Self drilling sensor well for sensing the atmosphere in an enclosure

Information

  • Patent Grant
  • 6827285
  • Patent Number
    6,827,285
  • Date Filed
    Thursday, March 20, 2003
    21 years ago
  • Date Issued
    Tuesday, December 7, 2004
    20 years ago
Abstract
A sensor well mechanism is disclosed for that may be directed inserted into an enclosure where a measurement of the atmosphere within the enclosure is desired. The sensor well is provided with a drilling head and a drill point allowing the sensor well to be directly inserted into an enclosure using a tool. The sensor well is provided with a bore and slots such that a sensor may be provided within the bore of the sensor well and may be exposed to the atmosphere of an enclosure after the sensor well is inserted into the enclosure.
Description




FIELD OF THE INVENTION




The present invention is related to a heating, ventilating and air conditioning (HVAC) system. More particularly, the present invention relates to a device to position and contain a sensing element into an enclosure, such as an air duct or a variable air volume (VAV) box, of an HVAC system for detecting air temperature, static pressure, humidity, smoke, impurities, and sampling gaseous mixtures. The present invention further relates to a sensor well device that is inexpensive and quick to install in a field environment.




BACKGROUND OF THE INVENTION




HVAC systems are designed and installed to maintain environmental conditions within buildings for the comfort of the occupants. A typical building HVAC system is divided into zones and is adapted to maintain each zone within predefined environmental parameters such as humidity and temperature. An air handling unit supplies conditioned air to ductwork that distributes the air to each of the zones. The air handling unit generally includes elements for introducing outdoor air into the system and for exhausting air from the system. Air handlers typically comprise a centrifugal blower that moves air over an evaporator or water coil and pressurizes the air for distribution through a duct at a desired flow rate.




Air flow from an air handling unit to different regions of the zone is regulated by a separate VAV terminal unit, also called a VAV box. The typical VAV box has a damper driven by an actuator to vary the flow of air from the air distribution duct into the associated zone region. VAV boxes serving zones on exterior walls typically have a heating element to increase the temperature of the air that flows in to the associated room. These components are operated by a controller in response to signals from devices that sense air temperature and flow rate. Such a system is shown for example in U.S. Pat. No. 6,338,437, which is incorporated by reference herein.




In the temperature control industry, air sensors are commonly used to as inputs to a building automation control system to maintain temperature, humidity, and static pressure in the controlled environment of a building. During installation of a typical building automation system in a moderate sized building there are hundreds of duct-mounted sensors to install. A common application of duct-mounted sensors is called VAV box discharge temperatures sensors, which measure the air temperature of the discharge (supply air) of an individual VAV box.




Advances in automated testing tools have resulted with an increased need to measure individual VAV box discharge air temperature. Computerized automated testing of VAV box performance is aided by equipping each VAV box with a individual discharge air temperature sensor. Automated testing facilitates testing of multiple VAV box performance in one testing session. This testing application requires either a discharge air temperature sensor or a functional room temperature sensor for each zone controlled by a VAV box.




Often a jobsite construction schedule is rushed and VAV box testing is scheduled to begin without the room temperature sensor points installed or functional. Thus creating a need for an inexpensive and quick installing self-drilling sensor well used for temperature sensing in a VAV box discharge duct.




Known duct temperature element mounting assemblies include Siemens Building Technologies PN 536-811, manufactured in Buffalo Grove, Ill. and others, require an installer to drill three accurate location holes, endure two drill bit changes, install two mounting screws, two wire extenders, four electrical terminations and two wire connecters for installation. The estimated time for installation of the Siemens device is twenty-one minutes. This translates into an expensive installation that may not be economically justified for the project.





FIG. 1

shows a conventional duct mounted temperature sensor


1


mounted in an air duct


2


. The sensing element is extended into the duct air stream


3


to measure the air temperature. The mounting bracket


4


through which the sensor


1


extends requires three mounting holes


5


,


6


and


7


for installation. The elastic gasket material


8


seals the mounting bracket


4


to the air duct


2


and prevents air leakage. The sensor electrical leads


9


,


10


extend approximately five inches and would require a field installed wire extension to connect to a terminal box controller device to sense the air temperature. With this type of duct mounted temperature sensor device the cost and the labor to install it is considerably high. These costs may preclude the installation of this device in the field and automated testing of individual VAV box performance would be degraded.




SUMMARY OF THE INVENTION




Therefore, one object of the present invention is to provide a self-drilling sensor well that does not require a separately drilled mounting hole for installation. This is well suited for VAV box and air duct sensor applications as the speed of installation is increased. Still another object of the present invention is to provide a sensor well that enables the sensor element to be removed and replaced quickly for maintenance and repair.




To achieve these objectives, the present invention is a sensor well for use with VAV boxes, air ducts or any enclosure where atmosphere testing is required, wherein the sensor well may itself be used to drill a mounting hole and to be screwed into place. After the sensor well is drilled into place, a sensing element may be hand inserted into a bore within the sensor well until the sensor is seated. Alternatively, the sensor may be integrally provided with the sensor well before the sensor well is drilled into place. An elastic gasket material may be provided to seal the duct opening and prevent the sensor well from vibrating loose. The sensing element is exposed to the atmosphere by one or more cut away slots in the sensor well and by the conduction of the sensor well itself to equalize with the ambient temperature of the atmosphere in the air duct. Accordingly, the sensor well is responsive to changes in atmospheric conditions in the duct environment and can be removed and maintained or replaced with ease. This invention reduces the estimated time it takes to install a sensor in a typical duct and thus reducing the material costs and the labor costs of installation.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements and;





FIG. 1

is an example of a prior art mounting bracket for inserting a sensor into the atmosphere of an air duct;





FIG. 2

is an illustration of the preferred embodiment of the present invention before the sensor well is inserted into the enclosure;





FIG. 3

is an illustration of the preferred embodiment of the present invention after the sensor well is inserted into the enclosure;





FIG. 4

is an illustration of an alternative embodiment wherein a sensor is provided within the bore of a sensor well before the sensor well is inserted into an enclosure;





FIG. 5

is a flow chart setting forth the preferred embodiment of the present invention; and





FIG. 6

is a flow chart setting forth an alternative embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Hereinafter, the present invention will be described in detail with references to accompanying drawings. Referring to

FIG. 2

, the present invention comprises a sensor well device


20


having a cylindrical body with threads


22


formed around the exterior circumference of the sensor well


20


. The sensor well


22


further comprises a gripping head


24


and washer lip


26


to facilitate horizontal thrust applied during a drilling operation. Sensor well


20


is used to enclose environmental sensing elements, such as sensor


40


in an enclosure


60


, such as a VAV box or an air duct. The sensor well


20


is capable of forming its own mounting hole, to provide an economical means to install and mount a sensor


40


into an enclosure


60


to measure the atmosphere


80


within the enclosure


60


. The sensor well


20


itself may be used as a drilling tool and is intended to remain in the enclosure


60


and hold the sensing element


40


in the atmosphere


80


of the enclosure. The gripping head


24


may fit into a common sized socket adaptor tool, not shown, which is chucked into a powered hand held drill motor. A hand held drill, provided with a socket adapter, may be used to drill the sensor well


20


into the enclosure


60


forming a mounting hole in which the sensor well


20


will rest.




As shown in

FIG. 2

, the sensor well


20


is provided with one or more drilling points


28


which allow the sensor well


20


to penetrate the enclosure


60


. Threads


22


which engage with the enclosure


60


, after the one or more entry points


28


penetrate the enclosure


60


, to secure the sensor well


20


within the enclosure


60


. Threads


22


of the sensor well


20


are provided with a common screw pitch designed to form threads in the enclosure as the sensor well


20


rotated during installation into the enclosure


60


thus mounting the sensor well


20


into the enclosure


60


. The drilling point


28


is formed to a sharpened point to aid the beginning of the drilling operation minimizing. The drilling point


28


consists of a single or double flute point with a sharp point to prevent drill “wandering” during the start of the drilling operation. The drill point


28


is designed to displace a portion of the enclosure into a “lip” on the opposite side of the duct material. This raised lip grips the screw threads


22


and holds the sensor well firmly in place. When the drill point


28


is comprised of more than one flute, the flutes are preferably equidistantly arranged around the circumference of lower end of the sensor well


22


.




Referring still to

FIG. 2

, washer lip


26


provides a bearing surface for the socket adaptor to rest during the drilling used to install the sensor well


20


. Before the sensor well


20


is drilled into an enclosure


60


, an insulating gasket


80


is provided between the sensor well


20


and the enclosure


60


before the sensor well


20


is inserted into the enclosure


60


. The washer lip


26


and the gasket


80


serve to provide an air tight seal between the enclosure


60


and the sensor well head


24


. Gasket


80


is constructed of an elastic material that will conform to irregularities in the enclosure surface


60


and when compressed by the sensor


40


, serves to prevent the sensor body


40


from becoming loose due to vibration. Preferably, gasket


80


is comprised of an elastic material such as rubber, foam or a composite material which may be compressible. The upper surface of the gasket


80


facing the lower surface of washer lip


26


is preferably provided with an adhesive material to better secure the gasket


80


to the washer lip


26


.




As shown in

FIG. 3

, after the sensor well


20


is installed into the enclosure


60


, the separate sensing element


40


is slipped into the cylindrical bore


30


of the sensor well


20


. When the sensing element


40


is placed into the bore


30


, it may be held in place by friction or by mechanical means known in the art. In a preferred embodiment, the sensor well


20


is provided with two transverse slots


32


,


34


located 180 degrees apart on separate sections of the sensor well


20


to expose the sensor element


40


to the atmosphere


85


. These slots


32


,


34


allow for the sensor element


40


to be exposed to atmosphere


85


of the enclosure


60


regardless of position of rotation of the sensor well


20


after installation. While the preferred embodiment implements two slots


32


,


34


located 180 degrees apart along the circumference of the sensor well


20


, any number of slots may be located in varying fashion.




The temperature sensor element


40


may consist of several types of commercially available types of sensing elements, including but not limited to: platinum sensing coil types, RTD elements, thermister elements and other types of sensing elements used for measuring temperature, humidity, air pressure, air composition and air quality. The body of sensor element


40


is preferably constructed of a heat conductive material that allows the sensor element


40


to equalize with the temperature of the air within the air duct being monitored. The lead wires


90


,


91


extend from the sensing element


40


and may be connected to a measuring, monitoring or control device


100


, allowing for the measuring of the atmosphere


85


within the enclosure


60


.





FIG. 4

shows an alternative embodiment in which the temperature sensor element


40


and the sensor well


20


may together be provided as an integral member before the sensor well


20


is inserted into an enclosure. In such a case, lead wires


90


,


91


may be provided in a detachable socket


92


that may be inserted into the bore


30


of sensor well


20


and connected to the sensor element


40


after the sensor well


20


has been inserted into enclosure


60


.




With reference to

FIGS. 2 and 3

, the method according to the present invention is illustrated in FIG.


5


. In step


200


, a sensor well


20


is provided that is directly capable of being directly inserted into an enclosure, such as a VAV box or an air duct. The sensor well


20


may be provided with a head element


24


facilitating the direct insertion of the sensor well element


20


into the enclosure


60


. In step


210


, suing a powered hand drill or a hand tool, the sensor well


20


may be directly inserted into the enclosure


60


. In step


220


, after the sensor well has been directly inserted into the enclosure


60


, sensor


200


may be inserted into the bore


30


of the sensor well


22


. As shown in

FIGS. 2 and 3

, the sensor well is provided with slots


32


,


34


exposing the sensor


40


to the atmosphere


65


of the enclosure


60


. In step


230


, sensor


40


, which may be provided with a pair of lead wires, may be connected to a VAV box controller device or may act as a sensor input to a building automation or HVAC system. Sensor


40


may also be connected to a hand-held testing device. In step


240


, the atmosphere


65


of the enclosure


60


may then be tested or evaluated using the sensor


40


and the testing device


100


. As previously discussed, measuring device


100


may be a hand-held device, a VAV box controller or




With reference to

FIG. 4

, an alternative method according to the present invention is shown in FIG.


6


. The method as shown in

FIG. 6

is similar to the method shown in

FIG. 5

, except that in step


300


, the sensor element


40


is already inserted into the bore


30


or sensor well


20


. In step


310


, the sensor well is directly inserted into the enclosure


60


. In step


320


, a wiring socket


92


may be inserted into the bore


30


of the sensor well


20


and may be connected to the sensor element


40


. In step


330


, the lead wires


90


and


91


of socket


92


can be connected to a device


100


for measuring the atmosphere within the enclosure


60


. In step


340


, the atmosphere within the enclosure


60


can then be measured.




It will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather than the foregoing description and all changes that come within the meaning and range and equivalence thereof are intended to be embraced therein.



Claims
  • 1. A sensor well for insertion into an enclosure, said sensor well comprising:A body portion, having a first end and a second end, provided with a bore for holding a sensing device, wherein said body portion is provided with at least one slot to expose said sensor within said bore to atmosphere within said enclosure, said body portion further provided with a head portion at said first end for allowing said sensor well to be directly inserted into said enclosure, and threads disposed around the exterior of the body portion of the sensor well for engaging with said enclosure.
  • 2. The sensor well according to claim 1, wherein said enclosure is a VAV box, said VAV box receiving airflow from a source and providing said air flow to an environment, said VAV box including a damper for controlling said air flow, said damper being controlled by an actuator.
  • 3. The sensor well according to claim 1, wherein said enclosure is a duct in a HVAC system.
  • 4. The sensor well according to claim 1, wherein said enclosure is comprised of one of the group comprised of metal or fiberglass.
  • 5. The sensor well according to claim 1, wherein a plurality of slots are provided in said sensor well to expose said sensing element to the atmosphere in said enclosure.
  • 6. The sensor well according to claim 5, wherein said slots are spaced equidistant from each other around the circumference of said sensor well.
  • 7. The sensor well according to claim 1, wherein one or more flutes are provided on said second end of said sensor well to allow said sensor well to be directly inserted into said enclosure.
  • 8. The sensor well according to claim 7, wherein a plurality of flutes are provided at the second end of said sensor well.
  • 9. The sensor well according to claim 7, wherein said flutes are equidistantly spaced from each other around the circumference of the sensor well.
  • 10. The sensor well according to claim 1, further comprising a washer lip for engaging said enclosure.
  • 11. The sensor well according to claim 1, wherein a sensor is disposed within the bore of said sensor well.
  • 12. A sensor well for insertion into an VAV box, said VAV box receiving airflow from a source and providing said air flow to an environment, said VAV box including a damper for controlling said air flow, said damper being controlled by an actuator, said sensor well comprising:A body portion, having a first end and a second end, provided with a bore for holding a sensing device, wherein said body portion is provided with at least one slot to expose said sensor within said bore to atmosphere within said VAV box, said body portion further provided with a head portion at said first end for allowing said sensor well to be directly inserted into said enclosure.
  • 13. The sensor well according to claim 12, wherein a plurality of slots are provided in said sensor well to expose said sensing element to the atmosphere in said enclosure.
  • 14. The sensor well according to claim 13, wherein said slots are spaced equidistant from each other around the circumference of said sensor well.
  • 15. The sensor well according to claim 12, wherein one or more flutes are provided on said second end of said sensor well to allow said sensor well to be directly inserted into said enclosure.
  • 16. The sensor well according to claim 15, wherein a plurality of flutes are provided at the second end of said sensor well.
  • 17. The sensor well according to claim 16, wherein said said flutes are equidistantly spaced from each other around the circumference of the sensor well.
  • 18. The sensor well according to claim 12, further comprising threads disposed around the exterior of the sensor well for engaging with said enclosure.
  • 19. The sensor well according to claim 12, wherein a sensor is disposed within the bore of said sensor well.
  • 20. A sensor well for insertion into an enclosure, said sensor well comprising:A body portion, having a first end and a second end, provided with a bore for holding a sensing device, wherein said body portion is provided with at least one slot to expose said sensor within said bore to atmosphere within said enclosure, said body portion further provided with a head portion at said first end for allowing said sensor well to be directly inserted into said enclosure and a washer lip for engaging said enclosure, wherein one or more flutes are provided on said second end of said body portion of said sensor well to allow said sensor well to be directly inserted into said enclosure.
  • 21. The sensor well according to claim 20, wherein said enclosure is a VAV box, said VAV box receiving airflow from a source and providing said air flow to an environment, said VAV box including a damper for controlling said air flow, said damper being controlled by an actuator.
  • 22. The sensor well according to claim 20, wherein said enclosure is a duct in a HVAC system.
  • 23. The sensor well according to claim 20, wherein said enclosure is comprised of one of the group comprised of metal or fiberglass.
  • 24. The sensor well according to claim 20, wherein a plurality of slots are provided in said sensor well to expose said sensing element to the atmosphere in said enclosure.
  • 25. The sensor well according to claim 24, wherein said slots are spaced equidistant from each other around the circumference of said sensor well.
  • 26. The sensor well according to claim 1, wherein a plurality of flutes are provided at the second end of said sensor well.
  • 27. The sensor well according to claim 1, wherein said flutes are equidistantly spaced from each other around the circumference of the sensor well.
  • 28. The sensor well according to claim 20, further comprising threads disposed around the exterior of the sensor well for engaging with said enclosure.
  • 29. The sensor well according to claim 20, wherein a sensor is disposed within the bore of said sensor well.
CROSS-REFERENCE TO RELATED CO-PENDING APPLICATIONS

The following patent application covers subject matter related to the subject matter of the present invention: Method for Measuring the Atmosphere Within an Enclosure Using a Self-Drilling Sensor Well, U.S. patent application Ser. No. 10/392,587.

US Referenced Citations (9)
Number Name Date Kind
4788871 Nelson et al. Dec 1988 A
4866839 Covey Sep 1989 A
4875031 Filippi et al. Oct 1989 A
5381950 Aldridge Jan 1995 A
5446677 Jensen et al. Aug 1995 A
5731953 Sakurai Mar 1998 A
6338437 Kline et al. Jan 2002 B1
6427260 Osborne-Kirby Aug 2002 B1
6547777 DiResta et al. Apr 2003 B2