Immediate medical care can save the lives of countless accident victims and military personnel. In the emergency medical services arena, there has long been an emphasis on the golden hour during which a patient must receive definitive medical attention. However, definitive medical attention is often limited, because of the lack of necessary equipment. While state of the art medical equipment can be found in medical facilities, such is not the case in emergency situations or military applications. This is particularly true in the area of ventilators.
Inspiration-only ventilators are known and widely used in hospital settings as they provide useful breathing circuits while minimizing the amount of oxygen utilized in treating the patient.
Current ventilators are generally designed for stationary, medical facilities. They are heavy, cumbersome and ill suited for portable applications. Most ventilators utilize medical grade air or highly flammable, compressed canisters of oxygen for its oxygen sources. These tanks air/oxygen are heavy, cumbersome, and unsuitable for transport. Prior-art ventilators also require large power sources, making them even less suitable for quick, on-site use. Lastly, most known ventilators require operation by trained personnel in treatment environments, where additional equipment and resources are easily available.
For example, U.S. Pat. No. 5,664,563 to Schroeder, et al., disclose a computer controlled pneumatic ventilator system that includes a double venturi drive and a disposable breathing circuit. The double venturi drive provides quicker completion of the exhalation phase leading to an overall improved breathing circuit. The disposable breathing circuit allows the ventilator to be utilized by multiple patients without risk of contamination. This device utilizes canistered oxygen sources. This device also would be rendered inoperable under the conditions anticipated by the present invention.
Therefore, there is a need for portable ventilators that overcome the disadvantages of the existing stationary ventilators.
The following portable ventilators address some of the needs discussed above. U.S. Pat. Nos. 6,152,135, 5,881,722 and 5,868,133 to DeVries, et al., discloses a portable ventilator device that utilizes ambient air through a filter and a compressor system. The compressor operates continuously to provide air only during inspiration. The DeVries, et al., devices are utilized in hospital settings and are intended to provide a patient with mobility when using the ventilator. Since these devices are not directed to on-site emergency use, they provide closed loop control, sophisticated valve systems and circuitry that would render them inoperable under the types of emergency conditions anticipated by the present invention.
The references cited above recognize the need for portable ventilators that provide a consistent breathing circuit. As is the case with most portable ventilators, these devices provide breathing circuits including valve systems and an oxygen source. However, these devices lack the means by which they can be quickly facilitated in emergency situations where there are no stationary sources of power. Secondly, most of these devices depend on canister-style oxygen sources, which are cumbersome, and lessen the ability of the ventilators to be truly portable. Thirdly, the prior art ventilators do not provide breathing circuits that can be continuously used in the absence of stationary power sources. These and other drawbacks are overcome by the present invention as will be discussed, below.
It is therefore an objective of this invention to provide a portable ventilator that provides short-term ventilatory support.
It is another objective of the present invention to provide a portable ventilator that includes a pneumatic subsystem, a power subsystem and a sensor subsystem.
It is another objective of the present invention to provide a portable ventilator wherein the pneumatic subsystem includes two dual head compressor for increased air output.
It is another objective of the present invention to provide a portable ventilator wherein the pneumatic subsystem includes an accumulator.
It is another objective of the present invention to provide a portable ventilator that is a disposable one-use device having an indefinite shelf life.
It is also another objective of the present invention to provide a portable ventilator that includes a pneumatic subsystem, a power subsystem, a control subsystem and an alarm subsystem.
It is another objective of the present invention to provide a portable ventilator wherein the pneumatic subsystem includes one dual head compressor for increased air output and a means for relieving air manifold pressure with a single head compressor, thereby eliminating the need for an accumulator.
It is another objective of the present invention to provide a portable ventilator wherein the power subsystem includes a battery source and a jack that allows the ventilator to access an external power source, where the battery or the external power source is used to power the pneumatic, control and alarm subsystems.
It is another objective of the present invention to provide a portable ventilator wherein the power subsystem also includes a power conditioning circuit to eliminate fluctuating voltages to the control subsystem.
It is also another objective of the present invention to provide a portable ventilator wherein the control subsystem includes a timing circuit and a relay switch to control the on-off cycle of the dual-head and single head compressors.
It is also another objective of the present invention to provide a portable ventilator wherein the alarm subsystem is capable of visually indicating repairable, non-repairable and patient based problems as well as an audible alarm.
It is another objective of the present invention to provide a portable ventilator that is a disposable one-use device or a refurbished device having an indefinite shelf life.
These and other objectives have been described in the detailed description provided below.
a is a drawing of the portable ventilator shown in
a is a graph of the dual head compressor on-off cycle.
b is a graph of resistors and capacitor charging and discharging timing cycle.
c is a graph of the output of the timing circuit.
d is a graph of the higher power on-off cycle from the relay switch to the dual head compressor.
e is a graph of the higher power on-off cycle from the relay switch to the single head compressor.
The present invention is a portable ventilator that provides short-term ventilatory support to one or more patients for the management of trauma or respiratory paralysis. As shown in
Also in
The Pneumatic Subsystem:
As shown in
The Logic Board:
The logic board B includes timing circuit T and is connected to the power subsystem P. Logic board B controls power to compressors 1a and 1b in order to turn 1a and 1b on and off. Duration of the on-time of compressors 1a and 1b determines the amount of air that is delivered to the user. The logic board B utilizes analog logic and does not require microprocessor control. The logic board B is also connected to the sensor subsystem S.
The Sensor Subsystem:
As shown in
The Power Subsystem:
As shown in
The Portable Ventilator:
As shown in
Housing 8 also a recessed control panel 8c. Control panel 8c includes ports for providing air to the user through known means. The panel 8c also includes a switch for selecting desired air flow rates, an on/off switch, and can include a switch for recharging the batteries 7. The control panel 8c is recessed to prevent damage to any instrumentation positioned thereon.
The portable ventilator V of the present invention implements controlled ventilation and assists control ventilation to a patient. Example 1 below shows functionality and performance of two portable ventilators V described above.
The Sekos 2 and 3 ventilators were tested. All tidal volumes, respiratory rates and other parameters were within ±10% of the settings existing on the ventilator V.
The portable ventilators tested above, have been shown to be superior in performance to traditional “ambu-bags”. These and other portable ventilators having the features discussed above are within the scope of this invention.
The present invention includes a preferred embodiment as shown in
The portable ventilator V2 as shown in
The Pneumatic Subsystem N2:
As shown in
For an equivalent tidal volume output:
Dual Head Compressor: weight—14.2 oz, size—28.9 cubic inches.
2 Single Head Compressors: weight—20.4 oz, size—32.0 cubic inches.
Dual-head compressors draw in outside air and increase pressure within, to allow for the proper tidal volumes to be pushed through a small amount of space. Using the ideal gas law PV=nRT, where (P)=pressure, (V)=volume, (n)=number of molecules, (R)=gas law constant, and (T)=temperature, the values nRT must remain constant when dual head compressor 101 is operational. Thus, as necessitated by the proper operation of ventilator V2, obtaining particular volumes (V) of air from the environment into a small, fixed volume of the ventilator V2, requires that the pressure (P) of the air a must be increased to keep nRT the same. The increased pressure of air a forces the air a through the ventilator V2 into the lungs of the patient H. This is due to the tendencies of fluids, here the compressed air a, to flow from the area of greater pressure of the ventilator V2 to the area of lower pressure of the lungs of the patient H, thereby filling them.
As shown in
During the exhalation cycle, exhaled air a, is returned from the patient H through the patient valve port 110, tubing 109 and the bi-directional port 103b. The single head compressor 102 causes flutter valve 103 to close input port 103a, thereby directing the exhaled air ae into exhaust port 103c. Exhaled air ae passes from exhaust port 103c into medical grade tubing 111. Tubing 111 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 111 includes all necessary fittings and attachments. Tubing 111 includes a t-junction 111a that directs the exhaled air ae into a second pressure sensor 112. Second pressure sensor 112 verifies whether patient H is exhaling. In an alternate embodiment, t-junction 111a and pressure sensor 112 can be replaced with an in-line flow sensor (not shown). The exhaled air ae is directed to a patient exhale port 115, positioned on the ventilator housing 100. Prior to reaching the exhale port 115, the exhaled air ae is directed through an in-line capnography chamber 113. The capnography chamber 113 is used to detect the presence of exhaled C02 in exhaled air ae. The exhaled air ae travels from the capnography chamber 113 through medical grade tubing 114. Tubing 114 may be premanufactured plastic or metal and may be integral to interior portion 100b. As is understood by one of ordinary skill in the art, tubing 114 includes all necessary fittings and attachments. An additional calorimetric or chemical capnography sensor CS may be connected externally to portable ventilator V2 at exhale port 115, to further monitor ventilation efficiency. As shown in
It is important to note that the exhaust port 118 is positioned away from exhaust port 115 so as not to alter capnography measurements obtained from capnography sensors 113 and CS.
The Power Subsystem P2:
The power subsystem P2, as shown in
The power subsystem P2 utilizes the voltage regulator circuit 205 to eliminate fluctuating voltages to the control subsystem C2. For components in the control and alarm subsystems C2 and A2, respectively, that require a lower voltage, a second voltage regulator circuit 206 is utilized. Additionally, the power subsystem P2 provides driving voltage through the control subsystem C2 to the dual head compressor 101 and the single head compressor 102 of the pneumatic subsystem N2.
The Control Subsystem C2:
As discussed under the pneumatic subsystem N2 above, the on-off cycle between dual head compressor 101 and single head compressor 102 is critical to the operation of the preferred embodiment as shown in
The breath-timing cycle is defined by the respiratory rate and the tidal volume, the values for which have been selected in accordance with American Medical Association guidelines.
As shown in
The respiratory rate is the number of complete breath-timing cycles per minute. The tidal volume is determined by the amount of air delivered during the inspiration phase in one breath-timing cycle. Tidal volume is the product of the flow rate of the compressor 101 by the on time t1 of compressor 101. Therefore:
t1=TV/f (1)
where TV=tidal volume, f=flow rate of compressor 101;
t1+t2=60 seconds/RR (2)
where RR=respiratory rate, the number of breaths per minute;
t2=60/RR−t1=60/RR−TV/f. (3)
The values for t1 and t2 are thus determined by using the AMA's respiratory rate and tidal volume guidelines, as well as the flow rate of compressor 101. Diode 406 is used to allow the possibility that t1 less than t2.
As would be understood by one of ordinary skill in the art, the capacitor 403, first resistor 404 and second resistor 405 form a charging and discharging timing circuit. In the present invention, as shown in
t1=0.693(r1+r2)c1 and (4)
t2=0.693(r2)c1; (5)
where r1 is the value of the first resistor 404, r2 is the value of the second resistor 405 and c1 is the value of the capacitor 403.
Because the output of the charging and discharging circuit is indeterminate with respect to an on or off state of compressor 101, timing circuit 401 is utilized to establish a clear demarcation of on and off states, as shown in
It is important to note that timing circuit 401 is not powerful enough to operate compressors 101 and 102 directly. Therefore, the relay 402 is used where the output of timing circuit 401, as shown in
As shown in
As shown in
It is also important to note that the timing characteristics, as shown in
The Alarm Subsystem A2:
As shown in
A low voltage detect circuit 507 is connected to the battery 201 and the power switch 205 of the power subsystem P2 to indicate when voltage is too low. Low voltage detect circuit 507 is also connected to the light alarm suppression switch 501 and repairable LED indicator 502 to denote a repairable problem to the user U. The low voltage detect circuit 507 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
A missing pulse/device/component failure detect circuit 508 is connected to the control subsystem C2. The missing pulse/device/component failure detect circuit 508 is also is also connected to the light alarm suppression switch 501 and non-repairable LED indicator 503 to denote a non-repairable problem to the user U, ie portable ventilator V2 must be replaced. The missing pulse/device/component failure detect circuit 508 is also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
Carbon dioxide detect circuit 509 is connected to a carbon dioxide event counter 510 and a carbon dioxide event trigger 511. The circuit 509, counter 510 and trigger 511 is connected to the capnography sensor 113 of the pneumatic subsystem N2 to indicate insignificant carbon dioxide concentrations in exhaled air ae. The carbon dioxide event trigger 511 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The circuit 509, counter 510 and trigger 511 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
An exhale airflow detect circuit 512 is connected to an exhale event counter 513 and an exhale event trigger 514. The exhale circuit 512, event counter 513 and event trigger 514 is connected to the pressure sensor 112 of the pneumatic subsystem N2. The exhale event trigger 514 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The exhale circuit 512, event counter 513 and event trigger 514 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U.
An inspiration pressure detect circuit 515 is connected to an inspiration event counter 516 and inspiration event trigger 517 to generate an alarm response when the ambient air, a, pressure is too high or too low. The inspiration circuit 515 is connected to the pressure sensor 107 of the pneumatic subsystem N2. The inspiration event trigger 517 is further connected to the light alarm suppression switch 501 and patient problem LED indicator 502 to denote a improper connection or patient distress to the user U. The inspiration pressure detect circuit 515, inspiration event counter 516 and inspiration event trigger 517 are also connected to the audible alarm suppression switch 505 and the audible alarm to indicate a sound-based alarm to the user U. This inspiration pressure detect circuit 515 can also cause the relay control switch 402d to immediately switch from operating the dual head compressor 101 to operating the single head compressor 102 when a preset pressure threshold is exceeded, to prevent harm to patient H.
This application is a continuation-in-part of Ser. No. 10/228,166, filed Aug. 26, 2002, now U.S. Pat. No. 7,080,646.
Number | Name | Date | Kind |
---|---|---|---|
4080103 | Bird | Mar 1978 | A |
4592349 | Bird | Jun 1986 | A |
4681099 | Sato et al. | Jul 1987 | A |
5868133 | DeVries et al. | Feb 1999 | A |
7080646 | Wiesmann et al. | Jul 2006 | B2 |
20030172931 | Kerechanin et al. | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040221845 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10228166 | Aug 2002 | US |
Child | 10787522 | US |