The present application relates generally to patient temperature control systems.
It has been discovered that the medical outcome for a patient suffering from severe brain trauma or from ischemia caused by stroke or heart attack or cardiac arrest is improved if the patient is cooled below normal body temperature (37° C.). Furthermore, it is also accepted that for such patients, it is important to prevent hyperthermia (fever) even if it is decided not to induce hypothermia. Moreover, in certain applications such as post-CABG surgery, it might be desirable to rewarm a hypothermic patient.
As recognized by the present application, the above-mentioned advantages in regulating temperature can be realized by cooling or heating the patient's entire body using a closed loop heat exchange catheter placed in the patient's venous system and circulating a working fluid such as saline through the catheter, heating or cooling the working fluid as appropriate in an external heat exchanger that is connected to the catheter. The following U.S. patents, all of which are incorporated herein by reference, disclose various intravascular catheters/systems/methods for such purposes: U.S. Pat. Nos. 6,881,551 and 6,585,692 (tri-lobe catheter), U.S. Pat. Nos. 6,551,349 and 6,554,797 (metal catheter with bellows), U.S. Pat. Nos. 6,749,625 and 6,796,995 (catheters with non-straight, non-helical heat exchange elements), U.S. Pat. Nos. 6,126,684, 6,299,599, 6,368,304, and 6,338,727 (catheters with multiple heat exchange balloons), U.S. Pat. Nos. 6,146,411, 6,019,783, 6,581,403, 7,287,398, and 5,837,003 (heat exchange systems for catheter), U.S. Pat. No. 7,857,781 (various heat exchange catheters).
Accordingly, a catheter includes at least one working fluid supply lumen and at least one working fluid return lumen. Working fluid circulates through the supply and return lumens to exchange heat with a patient in whom the catheter is positioned. At least one of the lumens is defined by plural coils axially spaced from each other. Furthermore, at least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned such that blood may flow through the coil so as not to block blood flow in the vessel. Thus, working fluid may flow serially through the coils to exchange heat with the patient.
In some embodiments, a second of the plural coils may be a smaller coil relative to the large coil, where the smaller coil does not contact the wall of the blood vessel when inflated with working fluid. Even further, if desired, at least one of the lumens may define plural large coils separated from each other by at least one small coil as described herein. Also if desired, at least one of the lumens may define a straight tube coaxial with the coils and in fluid communication with the coils. In non-limiting embodiments, the straight tube may extend through the coils, or may optionally be located outside the coils.
In some non-limiting embodiments, the coils may be in the working fluid supply path and the straight tube may define at least part of the working fluid return path. In other non-limiting embodiments, the coils may be in the working fluid return path and the straight tube may define at least part of the working fluid supply path.
In another aspect, a method includes circulating working fluid through working fluid supply and return lumens of a catheter to exchange heat with a patient in whom the catheter is positioned. The method also includes providing at least one self-centering member engaged with the catheter, where the member is expandable against a wall of a vascular area in which the catheter is positioned to center heat exchange regions of the catheter in the vascular area.
In still another aspect, a catheter includes working fluid supply and return lumens. Working fluid circulates through the supply and return lumens to exchange heat with a patient in whom the catheter is positioned. The catheter also includes at least one expandable wire located longitudinally along the catheter and engaged with the catheter. The wire is expandable against a wall of a blood vessel in which the catheter is positioned to center heat exchange regions of the catheter in the vessel.
The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Referring initially to
As shown, working fluid may be circulated between the heat exchange system 12 and catheter 10 through supply and return lines 16, 18 that connect to the proximal end of the catheter 10 as shown. A patient temperature signal from a catheter-borne temperature sensor on the distal region of the catheter may be provided to the system 12 through an electrical line 20, or wirelessly if desired. Alternatively, a patient temperature signal may be provided to the system 12 from a separate esophageal probe or rectal probe or tympanic sensor or bladder probe or other temperature probe that measures the temperature of the patient 14. Note that as used herein, “proximal” and “distal” in reference to the catheter are relative to the system 12.
The catheter 10, in addition to interior supply and return lumens through which the working fluid is circulated, may also have one or more infusion lumens connectable to an IV component 22 such as a syringe or IV bag for infusing medicaments into the patient, or an instrument such as an oxygen or pressure monitor for monitoring patient parameters, etc.
The catheter 10 can be positioned typically in the vasculature of the patient 14 and more preferably in the venous system of the patient 14 such as in the inferior vena cava through a groin insertion point or the superior vena cava through a neck (jugular or subclavian) insertion point.
Next, regarding
Furthermore it is to be understood that distal heat exchange regions of the catheters as described herein may be made of a shape memory material such as, but not limited to, nitinol in non-limiting embodiments. Also in non-limiting embodiments, the shape memory material disclosed herein may expand and contract in accordance with present principles. However, it is to be further understood that the heat exchange regions as disclosed herein may be flexible and/or pliant in non-limiting embodiments such that distal regions of the catheters of
Now specifically in reference to
As may be seen from
However, it may be appreciated from the non-limiting embodiment of
Still in reference to
Moving on to
It may be appreciated from
Now in reference to
Thus, as shown in
As understood herein, the wire(s) 58 may be made of a shape memory substance such as, but not limited to, nitinol. It is to be further understood that the heat exchange region(s) 60 may be substantially coaxial with the wire(s) 58 when the wire(s) 58 is expanded against the wall of the blood vessel, which may be further appreciated in
Thus,
It may be appreciated from
Now in reference to
Thus, as shown in
As understood herein, the wires 78 may be made of a shape memory substance in accordance with present principles. It is to be further understood that the heat exchange region(s) 80 may be substantially coaxial with the wires 78 when the wires 78 are expanded against the wall of the blood vessel, which may be further appreciated in reference to
In contrast to the embodiment described in reference to
Accordingly, the catheter 68 as shown in
Similar to
Moving on to
While the particular SELF-CENTERING PATIENT TEMPERATURE CONTROL CATHETER is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.
Number | Name | Date | Kind |
---|---|---|---|
1459112 | Mehl | Jun 1923 | A |
1857031 | Schaffer | May 1932 | A |
2663030 | Dahlberg | Dec 1953 | A |
2673987 | Upshaw et al. | Apr 1954 | A |
3225191 | Calhoun | Dec 1965 | A |
3369549 | Armao | Feb 1968 | A |
3425419 | Dato | Feb 1969 | A |
3504674 | Swenson | Apr 1970 | A |
3726269 | Webster, Jr. | Apr 1973 | A |
3744555 | Fletcher et al. | Jul 1973 | A |
3751077 | Hiszpanski | Aug 1973 | A |
3937224 | Uecker | Feb 1976 | A |
3945063 | Matsuura | Mar 1976 | A |
4038519 | Foucras | Jul 1977 | A |
4065264 | Lewin | Dec 1977 | A |
4103511 | Kress et al. | Aug 1978 | A |
4126132 | Portner et al. | Nov 1978 | A |
4153048 | Magrini | May 1979 | A |
4173228 | Van Steenwyk et al. | Nov 1979 | A |
4181132 | Parks | Jan 1980 | A |
4298006 | Parks | Nov 1981 | A |
4459468 | Bailey | Jul 1984 | A |
4532414 | Shah et al. | Jul 1985 | A |
4554793 | Harding, Jr. | Nov 1985 | A |
4581017 | Sahota | Apr 1986 | A |
4638436 | Badger et al. | Jan 1987 | A |
4653987 | Tsuji et al. | Mar 1987 | A |
4661094 | Simpson | Apr 1987 | A |
4665391 | Spani | May 1987 | A |
4672962 | Hershenson | Jun 1987 | A |
4754752 | Ginsburg et al. | Jul 1988 | A |
4763654 | Jang | Aug 1988 | A |
4787388 | Hofmann | Nov 1988 | A |
4813855 | Leveen et al. | Mar 1989 | A |
4849196 | Yamada et al. | Jul 1989 | A |
4852567 | Sinofsky | Aug 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4906237 | Johansson et al. | Mar 1990 | A |
4941475 | Williams et al. | Jul 1990 | A |
5092841 | Spears | Mar 1992 | A |
5103360 | Maeda | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5192274 | Bierman | Mar 1993 | A |
5195965 | Shantha | Mar 1993 | A |
5211631 | Sheaff | May 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281215 | Milder | Jan 1994 | A |
5304214 | DeFord et al. | Apr 1994 | A |
5334346 | Kim et al. | Aug 1994 | A |
5342301 | Saab | Aug 1994 | A |
5344436 | Fontenot et al. | Sep 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5403281 | O'Neill et al. | Apr 1995 | A |
5433740 | Yamaguchi | Jul 1995 | A |
5437673 | Baust et al. | Aug 1995 | A |
5458639 | Tsukashima et al. | Oct 1995 | A |
5486207 | Mahawili | Jan 1996 | A |
5486208 | Ginsburg | Jan 1996 | A |
5507792 | Mason et al. | Apr 1996 | A |
5531714 | Dahn et al. | Jul 1996 | A |
5531776 | Ward et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5624392 | Saab | Apr 1997 | A |
5634907 | Rani et al. | Jun 1997 | A |
5676670 | Kim | Oct 1997 | A |
5701905 | Esch | Dec 1997 | A |
5709564 | Yamada et al. | Jan 1998 | A |
5709654 | Klatz et al. | Jan 1998 | A |
5716386 | Ward et al. | Feb 1998 | A |
5730720 | Sites et al. | Mar 1998 | A |
5733319 | Neilson et al. | Mar 1998 | A |
5737782 | Matsuura et al. | Apr 1998 | A |
5776079 | Cope et al. | Jul 1998 | A |
5788647 | Eggers | Aug 1998 | A |
5837003 | Ginsburg | Nov 1998 | A |
5862675 | Scaringe et al. | Jan 1999 | A |
5895418 | Saringer | Apr 1999 | A |
5908407 | Frazee et al. | Jun 1999 | A |
5957963 | Dobak, III | Sep 1999 | A |
5980561 | Kolen et al. | Nov 1999 | A |
6019783 | Philips et al. | Feb 2000 | A |
6042559 | Dobak, III | Mar 2000 | A |
6051019 | Dobak, III | Apr 2000 | A |
6059825 | Hobbs et al. | May 2000 | A |
6096068 | Dobak, III et al. | Aug 2000 | A |
6110139 | Loubser | Aug 2000 | A |
6117065 | Hastings et al. | Sep 2000 | A |
6117105 | Bresnaham et al. | Sep 2000 | A |
6124452 | Di Magno | Sep 2000 | A |
6126684 | Gobin et al. | Oct 2000 | A |
6146141 | Schumann | Nov 2000 | A |
6146411 | Noda et al. | Nov 2000 | A |
6148634 | Sherwood | Nov 2000 | A |
6149670 | Worthen et al. | Nov 2000 | A |
6149677 | Dobak, III | Nov 2000 | A |
6231594 | Dae | May 2001 | B1 |
6283940 | Mulholland | Sep 2001 | B1 |
6299599 | Pham et al. | Oct 2001 | B1 |
6338727 | Noda et al. | Jan 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6409747 | Gobin et al. | Jun 2002 | B1 |
6416533 | Gobin et al. | Jul 2002 | B1 |
6428563 | Keller | Aug 2002 | B1 |
6450990 | Walker et al. | Sep 2002 | B1 |
6464716 | Dobak, III et al. | Oct 2002 | B1 |
6485500 | Kokish et al. | Nov 2002 | B1 |
6527798 | Ginsburg et al. | Mar 2003 | B2 |
6530946 | Noda et al. | Mar 2003 | B1 |
6544282 | Dae et al. | Apr 2003 | B1 |
6551309 | Le Pivert | Apr 2003 | B1 |
6554791 | Cartledge et al. | Apr 2003 | B1 |
6589271 | Tzeng et al. | Jul 2003 | B1 |
6605106 | Schwartz | Aug 2003 | B2 |
6610083 | Keller et al. | Aug 2003 | B2 |
6620187 | Carson et al. | Sep 2003 | B2 |
6620188 | Ginsburg et al. | Sep 2003 | B1 |
6624679 | Tomaiuolo et al. | Sep 2003 | B2 |
6635076 | Ginsburg | Oct 2003 | B1 |
6635079 | Unsworth et al. | Oct 2003 | B2 |
6679906 | Hammack et al. | Jan 2004 | B2 |
6685733 | Dae et al. | Feb 2004 | B1 |
6699268 | Kordis et al. | Mar 2004 | B2 |
6706060 | Tzeng et al. | Mar 2004 | B2 |
6716188 | Noda et al. | Apr 2004 | B2 |
6719723 | Werneth | Apr 2004 | B2 |
6719779 | Daoud | Apr 2004 | B2 |
6726653 | Noda et al. | Apr 2004 | B2 |
6740109 | Dobak, III | May 2004 | B2 |
6799342 | Jarmon | Oct 2004 | B1 |
6843800 | Dobak, III | Jan 2005 | B1 |
6887263 | Bleam et al. | May 2005 | B2 |
6893419 | Noda et al. | May 2005 | B2 |
6969399 | Schock et al. | Nov 2005 | B2 |
7510569 | Dae et al. | Mar 2009 | B2 |
7666215 | Callister et al. | Feb 2010 | B2 |
7708715 | Gellman | May 2010 | B2 |
7770584 | Danek et al. | Aug 2010 | B2 |
7822485 | Collins | Oct 2010 | B2 |
7846193 | Dae et al. | Dec 2010 | B2 |
7857781 | Noda et al. | Dec 2010 | B2 |
8105262 | Noda et al. | Jan 2012 | B2 |
8105263 | Noda et al. | Jan 2012 | B2 |
8105264 | Noda et al. | Jan 2012 | B2 |
8109894 | Noda et al. | Feb 2012 | B2 |
20010001832 | Dobak et al. | May 2001 | A1 |
20010031946 | Walker et al. | Oct 2001 | A1 |
20010047196 | Ginsburg et al. | Nov 2001 | A1 |
20020013569 | Sterman et al. | Jan 2002 | A1 |
20020022823 | Luo et al. | Feb 2002 | A1 |
20020045925 | Keller et al. | Apr 2002 | A1 |
20020077665 | Kordis et al. | Jun 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020145525 | Friedman et al. | Oct 2002 | A1 |
20020183692 | Callister | Dec 2002 | A1 |
20020198579 | Khanna | Dec 2002 | A1 |
20030153845 | Emken et al. | Aug 2003 | A1 |
20030236496 | Samson et al. | Dec 2003 | A1 |
20040089058 | De Haan et al. | May 2004 | A1 |
20040102825 | Daoud | May 2004 | A1 |
20040210231 | Boucher et al. | Oct 2004 | A1 |
20050010273 | Walker et al. | Jan 2005 | A1 |
20050076924 | Dobak, III | Apr 2005 | A1 |
20050156744 | Pires | Jul 2005 | A1 |
20060004417 | Rossing et al. | Jan 2006 | A1 |
20070007640 | Harnden et al. | Jan 2007 | A1 |
20070076401 | Carrez et al. | Apr 2007 | A1 |
20080221651 | Dobak | Sep 2008 | A1 |
20100082012 | Hattangadi et al. | Apr 2010 | A1 |
20110130812 | Noda et al. | Jun 2011 | A1 |
20120259329 | DeCarlo | Oct 2012 | A1 |
20130079855 | Helkowski et al. | Mar 2013 | A1 |
20130079857 | Lim et al. | Mar 2013 | A1 |
20130178923 | Dabrowiak | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
19531935 | Feb 1997 | DE |
1089780 | Oct 2012 | EP |
2040169 | Aug 1980 | GB |
1183185 | Feb 1985 | GB |
2212262 | Jul 1989 | GB |
2383828 | Jul 2003 | GB |
09-215754 | Aug 1997 | JP |
10-0127777 | May 1998 | JP |
10-305103 | Nov 1998 | JP |
2011131094 | Jul 2011 | JP |
9001682 | Feb 1990 | WO |
9304727 | Mar 1993 | WO |
9400177 | Jan 1994 | WO |
9401177 | Jan 1994 | WO |
9725011 | Jul 1997 | WO |
9824491 | Jun 1998 | WO |
9840017 | Sep 1998 | WO |
0010494 | Mar 2000 | WO |
0113809 | Mar 2001 | WO |
0152781 | Jul 2001 | WO |
0164146 | Sep 2001 | WO |
0176517 | Oct 2001 | WO |
0183001 | Nov 2001 | WO |
0236180 | May 2002 | WO |
Entry |
---|
F.W. Behmann, E. Bontke, “Die Regelung der Wärmebildung bei künstlicher Hypothermie”, Pffügers Archiv, Bd. 266, S. 408-421 (1958). |
F.W. Behmann, E. Bontke, “Intravasale Kühlung”, Pffügers Archie, Bd. 263, S. 145-165 (1956). |
Wilhelm Behringer, Stephan Prueckner, Rainer Kenter, Samuel A. Tisherman, Ann Radovsky, Robert Clark, S. William Stezoski, Heremy Henchir, Edwin Klein, Peter Safar, “Rapid Hypothermic Aortic Flush Can Achieve Survival without Brain Damage after 30 Minutes Cardiac Arrest in Dogs”, anesthesiology, V. 93, No. 6, Dec. 2000. |
Dorraine Day Watts, Arthur Trask, Karen Soeken, Philip Predue, Sheilah Dols, Christopher Kaufman; “Hypothermic Coagulopathy in trauma: Effect of Varying levels of Hypothermia on Enzyme Speed, Platelet Function, and Fibrinolytic Activity”. The Journal of Trauma: Injury, Infection, and Critical Care, Vo. 44, No. 5 (1998). |
Mark A. Saab, “Multi-Lumen Heat Transfer Catheter System”, file history of pending U.S. Appl. No. 12/924,933, filed Oct. 8, 2010. |
David J. Scott, Ben F. Brian, Lloyd F. Wright, Leo A. Chin, Edward W. Hollmen, Saniel W. Seegars, Mark A. Logan, “Apparatus and Method for Providing Enhanced Heat Transfer from a Body”, file history of pending U.S. Appl. No. 12/897,637, filed Oct. 4, 2010. |
Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver, “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,000, filed May 4, 2011. |
Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver, “Method and Apparatus for Regional and Whole Body Temperature Modification”, file history of pending U.S. Appl. No. 13/101,036, filed May 4, 2011. |
Timothy R. Machold, Wade A. Keller, Alex T. Roth, Nicole Denise Bloom, “Method and System for Control of a Patient's Body Temperature by Way of a Transluminally Insertable Heat Exchange Catheter”, file history of pending U.S. Appl. No. 13/161,648, filed Jun. 20, 2011. |
Jeremy T. Dabrowiak, Alex L. Lim, Venkata Vishnu Gurukula, Masoumeh Mafi, “Self-Centering Patient Temperature Control Catheter” related pending U.S. Appl. No. 13/625,998 restriction requirement dated Jan. 26, 2015. |
Jeremy T. Dabrowiak, Alex L. Lim, Venkata Vishnu Gurukula, Masoumeh Mafi, “Self-Centering Patient Temperature Control Catheter” related pending U.S. Appl. No. 13/625,998 applicants response to the restriction requirement filed Jan. 26, 2015. |
Jeremy T. Dabrowiak, Alex L. Lim, Venkata Vishnu Gurukula, Masoumeh Mafi, “Self-Centering Patient Temperature Control Catheter” related pending U.S. Appl. No. 13/625,998 non-final office action dated Feb. 12, 2015. |
Jeremy T. Dabrowiak, Alex L. Lim, Venkata Vishnu Gurukula, Masoumeh Mafi, “Self-Centering Patient Temperature Control Catheter” related pending U.S. Appl. No. 13/625,998 applicants response to the non-final office action filed Feb. 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20130079856 A1 | Mar 2013 | US |