Self assembly of molecules to form nano-particles

Information

  • Patent Grant
  • 7718738
  • Patent Number
    7,718,738
  • Date Filed
    Friday, April 29, 2005
    19 years ago
  • Date Issued
    Tuesday, May 18, 2010
    14 years ago
Abstract
A polymer nano-particle composition is provided, wherein the nano-particle includes a poly(alkenylbenzene) core and a surface layer including poly(conjugated diene). A method for self-assembly of the nano-particles is also provided. The polymer nano-particles are preferably less than about 100 nm in diameter.
Description
BACKGROUND OF THE INVENTION

The present invention relates to polymer nano-particles, a method for their preparation, and their use as, for example, additives for rubber, including natural and synthetic elastomers.


Polymer nano-particles have attracted increased attention over the past several years in a variety of fields including catalysis, combinatorial chemistry, protein supports, magnets, and photonic crystals. Similarly, vinyl aromatic (e.g. polystyrene) microparticles have been prepared for uses as a reference standard in the calibration of various instruments, in medical research and in medical diagnostic tests. Such polystyrene microparticles have been prepared by anionic dispersion polymerization.


Nano-particles can be discrete particles uniformly dispersed throughout a host composition. Nano-particles may be monodisperse in size and uniform in shape. However, controlling the size of nano-particles during polymerization and/or the surface characteristics of such nano-particles can be difficult. Moreover, achieving better control over the surface composition of such polymer nano-particles also is desirable.


Rubbers may be modified by the addition of various polymer compositions. Such polymeric additives often improve the physical properties of rubber compositions. Specifically, moldability and tenacity are often improved through such modifications.


Development of nano-particles having a poly(conjugated diene) surface layer which would be compatible with a wide variety of rubbers is desirable because discrete particles could likely disperse evenly throughout the rubber to provide a uniform rubber composition. However, the solubility of diene monomers in traditional alkane solvents has made solution polymerization a difficult process by which to achieve conjugated diene nano-particles.


SUMMARY OF THE INVENTION

A polymer nano-particle composition is provided. The nano-particle includes a crosslinked poly(alkenylbenzene) core and a surface layer including poly(conjugated diene). The mean average diameter of such polymer nano-particles is preferably less than about 100 nm.


In one embodiment, the method for forming polymer nano-particles includes self assembly of a plurality of polymer chains into one or more nano-particles. The mean average diameter of the nano-particles is no more than about 100 nm.


In another embodiment, a rubber composition is formed, wherein the above-described nano-particles are combined with at least one rubber to form a modified rubber composition with improved tensile and/or tear strength.


Herein throughout, unless specifically stated otherwise:

    • “vinyl-substituted aromatic hydrocarbon” and “alkenylbenzene” are used interchangeably; and
    • “rubber” refers to rubber compounds, including natural rubber, and synthetic elastomers including styrene-butadiene rubber, ethylene propylene rubber, etc., which are known in the art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a nano-particle of the present invention in spherical shape.



FIG. 2 is a nano-particle of the present invention in string shape.



FIG. 3 is a nano-particle of the present invention in flower shape.



FIG. 4 is a nano-particle of the present invention in hollow shape.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In one embodiment the polymer nano-particle is formed from diblock polymer chains having a poly(conjugated diene) block and a poly(alkenylbenzene) block. The poly(alkenylbenzene) blocks are crosslinked to form the desired nano-particles. The nano-particles have diameters—expressed as a mean average diameter—that are preferably less than about 100 nm, more preferably less than about 75 nm, and most preferably less than about 50 nm. The nano-particles preferably are substantially monodisperse and uniform in shape. The dispersity is represented by the ratio of Mw to Mn, with a ratio of 1 being substantially monodisperse. The polymer nano-particles of the present invention preferably have a dispersity less than about 1.3, more preferably less than about 1.1. Moreover, the nano-particles are preferably spherical, though shape defects are acceptable, provided the nano-particles generally retain their discrete nature with little or no polymerization between particles.


The nano-particles are preferably formed via dispersion polymerization, although emulsion polymerization is also contemplated. Hydrocarbons are preferably used as the dispersion solvent. Suitable solvents include aliphatic hydrocarbons, such as pentane, hexane, heptane, octane, nonane, decane, and the like, as well as alicyclic hydrocarbons, such as cyclohexane, methyl cyclopentane, cyclooctane, cyclopentane, cycloheptane, cyclononane, cyclodecane and the like. These hydrocarbons may be used individually or in combination.


With respect to the monomers and solvents identified herein, nano-particles are formed by maintaining a temperature that is favorable to polymerization of the selected monomers in the selected solvent(s). Preferred temperatures are in the range of about −40 to 250° C., with a temperature in the range of about 0 to 150° C. being particularly preferred. As described in more detail below, the interaction of monomer selection, temperature and solvent, facilitates the formation of diblock polymers which form micelles and ultimately the desired nano-particles.


According to an embodiment of the invention, a first diblock polymer is formed of vinyl aromatic hydrocarbon monomers and conjugated diene monomers in the hydrocarbon solvent. The diblock polymer contains a first end block that is soluble in the dispersion solvent, preferably the conjugated diene monomer, and a second end block which is less soluble in the dispersion solvent, preferably the vinyl-substituted aromatic hydrocarbon monomer. Moreover, in one preferred embodiment, a vinyl-substituted aromatic hydrocarbon monomer is chosen which is insoluble in the dispersion solvent.


As is known in the art, such a diblock copolymer may be formed by living anionic polymerization, in which the vinyl-substituted aromatic hydrocarbon monomer is added to the completely polymerized conjugated diene monomer. Another method of forming substantially diblock polymers is the living anionic copolymerization of a mixture of a conjugated diene monomer and a vinyl-substituted aromatic hydrocarbon monomer in a hydrocarbon solvent, particularly, in the absence of certain polar additives, such as ethers, tertiary amines, or metal alkoxides which could otherwise effect the polymerization of the separately constituted polymer blocks. Under these conditions, the conjugated diene generally polymerizes first, followed by the polymerization of the vinyl-substituted aromatic hydrocarbon.


In either process, it is preferred that the conjugated diene block polymerize first, followed by the vinyl substituted aromatic, positioning the living end of the polymerizing polymer on the vinyl aromatic block to facilitate later cross-linking.


Such diblock copolymers, formed by either method, are believed to aggregate to form micelle-like structures, with for example, the vinyl-substituted aromatic blocks directed toward the centers of the micelles and the conjugated diene blocks as tails extending therefrom. It is noted that a further hydrocarbon solvent charge or a decrease in polymerization mixture temperature may also be used, and may in fact be required, to obtain formation of the micelles. Moreover, these steps may be used to take advantage of the general insolubility of the vinyl-aromatic blocks. An exemplary temperature range for micelle formation is between about 50 and 80° C.


In a further embodiment, the polymer chains in solution can self-assemble into various structures. More than one polymer chains are covalently bonded to form nano-particles through one of various polymerization techniques, such as anionic polymerization, free radical polymerization, condensation polymerization, addition polymerization and emulsion polymerization. In another embodiment, the more than one polymer chains are covalently bonded to form nano-particles through a combination of various polymerization techniques, such as anionic polymerization, free radical polymerization, condensation polymerization, addition polymerization and emulsion polymerization. In either embodiment, the polymer chain may be functionalized prior to forming a micelle. In another embodiment, the functionalized polymer may be a monoblock polymer or multiblock polymer.


The polymerization may take place in an environment in which the formed polymeric chains may be placed in an environment at conditions which the thermodynamic nature of the polymer chains cause the polymer chains to form the nano-particle. In one embodiment, the forming of the polymer chains and the self-assembly into nano-particles takes place in the same environment.


The forming of the nano-particle may take place as an inherent aspect of the polymerization conditions or may be a second step. Preferably, the nano-particle has a core and a shell. The nano-particle may be functionalized after the formation of the nano-particle.


The micelles can have various designs and shapes such as sphere (FIG. 1), string (FIG. 2), flower (FIG. 3), hollow (FIG. 4), ellipsoid, etc. Alternatively, the micelles may have uniform or random shapes, and uniform or random sizes. In one embodiment the shape may be predetermined. The predetermined shapes of the nano-particles may be controlled by: 1) varying the concentration of styrene and butadiene, 2) including a tri-block in the core or shell, and/or 3) varying the molecular weight of the polymers. For example, in one embodiment, the core can include a tri-block polymer represented by the formula:

S-B-S

where S indicates a styrene block, and B represents a butadiene block. In another embodiment, the molecular weight is varied by increasing the ratio of butadiene to styrene, thus producing nano-particles with an ellipsoid shape.


In another embodiment, the polymer chains are extended. The chains may be extended by including a sufficient density of polymer chains such that interactions between the chains cause the chains to extend, at least partially, in a direction that may be described as at least somewhat radial from the center of the nano-particle, and/or somewhat parallel to the nearest polymer chains. In another embodiment, the shell includes at least partially extended polymer chains. In this embodiment, the chains are oriented such that the chains are at least somewhat orthogonal from the surface of the core from which they extend.


After the micelles have formed, additional conjugated diene monomer and/or vinyl-substituted aromatic hydrocarbon monomer can be added to the polymerization mixture as desired.


After formation of the micelles, a cross-linking agent is optionally added to the polymerization mixture. Preferably a crosslinking agent is selected which has an affinity to the vinyl-substituted aromatic hydrocarbon monomer blocks and migrates to the center of the micelles due to its compatibility with the monomer units and initiator residues present in the center of the micelle and its relative incompatibility with the dispersion solvent and monomer units present in the outer layer of the micelle. The crosslinking agent crosslinks the center core of the micelle (i.e. alkenylbenzene) to form the derived nano-particle. Consequently, nano-particles are formed from the micelles with a core including, for example, styrene monomer units and a surface layer including, for example, butadiene monomer units. The crosslinking of the core may be temporary or not temporary. The crosslink density in the core may vary according to needs. The core may optionally uncrosslinked after being crosslinked.


The polymer chain may optionally be hydrogenated. In one embodiment, the nano-particle is hydrogenated. In another embodiment, only the shell of the nano-particle is hydrogenated. Hydrogenation techniques that are known in the art may be used in the optional hydrogenation step.


The present inventive process is preferably initiated via addition of anionic initiators that are known in the art as useful in the copolymerization of diene monomers and vinyl aromatic hydrocarbons. Exemplary organo-lithium catalysts include lithium compounds having the formula R(Li)x, wherein R represents a C1-C20 hydrocarbyl radical, preferably a C2-C8 hydrocarbyl radical and x is an integer from 1 to 4. Typical R groups include aliphatic radicals and cycloaliphatic radicals. Specific examples of R groups include primary, secondary, and tertiary groups, such as n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.


Specific examples of exemplary initiators include ethyllithium, propyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and the like; aryllithiums, such as phenyllithium, tolyllithium, and the like; alkenyllithiums such as vinyllithium, propenyllithium, and the like; alkylene lithium such as tetramethylene lithium, pentamethylene lithium, and the like. Among these, n-butyllithium, sec-butyllithium, tert-butyllithium, tetramethylene lithium, and mixtures thereof are preferred.


Specific examples of other suitable lithium inititators include one or more of: p-tolyllithium, 4-phenylbutyl lithium, 4-butylcyclohexyl lithium, 4-cyclohexylbutyl lithium, lithium dialkyl amines, lithium dialkyl phosphines, lithium alkyl aryl phosphine, and lithium diaryl phosphines.


Anionic initiators generally are useful in amounts ranging from about 0.01 to 60 millimoles per hundred grams of monomer charge.


The conjugated diene monomers contemplated for the diblock polymer are those soluble in non-aromatic hydrocarbon solvents. C4-C8 conjugated diene monomers are the most preferred. Exemplary conjugated diene monomers include 1,3-butadiene, isoprene, and 1,3-pentadiene.


Vinyl-substituted aromatic hydrocarbon monomers include styrene, α-methylstyrene, 1-vinyl naphthalene, 2-vinyl naphthalene, 1-α-methyl vinyl naphthalene, 2-α-methyl vinyl naphthalene, vinyl toluene, methoxystyrene, t-butoxystyrene, and the like, as well as alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof, in which the total number of carbon atoms in the combined hydrocarbon is generally not greater than 18, as well as any di- or tri-vinyl substituted aromatic hydrocarbons.


The diblock polymer, preferably has Mw of about 5,000 to 200,000, more preferably between about 10,000 and 100,000. A typical diblock polymer will be comprised of 10 to 90% by weight conjugated diene and 10 to 90% by weight vinyl-substituted aromatic hydrocarbon, more preferably 30 to 70% by weight, and most preferably 40 to 60% by weight of each contributed monomer type.


The micelle formed by the polymerization of vinyl-substituted aromatic hydrocarbons and conjugated diene monomers is preferably crosslinked to enhance the uniformity and permanence of shape and size of the resultant nano-particle. Preferred crosslinking agents are di- or tri-vinyl-substituted aromatic hydrocarbons. However, crosslinking agents which are at least bifunctional, wherein the two functional groups are capable of reacting with vinyl-substituted aromatic hydrocarbon monomers are acceptable. A preferred crosslinking agent is divinylbenzene (DVB).


Without being bound by theory, it is believed that an exemplary micelle will be comprised of ten to thirty diblock polymers yielding, after crosslinking, a nano-particle having a Mw of between about 100,000 to 3,000,000, preferably between about 500,000 to 1,500,000.


A 1,2-microstructure controlling agent or randomizing modifier is optionally used to control the 1,2-microstructure in the conjugated diene contributed monomer units, such as 1,3-butadiene, of the nano-particle. Suitable modifiers include hexamethylphosphoric acid triamide, N,N,N′,N′-tetramethylethylene idamine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 1,4-diazabicyclo [2.2.2] octane, diethyl ether, triethylamine, tri-n-butylamine, tri-n-butylphosphine, p-dioxane, 1,2-dimethoxy ethane, dimethyl ether, methyl ethyl ether, ethyl propyl ether, di-n-propyl ether, di-n-octyl ether, anisole, dibenzyl ether, diphenyl ether, dimethylethylamine, bis-oxalanyl propane, tri-n-propyl amine, trimethyl amine, triethyl amine, N,N-dimethyl aniline, N-ethylpiperidine, N-methyl-N-ethyl aniline, N-methylmorpholine, tetramethylenediamine, oligomeric oxolanyl propanes (OOPs), 2,2-bis-(4-methyl dioxane), and bistetrahydrofuryl propane. A mixture of one or more randomizing modifiers also can be used. The ratio of the modifier to the monomers can vary from a minimum as low as 0 to a maximum as great as about 400 millimoles, preferably about 0.01 to 3000 millimoles, of modifier per hundred grams of monomer currently being charged into the reactor. As the modifier charge increases, the percentage of 1,2-microstructure (vinyl content) increases in the conjugated diene contributed monomer units in the surface layer of the polymer nano-particle. The 1,2-microstructure content of the conjugated diene units is preferably between about 5% and 95%, and preferably greater than about 35%.


Concerning nano-particles that have a shell-core orientation, after formation of the nano-particles, either the shell or the core can then be partially, substantially, or completely removed using means known in the art. In one embodiment, the removal of the shell or core is by monomerization of the core or shell using osmium tetroxide and heat. In one embodiment the core is at least partially monomerized, resulting in a hollow nano-particle (FIG. 4). In another embodiment, the shell is at least partially removed, resulting in a low-shell or a no-shell nano-particle.


After the polymer nano-particles have been formed, they may be blended with a rubber to improve the physical characteristics of the rubber composition. Nano-particles are useful modifying agents for rubbers because they are discrete particles which are capable of dispersing uniformly throughout the rubber composition, resulting in uniformity of physical characteristics. Furthermore, the present polymer nano-particles are advantageous because the surface layer of poly(conjugated diene), especially vinyl-modified poly(conjugated diene), is capable of bonding with the rubber matrix due to the accessibility of the pendant vinyl groups.


The present polymer nano-particles are suitable for modifying a variety of rubbers including, but not limited to, random styrene/butadiene copolymers, butadiene rubber, poly(isoprene), nitrile rubber, polyurethane, butyl rubber, EPDM, and the like. Advantageously, the nano-particles demonstrate improved tensile and tear strength of at least about 30% over non-spherical copolymers. Used in a rubber, the nano-particles also demonstrate improved fading characteristics and improved traction. In addition, the particles can be used as a host for other inorganic materials such as nano-composites. The rubber may be extended using techniques known in the art.


One application for such rubber compounds is used in tire rubber formulations. Specifically, they are contemplated for use in rubber compounds used to make tire treads and side walls.


The present invention now will be described with reference to non-limiting examples. The following examples and tables are presented for purposes of illustration only and are not to be construed in a limiting sense.


EXAMPLES
Preparation of Polymers

A 7.6 L reactor equipped with external jacked heating and internal agitation was used for all polymerizations. 1,3-Butadiene was used as a 22.0 or 21.1 weight percent solution in hexane. Styrene was used as a 33.0 wt. % solution in hexane, and n-butyllithium was used as a 15 wt % solution in hexane. The antioxidant butylated hydroxytoluene (BHT, Aldrich Chem. Co., Milwaukee, Wis.) was used as an approximately 17 wt % solution in hexane. Technical grade divinylbenzene (DVB, 80% as a mixture of isomers, Aldrich) was passed through a column of inhibitor remover under N2 before use. Neat bis-oxalanyl propane (OOPs, Aldrich) was similarly treated and used as a 1.6M solution in hexane, stored over calcium hydride.


Example 1
Preparation of Diblock Polymers

The reactor was charged with 1.03 kg of 22% butadiene, 0.55 kg hexane, and 0.70 kg styrene (33 wt %). The batch was heated to 57° C., followed by initiation of polymerization with 5.0 mL n-BuLi (1.6 M) diluted in 30 mL hexane. The temperature was maintained at 57° C. for the duration of the polymerization.


Particle Formation:


Following the diblock polymer preparation, the reactor jacket was set to 26° C. The reactor was charged with 1.36 kg styrene (33 wt %) diluted with an additional 0.90 kg hexane, followed by 50 mL DVB containing 1.0 mL OOPs. The reactor jacket was set to 50° C. The exotherm peaked at 54° C. about 30 minutes after the addition of the DVB/OOPs mixture. About half of the batch was dropped into dried, Nz purged bottles, and polymerization was terminated with about 1 mL isopropanol and treated with about 3 mL BHT solution. For transmission electron microscopy (TEM) analysis, about 10 mL of solution was taken from the batch and further diluted with the hexane solvent to about 10−4 wt %. A drop of the diluted solution was then deposited on a formvar-carbon coated micro-grid. After the solvent was evaporated, the grid was stained with OsO4, and then examined by TEM. The results showed that the average particle diameter was about 50 nm with dispersity of about 1.1.


Example 2

The diblock polymer was prepared as described above. Particle formation was also performed as described above, except 1.22 kg of styrene (33 wt %) 1.0 kg hexane, and 100 mL of DVB containing 1.0 mL of OOPs solution was used. The jacket temperature was raised to 57° C., then 65° C. overnight because no exotherm was observed. Half of the batch was dropped into bottles and terminated as described above. The particles constituted about 18% by weight of the mixture. To the remainder of the batch was added 2.27 kg of 21.6% butadiene, but no polymerization occurred. Further polymerization was initiated with a charge of 2.5 mL of n-BuLi (1.6 M solution) and the batch subsequently gelled.


Example 3

The dispersant was prepared as described above, except 1.8 kg of butadiene (22 wt %) was used. The living dispersant was diluted with 0.91 kg hexane, and a solution of 0.453 kg DVB in 0.91 kg hexane was charged into the reactor. The reactor temperature control was switched from batch control at 57° C. to jacket at 57° C. After about 4 hours, the batch was dropped into bottles and terminated as described above. The particles constituted about 11% by weight of the mixture. The GPO analysis showed that the particle had a Mn of about 976,000. The polydispersity of the molecular weight was 1.11. The nano-particles were examined by TEM and had an average particle size of about 15 nm, and a dispersity of particle size of about 1.1.


Application of the Particles in Rubber Compounds


Four kinds of rubber compositions were prepared according to the formulation shown in Tables 1 and 2 by selectively using the synthesized particles to replace the amount of polymer (polybutadiene) in the compound formulation. The physical details of these compositions are shown in Table 3. Two controls were used (Examples 4 and 5) to provide a comparison with the test compounds (Examples 6 and 7) wherein the nano-particles were derived from Example 3. In each sample, a blend of the ingredients was kneaded by the method described in Table 4. The final stock was sheeted and molded at 160° C. for 30 minutes.


The physical characteristics of the rubber compounds shown in Table 3 were measured by accepted standards in the art. The tensile strength measurements were based on conditions of ASTM-D 412 at 22° C. Test specimen geometry was taken in the form of a ring of a width of 0.127 cm and of a thickness of 0.197 cm. The specimen was tested at a specific gauge length of 2.54 cm. The measurement of tear strength was based on conditions of ASTM-D 624 at 170° C. Test specimen geometry was taken in the form of a nicked ring (ASTM-624-C). The specimen was tested at the specific gauge length 11.29 cm. The hysteresis loss was measured with a Dynastat Viscoelastic Analyzer. Test specimen geometry was taken in the form of a strip of a length of 30 mm and of a width of 15 mm. A frequency of 5 Hz at 2% strain was employed. Measurement of the wet traction was performed on the British Portable Skid Tester. The sample geometry for the test was a rectangular bar of 2.54×7.6×0.64 cm.


As seen in Table 3, the rubber compositions of Examples 6 and 7 exhibit balanced physical properties. The tensile strength and tear strength of the modified rubber compounds are ˜30% better than those of the comparative compounds at equal modulus.









TABLE 1







Composition of Master Batch











Concentration



Component
(pbw)














Rubber
100



Carbon black
50



Aromatic oil
15



Zinc oxide
3



Hydrocarbon resin (tackifiers)
2



Antioxidants
0.95



Stearic Acid
2



Wax
1

















TABLE 2







Composition for Final Batch











Concentration



Component
(pbw)














Sulfur (curing agent)
~1.30



Cyclohexyl-benzothiazole sulfenamide
1.4



(accelerator)



Diphenylguanidine (accelerator)
.2

















TABLE 3







Physical Characteristics of Rubber Formulations











Example
4
5
6
7














Nano-particle (pbw)
0
0
10
10


Butadiene rubber (pbw)
100
100
90
90


Carbon black (pbw)
50
50
50
50


Aromatic oil (pbw)
15
15
15
15


Sulfur (pbw)
1.3
1.9
1.4
1.6


Mooney Viscosity
89.2
86.8
82.98
82.9


CB Dispersion index
96.3
97.2
99
98.5







Shore A











22° C. (3 sec)
64.1
66.4
67.2
68.3


100° C. (3 sec)
62.7
64.6
63.3
64.9







Ring Tensile (23° C.)











Tb (kPa)
12,786
13,158
16,598
13,138


Eb (%)
444
373
502
382


Tb*Eb (breaking energy)
5,676,984
4,907,934
8,332,196
5,018,716


Modulus at 300% Elongation (psi)
988
1242
1116
1334


Modulus at 50% Elongation (psi)
188
219
215
240







Ring Tear (170° C.)











Strength (kg/cm)
33.5
27.8
39.7
37.2


Travel (%)
320
175
358
291


Tg (° C.)
−76
−75
−76
−75







Temp Sweep (2% strain)











tan δ @ 50° C.
0.1343
0.1171
0.1721
0.1695


tan δ @ 20° C.
0.1559
0.1422
0.1874
0.1881


tan δ @ 0° C.
0.1698
0.1598
0.1961
0.2002
















TABLE 4





Mixing Conditions


















Mixer
300 g Brabender



Agitation Speed
60 rpm



Master Batch Stage



Initial Temperature
110° C.



0 minutes
Charging polymers



0.5 minutes
Charging oil and carbon black



5.0 minutes
Drop



Final Batch Stage



Initial Temperature
75° C.



0 seconds
Charging master stock



30 seconds
Charging curing agent



75 seconds
drop










The invention has been described with reference to the exemplary embodiments. Modifications and alterations will occur to others upon reading and understanding the specification. The invention is intended to include such modifications and alterations insofar as they come within the scope of the disclosure and claims.

Claims
  • 1. A method of making a nano-particle comprising; forming di-block polymer chains by living anionic polymerization;aggregating the di-block polymer chains into one or more nano-particles in a hydrocarbon solvent, through micelle formation, whereby a mean average diameter of the nano-particle comprises no more than about 100 nm.
  • 2. The method of claim 1, further comprising functionalizing said polymer chains.
  • 3. The method of claim 1, further wherein an orientation of said nano-particle comprises a shell-core orientation.
  • 4. The method of claim 3, further comprising crosslinking the core with a cross-linking agent.
  • 5. The method of claim 3, further comprising crosslinking the shell with a cross-linking agent.
  • 6. The method of claim 1, further comprising extending said polymer chains.
  • 7. The method of claim 6, wherein the extending comprises increasing the density of the shell.
  • 8. The method of claim 1, wherein said aggregating comprises forming said nano-particles from said polymer chains in an environment which initiates the polymer chains.
  • 9. The method of claim 4, further comprising uncrosslinking said core.
  • 10. The method of claim 5, further comprising uncrosslinking said shell.
  • 11. The method of claim 1, further comprising hydrogenating said polymer chain.
  • 12. The method of claim 1, further comprising hydrogenating said nano-particle.
  • 13. The method of claim 1, wherein said aggregating and said forming occur in the same environment.
  • 14. The method of claim 3 further comprising at least partial removal of the shell or the core.
  • 15. The method of claim 14, wherein said removal comprises monomerization of the core or shell with Osmium tetraoxide and heat.
  • 16. The method of claim 1, wherein the nanoparticle is formed into a shape selected from the group consisting of: spherical, string, flower, hollow, and ellipsoid.
  • 17. A nano-particle formed from aggregating diblock polymer chains through micelle formation in a hydrocarbon solvent, the one or more diblock polymer chains comprising a core, and a shell, and a mean average diameter of no more than about 100 nm; wherein the one or more polymer chains are formed by living anionic polymerization.
  • 18. The nano-particle of claim 17, wherein the shell comprises extended polymer chains.
  • 19. A method of making a nano-particle comprising: forming diblock polymer chains by living anionic polymerization;in a hydrocarbon solvent, aggregating the diblock polymer chains into one or more nano-particles, through micelle formation, and cross-linking the nano-particle with a cross-linking agent.
  • 20. The method of claim 19, wherein an orientation of the nano-particle comprises a shell-core orientation.
  • 21. The method of claim 19, wherein the nanoparticle is formed into a shape selected from the group consisting of: spherical, string, flower, hollow, and ellipsoid.
  • 22. The method of claim 3, wherein the core comprises poly(alkenyl)benzene monomer units and the shell comprises conjugated diene monomer units.
  • 23. The method of claim 3, wherein the core is harder than the shell.
  • 24. The method of claim 3, wherein the shell includes pendent vinyl groups.
  • 25. A method of making a nano-particle composition comprising the steps of: forming diblock polymer chains by anionic polymerization;aggregating the diblock polymer chains into one or more core-shell oriented nano-particles in a hydrocarbon solvent, through micelle formation, andcombining the one or more nano-particles with a rubber matrix.
  • 26. The method of claim 25 further comprising the step of forming the nano-particle composition into a tire tread or tire side wall.
  • 27. The method of claim 25, wherein the core comprises poly(alkenyl)benzene monomer units and the shell comprises conjugated diene monomer units.
  • 28. The method of claim 27, wherein the core is harder than the shell.
  • 29. A tire component comprising a nano-particle composition formed by the process comprising: forming diblock polymer chains by living anionic polymerization;aggregating the diblock polymer chains into one or more core-shell oriented nano-particles in a hydrocarbon solvent, through micelle formation,combining the one or more nano-particles with a rubber matrix to form a rubber matrix and nano-particle composition;curing the rubber matrix and nano-particle composition;molding the cured rubber matrix and nano-particle composition into a tire component.
  • 30. The tire component of claim 29, wherein the core of the one or more nanoparticles comprises poly(alkenyl)benzene monomer units and the shell comprises conjugated diene monomer units.
  • 31. The tire component of claim 30, wherein the core of the one or more nanoparticles is harder than the shell.
Parent Case Info

This is a continuation-in-part of U.S. application Ser. No. 10/223,393, filed Aug. 19, 2002 now U.S. Pat. No. 6,956,084 that is published as U.S. patent application No. 20030198810, that is a continuation-in-part application of U.S. application Ser. No. 09/970,830 filed Oct. 4, 2001 that issued as U.S. Pat. No. 6,437,050, and application Ser. No. 10/038,748 filed Dec. 31, 2001 that issued as U.S. Pat. No. 6,689,469.

US Referenced Citations (220)
Number Name Date Kind
2531396 Carter et al. Nov 1950 A
3598884 Wei Aug 1971 A
3793402 Owens Feb 1974 A
3840620 Gallagher Oct 1974 A
3972963 Schwab et al. Aug 1976 A
4075186 Ambrose et al. Feb 1978 A
4233409 Bulkley Nov 1980 A
4247434 Vanderhoff et al. Jan 1981 A
4248986 Lal et al. Feb 1981 A
4326008 Rembaum Apr 1982 A
4386125 Shiraki et al. May 1983 A
4463129 Shinada et al. Jul 1984 A
4471093 Furukawa et al. Sep 1984 A
4543403 Isayama et al. Sep 1985 A
4598105 Weber et al. Jul 1986 A
4602052 Weber et al. Jul 1986 A
4659790 Shimozato et al. Apr 1987 A
4717655 Fluwyler Jan 1988 A
4725522 Breton et al. Feb 1988 A
4764572 Bean, Jr. Aug 1988 A
4773521 Chen Sep 1988 A
4774189 Schwartz Sep 1988 A
4788254 Kawakubo et al. Nov 1988 A
4829130 Licchelli et al. May 1989 A
4829135 Gunesin et al. May 1989 A
4837274 Kawakubo et al. Jun 1989 A
4837401 Hirose et al. Jun 1989 A
4861131 Bois et al. Aug 1989 A
4870144 Noda et al. Sep 1989 A
4871814 Gunesin et al. Oct 1989 A
4904730 Moore et al. Feb 1990 A
4904732 Iwahara et al. Feb 1990 A
4906695 Blizzard et al. Mar 1990 A
4920160 Chip et al. Apr 1990 A
4942209 Gunesin Jul 1990 A
4987202 Zeigler Jan 1991 A
5036138 Stamhuis et al. Jul 1991 A
5066729 Srayer, Jr. et al. Nov 1991 A
5073498 Schwartz et al. Dec 1991 A
5075377 Kawabuchi et al. Dec 1991 A
5120379 Noda et al. Jun 1992 A
5130377 Trepka et al. Jul 1992 A
5169914 Kaszas et al. Dec 1992 A
5194300 Cheung Mar 1993 A
5219945 Dicker et al. Jun 1993 A
5227419 Moczygemba et al. Jul 1993 A
5237015 Urban Aug 1993 A
5241008 Hall Aug 1993 A
5247021 Fujisawa et al. Sep 1993 A
5256736 Trepka et al. Oct 1993 A
5262502 Fujisawa et al. Nov 1993 A
5290873 Noda et al. Mar 1994 A
5290875 Moczygemba et al. Mar 1994 A
5290878 Yamamoto et al. Mar 1994 A
5296547 Nestegard et al. Mar 1994 A
5329005 Lawson et al. Jul 1994 A
5331035 Hall Jul 1994 A
5336712 Austgen, Jr. et al. Aug 1994 A
5362794 Inui et al. Nov 1994 A
5395891 Obrecht et al. Mar 1995 A
5395902 Hall Mar 1995 A
5399628 Moczygemba et al. Mar 1995 A
5399629 Coolbaugh et al. Mar 1995 A
5405903 Van Westrenen et al. Apr 1995 A
5421866 Stark-Kasley et al. Jun 1995 A
5436298 Moczygemba et al. Jul 1995 A
5438103 DePorter et al. Aug 1995 A
5447990 Noda et al. Sep 1995 A
5462994 Lo et al. Oct 1995 A
5514734 Maxfield et al. May 1996 A
5514753 Ozawa et al. May 1996 A
5521309 Antkowiak et al. May 1996 A
5525639 Keneko et al. Jun 1996 A
5527870 Maeda et al. Jun 1996 A
5530052 Takekoshi et al. Jun 1996 A
5580925 Iwahara et al. Dec 1996 A
5587423 Brandstetter et al. Dec 1996 A
5594072 Handlin, Jr. et al. Jan 1997 A
5614579 Roggeman et al. Mar 1997 A
5627252 De La Croi Habimana May 1997 A
5674592 Clark et al. Oct 1997 A
5686528 Wills et al. Nov 1997 A
5688856 Austgen, Jr. et al. Nov 1997 A
5707439 Takekoshi et al. Jan 1998 A
5728791 Tamai et al. Mar 1998 A
5733975 Aoyama et al. Mar 1998 A
5739267 Fujisawa et al. Apr 1998 A
5742118 Endo et al. Apr 1998 A
5747152 Oka et al. May 1998 A
5763551 Wünsch et al. Jun 1998 A
5773521 Hoxmeier et al. Jun 1998 A
5777037 Yamanaka et al. Jul 1998 A
5811501 Chiba et al. Sep 1998 A
5834563 Kimura et al. Nov 1998 A
5847054 McKee et al. Dec 1998 A
5848847 Quirk Dec 1998 A
5855972 Kaeding Jan 1999 A
5883173 Elspass et al. Mar 1999 A
5891947 Hall et al. Apr 1999 A
5905116 Wang et al. May 1999 A
5910530 Wang et al. Jun 1999 A
5955537 Steininger et al. Sep 1999 A
5986010 Clites et al. Nov 1999 A
5994468 Wang et al. Nov 1999 A
6011116 Aoyama et al. Jan 2000 A
6020446 Okamoto et al. Feb 2000 A
6025416 Proebster et al. Feb 2000 A
6025445 Chiba et al. Feb 2000 A
6060549 Li et al. May 2000 A
6060559 Feng et al. May 2000 A
6087016 Feeney et al. Jul 2000 A
6087456 Sakaguchi et al. Jul 2000 A
6106953 Zimmermann et al. Aug 2000 A
6117932 Hasegawa et al. Sep 2000 A
6121379 Yamanaka et al. Sep 2000 A
6127488 Obrecht et al. Oct 2000 A
6147151 Fukumoto et al. Nov 2000 A
6166855 Ikeyama et al. Dec 2000 A
6180693 Tang et al. Jan 2001 B1
6191217 Wang et al. Feb 2001 B1
6197849 Zilg et al. Mar 2001 B1
6204354 Wang et al. Mar 2001 B1
6207263 Takematsu et al. Mar 2001 B1
6225394 Lan et al. May 2001 B1
6252014 Knauss Jun 2001 B1
6255372 Lin et al. Jul 2001 B1
6268451 Faust et al. Jul 2001 B1
6277304 Wei et al. Aug 2001 B1
6348546 Hiiro et al. Feb 2002 B2
6359075 Wollum et al. Mar 2002 B1
6379791 Cernohous et al. Apr 2002 B1
6383500 Wooley et al. May 2002 B1
6395829 Miyamoto et al. May 2002 B1
6420486 DePorter et al. Jul 2002 B1
6437050 Krom et al. Aug 2002 B1
6441090 Demirors et al. Aug 2002 B1
6448353 Nelson et al. Sep 2002 B1
6489378 Sosa et al. Dec 2002 B1
6524595 Perrier et al. Feb 2003 B1
6573313 Li et al. Jun 2003 B2
6573330 Fujikake et al. Jun 2003 B1
6598645 Larson Jul 2003 B1
6649702 Rapoport et al. Nov 2003 B1
6663960 Murakami et al. Dec 2003 B1
6689469 Wang et al. Feb 2004 B2
6693746 Nakamura et al. Feb 2004 B1
6706813 Chiba et al. Mar 2004 B2
6706823 Wang et al. Mar 2004 B2
6727311 Ajbani et al. Apr 2004 B2
6737486 Wang May 2004 B2
6750297 Yeu et al. Jun 2004 B2
6759464 Ajbani et al. Jul 2004 B2
6774185 Lin et al. Aug 2004 B2
6777500 Lean et al. Aug 2004 B2
6780937 Castner Aug 2004 B2
6835781 Kondou et al. Dec 2004 B2
6858665 Larson Feb 2005 B2
6861462 Parker et al. Mar 2005 B2
6872785 Wang et al. Mar 2005 B2
6875818 Wang Apr 2005 B2
6908958 Maruyama et al. Jun 2005 B2
6956084 Wang et al. Oct 2005 B2
7056840 Miller et al. Jun 2006 B2
7071246 Xie et al. Jul 2006 B2
7112369 Wang et al. Sep 2006 B2
7179864 Wang Feb 2007 B2
7193004 Weydert et al. Mar 2007 B2
7205370 Wang et al. Apr 2007 B2
7217775 Castner May 2007 B2
7238751 Wang et al. Jul 2007 B2
7244783 Lean et al. Jul 2007 B2
7291394 Winkler et al. Nov 2007 B2
7347237 Xie et al. Mar 2008 B2
7408005 Zheng et al. Aug 2008 B2
20010053813 Konno et al. Dec 2001 A1
20020007011 Konno et al. Jan 2002 A1
20020045714 Tomalia et al. Apr 2002 A1
20020095008 Heimrich et al. Jul 2002 A1
20020144401 Nogueroles Vines et al. Oct 2002 A1
20030004250 Ajbani et al. Jan 2003 A1
20030032710 Larson Feb 2003 A1
20030124353 Wang et al. Jul 2003 A1
20030130401 Lin et al. Jul 2003 A1
20030149185 Wang et al. Aug 2003 A1
20030198810 Wang et al. Oct 2003 A1
20030225190 Borbely et al. Dec 2003 A1
20040033345 Dubertret et al. Feb 2004 A1
20040059057 Swisher et al. Mar 2004 A1
20040091546 Johnson et al. May 2004 A1
20040127603 Lean et al. Jul 2004 A1
20040143064 Wang Jul 2004 A1
20040198917 Castner Oct 2004 A1
20050101743 Stacy et al. May 2005 A1
20050182158 Ziser et al. Aug 2005 A1
20050192408 Lin et al. Sep 2005 A1
20050197462 Wang et al. Sep 2005 A1
20050203248 Zheng et al. Sep 2005 A1
20050215693 Wang et al. Sep 2005 A1
20050228072 Winkler et al. Oct 2005 A1
20050228074 Wang et al. Oct 2005 A1
20050282956 Bohm et al. Dec 2005 A1
20060173115 Wang et al. Aug 2006 A1
20060173130 Wang et al. Aug 2006 A1
20060235128 Bohm et al. Oct 2006 A1
20070135579 Obrecht et al. Jun 2007 A1
20070142550 Wang et al. Jun 2007 A1
20070142559 Wang et al. Jun 2007 A1
20070149649 Wang et al. Jun 2007 A1
20070161754 Wang et al. Jul 2007 A1
20070185273 Hall et al. Aug 2007 A1
20070196653 Hall et al. Aug 2007 A1
20080145660 Wang et al. Jun 2008 A1
20080149238 Kleckner et al. Jun 2008 A1
20080160305 Wang et al. Jul 2008 A1
20080286374 Wang et al. Nov 2008 A1
20080305336 Wang et al. Dec 2008 A1
20090005491 Warren et al. Jan 2009 A1
20090048390 Wang et al. Feb 2009 A1
20090054554 Wang et al. Feb 2009 A1
20090270558 Gandon-Pain et al. Oct 2009 A1
Foreign Referenced Citations (48)
Number Date Country
2127919 Mar 1995 CA
3434983 Apr 1986 DE
4241538 Jun 1994 DE
143500 Jun 1985 EP
0255170 Feb 1988 EP
0 265 142 Apr 1988 EP
0 265 145 Apr 1988 EP
265142 Apr 1988 EP
0322905 Jul 1989 EP
0352042 Jan 1990 EP
0472344 Feb 1992 EP
0 540 942 May 1993 EP
0 590 491 Apr 1994 EP
0742268 Nov 1996 EP
1031605 Aug 2000 EP
1 099 728 May 2001 EP
1 134 251 Sep 2001 EP
1273616 Jan 2003 EP
1321489 Jun 2003 EP
1783168 May 2007 EP
2099645 Mar 1972 FR
01279943 Jan 1989 JP
2191619 Jul 1990 JP
2196893 Aug 1990 JP
05132605 May 1993 JP
06248017 Sep 1994 JP
7011043 Jan 1995 JP
08-199062 Aug 1996 JP
2000-514791 Nov 2000 JP
2003-0095640 Apr 2003 JP
2006-072283 Mar 2006 JP
2006-106596 Apr 2006 JP
2007-304409 Nov 2007 JP
WO 9104992 Apr 1991 WO
9704029 Feb 1997 WO
9853000 Nov 1998 WO
WO 0187999 Nov 2000 WO
0075226 Dec 2000 WO
WO 0231002 Apr 2002 WO
WO 02081233 Oct 2002 WO
WO 02100936 Dec 2002 WO
03032061 Apr 2003 WO
WO 03085040 Oct 2003 WO
WO2004058874 Jul 2004 WO
2006069793 Jul 2006 WO
2008079276 Jul 2008 WO
2008079807 Jul 2008 WO
2009006434 Jan 2009 WO
Related Publications (1)
Number Date Country
20060084722 A1 Apr 2006 US
Continuation in Parts (3)
Number Date Country
Parent 10223393 Aug 2002 US
Child 11117981 US
Parent 09970830 Oct 2001 US
Child 10223393 US
Parent 10038748 Dec 2001 US
Child 09970830 US