch process, whereupon the undercut regions allow the selective etch process to occur in a lateral direction;
    • (9) Exposing the top surface region; and
    • (10) Forming a contact structure overlying at least the top surface region.


The above sequence of steps provides a self-align method for forming a laser diode structure including a electrode structure according to an embodiment of the present invention. Depending on the specific embodiment, one or more steps may be included, one or more steps may be omitted, or one or more steps may be performed in a different sequence without departing from the scope of the present invention. One skilled in the art would recognize other variations, modifications, and alternatives.



FIG. 2 is a simplified process flow diagram 200 illustrating a method of forming a laser diode stripe according to an embodiment of the present invention. This flow diagram is merely an example and should not unduly limit the claims herein. One skilled in the art would recognize other modifications, variations, and alternatives. As shown, the method begins with a Start step (Step 202). A laser diode material structure is provided (Step 204). In a specific embodiment, the laser diode material structures comprises one or more gallium nitride materials, but can be others. The method includes depositing a multilayer dielectric stack comprising at least one alternating first dielectric layer and second dielectric layer in a specific embodiment (Step 206). The dielectric stack is subjected to a patterned and etched process to provide for a dielectric mask structure (Step 208). Again, there can be other variations, modifications, and alternatives.


Referring again to FIG. 2. In a specific embodiment, the method includes forming a laser diode structure (Step 210) using the dielectric mask structure as a masking layer while maintaining the dielectric mask structure substantially intact in a specific embodiment. In a specific embodiment, the dielectric mask structure is configured to provide for a ridge structure for the laser diode structure. The laser diode structure can have other geometrical configurations depending on the application. In a specific embodiment, the dielectric mask structure is subjected to a selective etch process (Step 212) to remove a portion from each of the first dielectric layers to form an undercut region between adjacent second dielectric layers in a specific embodiment (Step 214). The method deposits a conformal passivation layer overlying at least the etched dielectric stack, exposed portion of the laser diode structure while maintaining the undercut regions substantially intact (Step 216). The conformal passivation layer can include ZrO2, Ta2O5, or amorphous silicon and the like in a specific embodiment. In a specific embodiment, the method includes selectively removing the dielectric stack, exposing a top region of the laser diode structure (Step 218) in a specific embodiment. The method forms an electrode or contact structure overlying the top region of the laser diode structure (Step 220). The method ends with a stop step (Step 222), although there can be other variations, modifications, and alternatives.


The above sequence of steps provides a self-align method for forming a laser diode structure including an electrode structure according to an embodiment of the present invention. Depending on the specific embodiment, one or more steps may be included, one or more steps may be omitted, or one or more steps may be performed in a different sequence without departing from the scope of the present invention. One skilled in the art would recognize other variations, modifications, and alternatives.



FIGS. 3-13 are simplified diagrams illustrating a method of forming a laser diode structure according to an embodiment of the present invention. As shown in FIG. 3, a laser diode material structure 300 is provided. The laser diode material structure includes an underclad layer 302, an active layer 304 and an upper clad layer 306. The laser diode material may also have other configuration. In a specific embodiment, the underclad layer may be a gallium containing material such as gallium nitride or other suitable gallium containing material. In certain embodiment, the underclad layer can have an n-type characteristic. The active layer is usually a doped gallium nitride material, for example, InGaN, AlGaN but can also be others. In a specific embodiment, the active layer is epitaxially grown on a non-polar or semi-polar crystal plane of the underclad layer. The upper clad layer overlies the active layer, as shown. The upper clad layer can be a gallium nitride material in a specific embodiment. Depending on the application, the upper clad layer can having a p-type impurity characteristics. Of course there can be other variations, modifications, and alternatives.


Referring to FIG. 4, the method includes depositing a dielectric stack 402 overlying the laser diode material structure. As shown, the dielectric stack includes alternating layers of a first dielectric material 404 and a second dielectric material 406. The first dielectric material and the second dielectric material are selected to have certain etch characteristics in a specific embodiment. In addition, the first dielectric layer and the second dielectric layer are selected to have an opposite strain polarities to prevent delamination from the laser diode material. In a specific embodiment, the first dielectric material can be silicon oxide and the second dielectric material can be silicon nitride. Other dielectric materials may also be used depending on the application. In a specific embodiment, the first dielectric layer can have a same thickness as the second dielectric layer. In an alternative embodiment, the first dielectric layer may have a different thickness as the second dielectric layer. In a preferred embodiment, a top most layer can be a thickness 410, which is greater than the other underlying dielectric layers. Such a configuration allows the dielectric stack to withstand a subsequent semiconductor material etch or other etch process.


As shown in FIGS. 5-8, the dielectric stack is subjected to a pattern and etch process to form a dielectric mask structure. A photoresist 502 is deposited overlying the dielectric stack using for example, a spin on process. The photoresist layer is patterned to form a masking structure 602 as shown in FIG. 6. As shown in FIG. 7, the method includes a first etching process to form a photoresist masking structure 702. The first etching process can be a dry etch process using suitable fluorinated species in a plasma environment in a specific embodiment. In a specific embodiment, the first etching process has substantially the same etch selectivity for the first dielectric layer and the second dielectric layer to provide for a vertical side wall 704 for the dielectric mask structure. The photoresist masking structure is removed to form the dielectric mask structure 702 as shown in FIG. 8. As shown, the dielectric mask structure includes the alternating layers of silicon oxide and silicon nitride in a specific embodiment. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the method performs a first selective etching process using the dielectric mask structure as an etch mask as shown in FIG. 9. The first selective etching process removes a portion of the upper clad layer to form a laser diode structure 902 while the dielectric mask structure remains substantially intact. Depending on the embodiment the laser diode structure may have different geometrical configurations such as stripes, islands, and others. The first selective etching process can be a plasma etch process or a wet etch process depending on the application. As shown, the laser diode structure has an exposed side region 904 and a first exposed region 906 in a specific embodiment. Of course one skilled in the art would recognize other variations, modifications, and alternatives.


Referring to FIG. 10, the method subjects the dielectric mask structure to a second selective etch process to remove a portion of the first dielectric layer to form an undercut region 1002 between second dielectric layers. As merely an example, for silicon oxide as the first dielectric layer and silicon nitride as the second dielectric layer, the second selective etch process can use a wet etch process or an acid dip process using buffered hydrofluoric (BHF) acid. In this example, a portion of each silicon oxide layer is removed and the undercut region is formed between the silicon nitride layers. Other suitable etchants or process may also be used depending on the embodiment.


Alternatively, a portion of the silicon nitride may be selectively removed to form the undercut region between silicon oxide layers depending on the embodiment. The silicon nitride may be selectively removed using a phosphoric acid in a specific embodiment. Of course there can be other variations, modifications, and alternatives.


Referring to FIG. 11. In a specific embodiment, the method deposits a passivation layer 1102 overlying the dielectric mask structure, the exposed side region of the laser diode structure, and the first exposed region of the upper clad layer while the undercut region remained intact and substantially unfilled. The passivation layer can be deposited using a directional deposition process such as an electron beam deposition and using material such as zirconium oxide, tantalum oxide, amorphous silicon and the like in a preferred embodiment. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the method includes selectively removing the dielectric mask structure to expose a top region 1202 of the laser diode structure as illustrated in FIG. 12. As shown, the passivation layer remained intact. A wet etch process selectively etches the dielectric mask is used. For example, for a silicon oxide/silicon nitride stack and a zirconium oxide passivation layer, the wet etch process can use etchant such as buffered HF and the like. Effectively, the undercut region in the dielectric stack allows for the etching process to occur in a lateral direction 1204 to thereby lift off the dielectric stack with no residue remain on the top region of the laser diode structure. As shown, the passivation layer remained on the side region of the laser diode structure and the first exposed region of the upper clad layer.


As shown in FIG. 13, a conductive layer 1302 is deposited overlying the exposed top region of the laser diode structure to form a contact element for the laser diode structure. Depending on the embodiment, the contact element can have a p-type contact, but other suitable contact elements may also be used. These other suitable contact elements may include a metal contact, and others.


While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims

Claims
  • 1. A method for forming a laser diode, comprising: providing a laser diode structure, comprising an under clad layer, an upper clad layer and an active layer sandwiched between the under clad layer and the upper clad layer;depositing a multilayer dielectric stack overlying the upper clad layer, the multilayer dielectric stack comprising alternating layers of at least a first dielectric layer and at least a second dielectric layer, wherein the at least first dielectric layer and the at least second dielectric layer are characterized by opposite strain polarities;selectively removing a portion of the multilayer dielectric stack to form a dielectric mask structure using a pattern and etching process;removing a portion of the upper clad layer using the dielectric mask structure as a mask to form the laser diode structure, the laser diode structure having an exposed sidewall region and a first exposed region, wherein the portion of the upper clad layer is removed while maintaining the dielectric mask structure substantially intact;selectively removing a portion of the at least first dielectric layer relative to the at least second dielectric layer to form an undercut region;depositing at least one passivation layer overlying the first exposed region, the exposed sidewall region, and the dielectric mask structure while maintaining the undercut region;removing the dielectric mask structure using a selective etch process to expose a top region of the laser diode structure, the undercut region allowing the selective etch process to occur in a lateral direction;andforming a contact structure overlying at least the top region of the laser diode structure.
  • 2. The method of claim 1 wherein the upper clad layer comprises a first gallium nitride material.
  • 3. The method of claim 1 wherein the active layer comprises a doped gallium nitride material (InGaN, AlGaN).
  • 4. The method of claim 1 wherein the under clad layer comprises a second gallium nitride material.
  • 5. The method of claim 1 wherein the first dielectric layer overlies the upper clad layer.
  • 6. The method of claim 1 wherein the upper clad layer, the active layer, and the under clad layer are each formed using MOCVD or a molecular beam epitaxial method.
  • 7. The method of claim 1 wherein the at least first dielectric layer includes a silicon oxide material.
  • 8. The method of claim 1 wherein the at least second dielectric layer includes a silicon nitride material.
  • 9. The method of claim 1 wherein selectively removing a portion of the at least first dielectric layer comprises a wet etch process.
  • 10. The method of claim 7 wherein the step of selectively removing the portion of the at least first dielectric layer to form the undercut region comprises a wet etch process that uses at least a buffered HF as an etchant.
  • 11. The method of claim 1 wherein the pattern and etching process includes a patterning step and a dry etch step.
  • 12. The method of claim 1 wherein the undercut region is a void region.
  • 13. The method of claim 1 wherein the at least one passivation layer is selected from ZrO2, Ta2O5, amorphous silicon or a combination thereof and conformally covers the first exposed region.
  • 14. The method of claim 1 wherein the contact structure has a p-type characteristics.
  • 15. The method of claim 1 wherein the contact structure comprises a metal.
  • 16. A method for forming a laser diode, comprising: providing a laser diode structure comprising an upper layer;depositing a multilayer dielectric stack overlying the upper layer, the multilayer dielectric stack comprising alternating layers of at least one first dielectric layer and at least one second dielectric layer, wherein the at least one first dielectric layer and the at least one second dielectric layer are characterized by opposite strain polarities;selectively removing a portion of the multilayer dielectric stack to form a dielectric mask structure using a pattern and etching process;removing a portion of the upper layer using the dielectric mask structure as a mask to form the laser diode structure, the laser diode structure having an exposed sidewall region and a first exposed region, wherein the portion of the upper layer is removed while maintaining the dielectric mask structure substantially intact;selectively removing a portion of each of the at least one first dielectric layer to form an undercut region between each of the at least one second dielectric layer;depositing at least one passivation layer overlying the first exposed region, the exposed sidewall region, and the dielectric mask structure while maintaining the undercut region;removing the dielectric mask structure using a selective etch process, wherein the selective etch process occurs in a lateral direction within the undercut region; andexposing a top region of the laser diode structure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/502,382, filed Jul. 14, 2009; which application claims priority to U.S. Provisional Application No. 61/080,654, filed Jul. 14, 2008, which are incorporated herein by reference for all purposes.

US Referenced Citations (184)
Number Name Date Kind
4065688 Thornton Dec 1977 A
4341592 Shortes et al. Jul 1982 A
4860687 Frijlink Aug 1989 A
4911102 Manabe et al. Mar 1990 A
5331654 Jewell et al. Jul 1994 A
5334277 Nakamura Aug 1994 A
5527417 Iida et al. Jun 1996 A
5607899 Yoshida et al. Mar 1997 A
5632812 Hirabayashi May 1997 A
5647945 Matsuse et al. Jul 1997 A
5821555 Saito et al. Oct 1998 A
5888907 Tomoyasu et al. Mar 1999 A
5951923 Horie et al. Sep 1999 A
6069394 Hashimoto et al. May 2000 A
6153010 Kiyoku et al. Nov 2000 A
6379985 Cervantes et al. Apr 2002 B1
6451157 Hubacek Sep 2002 B1
6635904 Goetz et al. Oct 2003 B2
6680959 Tanabe et al. Jan 2004 B2
6734461 Shiomi et al. May 2004 B1
6755932 Masuda et al. Jun 2004 B2
6809781 Setlur et al. Oct 2004 B2
6814811 Ose Nov 2004 B2
6833564 Shen et al. Dec 2004 B2
6858081 Biwa et al. Feb 2005 B2
6920166 Akasaka et al. Jul 2005 B2
7009199 Hall Mar 2006 B2
7033858 Chai et al. Apr 2006 B2
7053413 D'Evelyn et al. May 2006 B2
7128849 Setlur et al. Oct 2006 B2
7303630 Motoki et al. Dec 2007 B2
7312156 Granneman et al. Dec 2007 B2
7358542 Radkov et al. Apr 2008 B2
7358543 Chua et al. Apr 2008 B2
7390359 Miyanaga et al. Jun 2008 B2
7483466 Uchida et al. Jan 2009 B2
7489441 Scheible et al. Feb 2009 B2
7491984 Koike et al. Feb 2009 B2
7550305 Yamagata et al. Jun 2009 B2
7555025 Yoshida Jun 2009 B2
7598104 Teng et al. Oct 2009 B2
7691658 Kaeding et al. Apr 2010 B2
7709284 Iza et al. May 2010 B2
7727332 Habel et al. Jun 2010 B2
7733571 Li Jun 2010 B1
7749326 Kim et al. Jul 2010 B2
7806078 Yoshida Oct 2010 B2
7858408 Mueller et al. Dec 2010 B2
7862761 Okushima et al. Jan 2011 B2
7897988 Chen et al. Mar 2011 B2
7923741 Zhai et al. Apr 2011 B1
7939354 Kyono et al. May 2011 B2
7968864 Akita et al. Jun 2011 B2
8044412 Murphy et al. Oct 2011 B2
8124996 Raring et al. Feb 2012 B2
8126024 Raring Feb 2012 B1
8148180 Felker et al. Apr 2012 B2
8153475 Shum et al. Apr 2012 B1
8242522 Raring Aug 2012 B1
8247887 Raring et al. Aug 2012 B1
8254425 Raring Aug 2012 B1
8259769 Raring et al. Sep 2012 B1
8294179 Raring Oct 2012 B1
8313964 Sharma et al. Nov 2012 B2
8314429 Raring et al. Nov 2012 B1
20010043042 Murazaki et al. Nov 2001 A1
20020085603 Okumura Jul 2002 A1
20020171092 Goetz et al. Nov 2002 A1
20030000453 Unno et al. Jan 2003 A1
20030001238 Ban Jan 2003 A1
20030012243 Okumura Jan 2003 A1
20030020087 Goto et al. Jan 2003 A1
20030047076 Liu Mar 2003 A1
20030140846 Biwa et al. Jul 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030200931 Goodwin Oct 2003 A1
20030216011 Nakamura et al. Nov 2003 A1
20040025787 Selbrede et al. Feb 2004 A1
20040060518 Nakamura et al. Apr 2004 A1
20040080256 Hampden-Smith et al. Apr 2004 A1
20040099213 Adomaitis et al. May 2004 A1
20040146264 Auner et al. Jul 2004 A1
20040151222 Sekine Aug 2004 A1
20040233950 Furukawa et al. Nov 2004 A1
20040247275 Vakhshoori et al. Dec 2004 A1
20050040384 Tanaka et al. Feb 2005 A1
20050072986 Sasaoka Apr 2005 A1
20050168564 Kawaguchi et al. Aug 2005 A1
20050214992 Chakraborty et al. Sep 2005 A1
20050229855 Raaijmakers Oct 2005 A1
20050247260 Shin et al. Nov 2005 A1
20050285128 Scherer et al. Dec 2005 A1
20060033009 Kobayashi et al. Feb 2006 A1
20060060131 Atanackovic Mar 2006 A1
20060078022 Kozaki et al. Apr 2006 A1
20060086319 Kasai et al. Apr 2006 A1
20060126688 Kneissl Jun 2006 A1
20060144334 Yim et al. Jul 2006 A1
20060175624 Sharma et al. Aug 2006 A1
20060193359 Kuramoto Aug 2006 A1
20060216416 Sumakeris et al. Sep 2006 A1
20060240585 Epler et al. Oct 2006 A1
20070045200 Moon et al. Mar 2007 A1
20070081857 Yoon Apr 2007 A1
20070086916 LeBoeuf et al. Apr 2007 A1
20070093073 Farrell, Jr. et al. Apr 2007 A1
20070101932 Schowalter et al. May 2007 A1
20070110112 Sugiura May 2007 A1
20070120141 Moustakas et al. May 2007 A1
20070153866 Shchegrov et al. Jul 2007 A1
20070163490 Habel et al. Jul 2007 A1
20070184637 Haskell et al. Aug 2007 A1
20070217462 Yamasaki Sep 2007 A1
20070242716 Samal et al. Oct 2007 A1
20070259464 Bour et al. Nov 2007 A1
20070272933 Kim et al. Nov 2007 A1
20070280320 Feezell et al. Dec 2007 A1
20080092812 McDiarmid et al. Apr 2008 A1
20080095492 Son et al. Apr 2008 A1
20080124817 Bour et al. May 2008 A1
20080149949 Nakamura et al. Jun 2008 A1
20080149959 Nakamura et al. Jun 2008 A1
20080164578 Tanikella et al. Jul 2008 A1
20080173735 Mitrovic et al. Jul 2008 A1
20080191223 Nakamura et al. Aug 2008 A1
20080198881 Farrell et al. Aug 2008 A1
20080217745 Miyanaga et al. Sep 2008 A1
20080232416 Okamoto et al. Sep 2008 A1
20080251020 Franken et al. Oct 2008 A1
20080285609 Ohta et al. Nov 2008 A1
20080291961 Kamikawa et al. Nov 2008 A1
20080308815 Kasai et al. Dec 2008 A1
20080315179 Kim et al. Dec 2008 A1
20090021723 De Lega Jan 2009 A1
20090058532 Kikkawa et al. Mar 2009 A1
20090066241 Yokoyama Mar 2009 A1
20090078944 Kubota et al. Mar 2009 A1
20090080857 St. John-Larkin Mar 2009 A1
20090086475 Caruso et al. Apr 2009 A1
20090141765 Kohda et al. Jun 2009 A1
20090153752 Silverstein Jun 2009 A1
20090159869 Ponce et al. Jun 2009 A1
20090229519 Saitoh Sep 2009 A1
20090250686 Sato et al. Oct 2009 A1
20090267100 Miyake et al. Oct 2009 A1
20090273005 Lin Nov 2009 A1
20090309110 Raring et al. Dec 2009 A1
20090309127 Raring et al. Dec 2009 A1
20090315965 Yamagata et al. Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090321778 Chen et al. Dec 2009 A1
20100001300 Raring et al. Jan 2010 A1
20100006546 Young et al. Jan 2010 A1
20100006873 Raring et al. Jan 2010 A1
20100044718 Hanser et al. Feb 2010 A1
20100096615 Okamoto et al. Apr 2010 A1
20100104495 Kawabata et al. Apr 2010 A1
20100140745 Khan et al. Jun 2010 A1
20100195687 Okamoto et al. Aug 2010 A1
20100220262 DeMille et al. Sep 2010 A1
20100295054 Okamoto et al. Nov 2010 A1
20100302464 Raring et al. Dec 2010 A1
20100309943 Chakraborty et al. Dec 2010 A1
20100316075 Raring et al. Dec 2010 A1
20100327291 Preble et al. Dec 2010 A1
20110056429 Raring et al. Mar 2011 A1
20110057167 Ueno et al. Mar 2011 A1
20110064100 Raring et al. Mar 2011 A1
20110064101 Raring et al. Mar 2011 A1
20110064102 Raring et al. Mar 2011 A1
20110075694 Yoshizumi et al. Mar 2011 A1
20110103418 Hardy et al. May 2011 A1
20110129669 Fujito et al. Jun 2011 A1
20110164637 Yoshizumi et al. Jul 2011 A1
20110180781 Raring et al. Jul 2011 A1
20110182056 Trottier et al. Jul 2011 A1
20110216795 Hsu et al. Sep 2011 A1
20110247556 Raring et al. Oct 2011 A1
20110281422 Wang et al. Nov 2011 A1
20110286484 Raring et al. Nov 2011 A1
20120104359 Felker et al. May 2012 A1
20120135553 Felker et al. May 2012 A1
20120187371 Raring et al. Jul 2012 A1
20120314398 Raring et al. Dec 2012 A1
Foreign Referenced Citations (9)
Number Date Country
101009347 Mar 1987 CN
1538534 Oct 2004 CN
1702836 Nov 2005 CN
101079463 Nov 2007 CN
101099245 Jan 2008 CN
101171692 Apr 2008 CN
3-287770 Dec 1991 JP
2007173467 Jul 2007 JP
2008041521 Apr 2008 WO
Non-Patent Literature Citations (72)
Entry
Abare, ‘Cleaved and Etched Facet Nitride Laser Diodes,’ IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, No. 3, 1998, pp. 505-509.
Chinese Office Action From Chinese Patent Application No. 200980134723.8 dated Nov. 1, 2012, 22 pgs. (With Translation).
Founta et al., ‘Anisotropic Morphology of Nonpolar a-Plane GaN Quantum Dots and Quantum Wells,’ Journal of Applied Physics, vol. 102, vol. 7, 2007, pp. 074304-1-074304-6.
Franssila, ‘Tools for CVD and Epitaxy’, Introduction to Microfabrication, 2004, pp. 329-336.
Khan, ‘Cleaved Cavity Optically Pumped InGaN—GaN Laser Grown on Spinel Substrates,’ Applied Physics Letters, vol. 69, No. 16, 1996, pp. 2417-2420.
Lin et al., ‘Influence of Separate Confinement Heterostructure Layer on Carrier Distribution in InGaAsP Laser Diodes With Nonidentical Multiple Quantum Wells,’ Japanese Journal of Applied Physics, vol. 43, No. 10, 2004, pp. 7032-7035.
Okamoto et al., ‘Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes,’ Japanese Journal of Applied Physics, vol. 46, No. 9, 2007, pp. L187-L189.
Okamoto et al., ‘High-Efficiency Continuous-Wave Operation of Blue-Green Laser Diodes Based on Nonpolar mPlane Gallium Nitride,’ The Japan Society of Applied Physics, Applied Physics, Express 1, 2008, pp. 072201-1-072201-3.
Park, ‘Crystal Orientation Effects on Electronic Properties of Wurtzite InGaN/GaN Quantum Wells,’, Journal of Applied Physics, vol. 91, No. 12, 2002, pp. 9903-9908.
Romanov et al., ‘Strain-Induced Polarization in Wurtzite III-Nitride Semipolar Layers,’ Journal of Applied Plysics, vol. 100, 2006, pp. 023522-1 through 023522-10.
Schoedl, ‘Facet Degradation of GaN Heterostructure Laser Diodes,’ Journal of Applied Physics, vol. 97, issue 12, 2006, pp. 123102-1-123102-8.
Zhong et al., ‘Demonstration of High Power Blue-Green Light Emitting Diode on Semipolar (1122) Bulk GaN Substrate,’ Electronics Letters, vol. 43, No. 15, 2007, pp. 825-826.
USPTO Office Action for U.S. Appl. No. 12/481,543 dated Jun. 27, 2011.
USPTO Office Action for U.S. Appl. No. 12/482,440 dated Feb. 23, 2011.
USPTO Office Action for U.S. Appl. No. 12/482,440 dated Aug. 12, 2011.
USPTO Office Action for U.S. Appl. No. 12/484,924 dated Apr. 14, 2011.
USPTO Office Action for U.S. Appl. No. 12/484,924 dated Oct. 31, 2011.
USPTO Office Action for U.S. Appl. No. 12/491,169 dated Oct. 22, 2010.
USPTO Office Action for U.S. Appl. No. 12/491,169 dated May 11, 2011.
USPTO Office Action for U.S. Appl. No. 12/497,289 dated Feb. 2, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/497,289 dated May 22, 2012.
USPTO Office Action for U.S. Appl. No. 12/502,058 dated Dec. 8, 2010.
USPTO Office Action for U.S. Appl. No. 12/502,058 dated Aug. 19, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/502,058 dated Apr. 16, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/502,058 dated Jul. 19, 2012.
USPTO Office Action for U.S. Appl. No. 12/534,829 dated Apr. 19, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Oct. 28, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Dec. 5, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Dec. 21, 2011.
USPTO Office Action for U.S. Appl. No. 12/573,820 dated Mar. 2, 2011.
USPTO Office Action for U.S. Appl. No. 12/573,820 dated Oct. 11, 2011.
USPTO Office Action for U.S. Appl. No. 12/749,466 dated Jun. 29, 2011.
USPTO Office Action for U.S. Appl. No. 12/749,466 dated Feb. 3, 2012.
USPTO Office Action for U.S. Appl. No. 12/749,466 dated Jul. 3, 2012.
USPTO Office Action for U.S. Appl. No. 12/759,273 dated Nov. 21, 2011.
USPTO Office Action for U.S. Appl. No. 12/759,273 dated Jun. 26, 2012.
USPTO Office Action for U.S. Appl. No. 12/762,269 dated Oct. 12, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/762,269 dated Apr. 23, 2012.
USPTO Office Action for U.S. Appl. No. 12/762,271 dated Dec. 23, 2011.
USPTO Office Action for U.S. Appl. No. 12/762,271 dated Jun. 6, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/762,271 dated Aug. 8, 2012.
USPTO Notice of Allowance for US Application No. 12/762,278 dated Nov. 7, 2011.
USPTO Office Action for U.S. Appl. No. 12/778,718 dated Nov. 25, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/778,718 dated Apr. 3, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/778,718 dated Jun. 13, 2012.
USPTO Office Action for U.S. Appl. No. 12/789,303 dated Sep. 24, 2012.
USPTO Office Action for U.S. Appl. No. 12/858,379 dated Apr. 14, 2011.
USPTO Notice of Allowance for U.S. Appl. No. 12/858,379 dated Dec. 6, 2011.
USPTO Office Action for U.S. Appl. No. 12/859,153 dated Sep. 25, 2012.
USPTO Office Action for U.S. Appl. No. 12/868,441 dated Apr. 30, 2012.
USPTO Office Action for U.S. Appl. No. 12/880,803 dated Feb. 22, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/880,803 dated Jul. 18, 2012.
USPTO Office Action for U.S. Appl. No. 12/883,093 dated Mar. 13, 2012.
USPTO Office Action for U.S. Appl. No. 12/883,093 dated Aug. 3, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/883,093 dated Nov. 21, 2012.
USPTO Office Action for U.S. Appl. No. 12/883,652 dated Apr. 17, 2012.
USPTO Office Action for U.S. Appl. No. 12/884,993 dated Mar. 16, 2012.
USPTO Office Action for U.S. Appl. No. 12/884,993 dated Aug. 2, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 12/884,993 dated Nov. 26, 2012.
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Mar. 28, 2012.
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Nov. 28, 2011.
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Apr. 30, 2012.
USPTO Office Action for U.S. Appl. No. 13/046,565 dated Nov. 7, 2011.
USPTO Office Action for U.S. Appl. No. 13/046,565 dated Feb. 2, 2012.
USPTO Office Action for U.S. Appl. No. 13/046,565 dated Apr. 13, 2012.
USPTO Office Action for U.S. Appl. No. 13/046,565 dated Jul. 19, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 13/163,498 dated Jul. 23, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 13/184,160 dated Dec. 12, 2011.
USPTO Office Action for U.S. Appl. No. 13/354,639 dated Nov. 7, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 13/354,639 dated Dec. 14, 2012.
USPTO Notice of Allowance for U.S. Appl. No. 13/419,325 dated Dec. 4, 2012.
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Aug. 16, 2012.
Related Publications (1)
Number Date Country
20120178198 A1 Jul 2012 US
Provisional Applications (1)
Number Date Country
61080654 Jul 2008 US
Continuations (1)
Number Date Country
Parent 12502382 Jul 2009 US
Child 13425354 US