This invention relates to transient electronics, and in particular to trigger devices and triggering methods utilized to initiate the fragmentation of frangible glass substrates in transient electronic assemblies.
Large area sensing is critical for a variety of military, ecological and commercial interests and has historically been served through the use of centralized long-range sensors. However, rapid improvements in miniaturization of electronic systems have significantly improved the capabilities of small sensor devices. These micro-sensors have the potential to create “large N” distributed networks with advantages in operational adaptability, non-traditional sensing modalities that are only possible with close proximity, increased sensitivity and knowledge extraction through networked intelligence.
While distributed network systems have remarkable promise, their realistic use is limited by risks associated with their accumulation in the environment, detection and defeat, and exploitation due to inability to maintain positive control (unlike centralized long-range sensors).
The phrase “transient electronics” refers to a relatively new family of electronic devices that disappear (disaggregate and disperse) within a set period of time, making them ideally suited for distributed network systems. Conventional transient electronic systems typically rely on the use of soluble substrates and electronic materials (such as silk). When placed into solvent (typically water), these conventional substrates and electronics slowly dissolve into solution. As such, a distributed network system made up of conventional transient electronic devices can be expected to “disappear” over a relatively short amount of time (e.g., after periodic rainfall).
Although the conventional transient electronic approaches achieve the goal of causing the electronics to “disappear” after use, the long dissolution period required to achieve complete disaggregation and dispersal make the conventional approaches unfit for discrete (e.g., military) applications that require rapid and complete disaggregation upon command. Moreover, early conventional approaches utilize materials that were not compatible with existing integrated circuit fabrication and assembly techniques, requiring the development of new IC fabrication processes at significant cost.
More recently, a new type of transient electronic device was introduced in which functional circuitry fabricated using well-known low-cost fabrication techniques (e.g., CMOS or SOI) and disposed on a frangible glass substrate that, when subjected to a small initial fracture force, underwent complete disaggregation (shattering) in a manner that releases sufficient potential energy to also cause disaggregation of the functional circuitry. The transient event (i.e., disaggregation) was controlled by a trigger mechanism configured to generate the required initial fracture force by way of applying resistive heating, a chemical reaction or a localized mechanical pressure to the frangible glass substrate in response to a suitable trigger signal. An issue with some triggering approaches is that they may require a substantial electronic system to provide a particular current or voltage pulse in order to provide the necessary conditions to initiate fragmentation. For example, resistive heating type trigger mechanisms may require a pulse shaping circuit configured to generate and transmit a shaped current pulse from a power source to the resistive heating element in order to generate initial fracture.
What is needed is a simple and reliable trigger mechanism and triggering method for initiating the powderization of a frangible glass substrate in a transient electronic device that reliably achieves complete, on-command disaggregation of the electronic circuitry formed thereon in response to an electronic trigger signal.
The present invention is directed to a simple and reliable trigger mechanism and associated triggering method for reliably initiating powerderization of functional circuitry (electronic elements) in a transient electronic device by way of generating a localized thermal pulse (i.e., rapid heating followed by rapid cooling) using a self-limiting circuit arrangement that avoids the need for current pulse shaping circuitry and/or complicated connection arrangements, thereby avoiding the problems associated with conventional approaches.
According to an aspect of the invention, the trigger mechanism includes a self-limiting resistive element that is at least partially formed on a frangible glass substrate. The frangible glass substrate is constructed substantially entirely from a glass material having an associated melting point temperature using known techniques such that it undergoes complete disaggregation (shattering) in response to an applied initial fracture force. The electronic elements (e.g., a silicon-on-insulator-based (SOI-based) IC, a chip-based IC, or thin-film electronics patterned directly onto the frangible glass substrate) and the self-limiting resistive element of the trigger mechanism are fixedly attached to one or both surfaces of the frangible glass substrate, with the electronic elements typically dispose over a first region of the frangible glass substrate, and the self-limiting resistive element disposed over a localized (i.e., relatively small) second region of the frangible glass substrate. With this arrangement, the localized thermal pulse generated by the self-limiting resistive element produces a stress profile caused by rapid heating above the glass' melting point temperature and then cooling in the localized region located adjacent (e.g., below) the self-limiting resistive element. By configuring the trigger mechanism in the manner described below, the resulting stress profile generates the desired initial fracture force in the localized region, thereby initiating the complete disaggregation of the frangible glass substrate, along with the electronic elements disposed thereon.
According to another aspect of the present invention, the self-limiting resistive element includes a current-limiting portion (e.g., a fuse, timer-based or thermistor-based circuit) that independently controls (i.e., without requiring an externally-generated control signal) an amount generated heat by way of terminating the flow of a trigger current through the self-limiting resistive element after a predetermined amount of generated heat is transmitted into the localized region of the frangible glass substrate. In an exemplary embodiment, the current-limiting portion is implemented by a fuse structure that is configured to melt/break after a predetermined amount of heat is generated by the self-limiting resistive element, thereby producing an open circuit that terminates further heat generation by way of preventing further trigger current flow through the self-limiting resistive element. Moreover, by configuring the self-limiting resistive element in the manner described below such that heat rapidly dissipates from the localized region of the frangible glass substrate after termination of the trigger current, the self-limiting resistive element provides a simple and reliable mechanism for generating the desired thermal pulse and resulting stress profile that produce the initial fracture force in the localized region of the frangible glass substrate.
According to another aspect of the present invention, the self-limiting resistive element facilitates electronic control of the triggering event using very simple addressing electronics, thereby minimizing system complexity. That is, because the self-limiting resistive element eliminates the need for current shaping electronics, the trigger mechanism is able to achieve complete, on-command disaggregation of the electronic circuitry formed on the frangible glass substrate using a simple switch element that is controllable (i.e., actuated to generate the trigger current) by way of an electronic trigger signal to selectively couple the self-limiting resistive element to a direct-current (DC) power source (e.g., a battery). Using this arrangement, the switch element is turned on at the beginning of a transient event in response to the electronic trigger signal, thereby initiating a large direct current (i.e., the trigger current) to flow from the DC power source through the self-limiting resistive element, whereby the self-limiting resistive element operates as described above to generate the thermal pulse resulting in the initial fracture force causing disaggregation of the frangible glass substrate. As such, in contrast to conventional resistive-heat-type trigger mechanisms that require pulse shaping circuity and complicated addressing arrangements, the triggering mechanism of the present invention is simple and reliable, thereby reducing manufacturing costs and complexity.
As mentioned above, characteristics of the thermal pulse (i.e., the rate and duration of heat generation that produces the rapid temperature increase) are entirely independently controlled by operation of the self-limiting resistive element (i.e., without requiring an externally-generated control signal). Specifically, the self-limiting resistive element is configured to generate resistive heat (i.e., by way of passing the large trigger current through one or more resistor structures) for a predetermined amount of time after actuation of the switch element, whereby a temperature of the localized region of the frangible glass substrate rapidly increases from a relatively low initial temperature (e.g., approximately 140° C.) to a high (first) temperature level temperature (e.g., approximately 220° C.) that is above the melting point temperature of the glass forming the frangible glass substrate. The self-limiting resistive element is further configured to independently control the amount of generated heat by way of terminating the flow of trigger current through the resistor element(s) at the end of the predetermined time period, whereby terminating the heat generating process causes rapid cooling of the localized region (e.g., from the high (first) temperature (e.g., 220° C.) to a lower (second) temperature (e.g., approximately 200° C.), e.g., in approximately one second) by way of heat dissipation from the localized region into surrounding substrate regions. The present inventors determined that a thermal pulse generated in this manner produces a stress profile that reliably generates an initial fracture force in the localized region having sufficient strength to produce subsequent propagating fracture forces that pass throughout the frangible glass substrate, causing “powderization” (i.e., disaggregation or fragmentation) of the frangible glass substrate into micron-sized particulates. When a transient electronic device is constructed in accordance with the present invention, sufficient potential energy is released from the disaggregating/fragmenting glass substrate to cause propagation of cracks from the glass substrate into the electronic elements and other device structures (e.g., the self-limiting resistive element) with sufficient force to entirely powderize these structures as well. Because the trigger mechanism produces the rapid heating/cooling stress profile using only a simple switch and a self-limiting resistive element (i.e., without requiring an external control signal or other circuitry capable of generating a shaped current pulse), the present invention provides a low-cost and reliable triggering mechanism for initiating powderization of electronic elements disposed on a transient electronic device.
According to an embodiment of the present invention, the self-limiting resistive element is entirely formed by a resistive material that is deposited and patterned directly onto a surface of the frangible glass substrate using a standard thin-film fabrication technique (e.g., photolithographic or inkjet printing). In alternative embodiments, the resistive material includes magnesium, copper, tungsten, aluminum, molybdenum or chrome, or a combination of one or more of these metals. Other suitable materials may also be used, provided the material is sufficiently conductive and adheres to the frangible glass substrate surface well enough that heat is transferred efficiently into the localized region during the rapid heating portion of the thermal pulse.
According to an embodiment of the present invention, the self-limiting resistive element includes one or more resistive portion connected in series with the current-limiting portion between two (first and second) terminals, with the first terminal is coupled by way of the switch element to the direct current (DC) power source and the second terminal connected to a suitable ground structure. In one embodiment, the resistive material mentioned above is patterned to form two relatively large resistor structures connected by a narrow fuse element, where the resistor structures are configured to heat up but remain coherent during the thermal pulse, and the fuse element is configured to melt and break at the end of the rapid heating (first) time period. The use of a fuse element to implement the current-control portion of the self-limiting resistive element provides a low-cost, simple and highly reliable structure for independently controlling the amount of heat generated during the rapid heating process, and reliably produces an open circuit condition (i.e., by way of melting/breaking) that terminates flow of the trigger current through the resistor structures at the start of the rapid cooling portion of the thermal pulse.
In a presently preferred embodiment, the resistive material utilized to form the self-limiting resistive element is patterned into a bowtie-type structure in which the two resistor structures including respective downward-tapered sections, and the fuse element is formed by a narrow section of resistive material connected between tapered ends of the downward-tapered sections. In one embodiment, the fuse element includes a straight rectangular structure extending between the tapered end, and in another embodiment the narrow resistive material section forming the fuse element is disposed in a substantially S-shaped pattern. In either case, a width W of the narrow resistive material section is greater than a thickness of the frangible glass substrate determines to induce reliable disaggregation. In a practical embodiment using a 0.25 mm thick frangible glass substrate, the narrow resistive material section forming the fuse element has a width of at least 0.3 mm. In contrast, resistor structures can have almost any size, although while larger resistors ensure reliable fragmentation, they also require more power and energy from the power source. Accordingly, the smallest possible resistor structures are preferred in order to minimize power and energy requirements.
According to an embodiment of the present invention, to facilitate remote (wireless) control over the transient electronic device, the transient electronic device further includes a sensor configured to detect a transmitted wave signal (e.g., a light wave signal, a radio frequency (RF), or an acoustic/sound signal), and configured to then generate the electronic trigger signal used to actuate the switch element. In an exemplary embodiment, a remote optical signal is detected by a photodiode (light wave sensor), whereby current through the photodiode causes a silicon controlled rectifier (switch element) to latch, which in turn couples a battery across the self-limiting resistor element, ultimately causing disaggregation (fragmentation) of the glass substrate and any included electronics. While remote actuation of the transient electronic device is achieved using an optical signal in this example, RF signals and acoustic wave signals may be utilized by replacing the photodiode with a radio-frequency wave sensor or an acoustic wave sensor. Moreover, other physical and chemical stimuli may also be utilized in conjunction with an appropriate sensor to initiate a fragmentation sequence. Similarly, while latching is achieved using a silicon controlled rectifier, other switch elements may also be utilized, such as a single MOSFET transistor or a multiple-element latch circuit.
According to other alternative practical embodiments, one or more of the switch element and sensor utilized to control operation of the triggering mechanism may be formed/mounted directly on the frangible glass substrate, formed on a semiconductor layer/die on which the electronic elements are formed, or disposed on an external printed circuit board to which the transient electronic device is attached. For example, in the practical embodiment described above, one or both of the photodiode/sensor and the silicon controlled rectifier (switch) may be implemented by patterning suitable materials directly onto the frangible glass substrate, or may be implemented using CMOS fabrication techniques on a semiconductor structure (e.g., IC chip or SOI layer) on which the electronic elements are formed and that is fixedly attached to the frangible glass substrate.
In additional alternative embodiments, the frangible glass substrate comprises one of a stressed glass substrate including stress-engineered tensile and compressive layers that are operably attached together, a thermally tempered glass substrate including laminated layers of different glass types having associated different coefficient of thermal expansion (CTE) values, and an ion-exchange treated glass substrate. In each case, the frangible glass substrate contains enough stored energy to generate self-propagating secondary fractures in response to an initial fracture force such that the glass substrate completely disaggregates (“powderizes”) into micron-sized particulates by way of a mechanism similar to that captured in a Prince Rupert's Drop. In alternative embodiments, the electronic devices are either fabricated directly onto the frangible glass substrate using standard silicon-on-insulator (SOI) fabrication techniques (i.e., such that the functional circuitry is implemented as an SOI integrated circuit structure), or are separately fabricated on an IC die (chip) that is then attached to the frangible glass substrate using anodic bonding. In either case, the released potential energy during disaggregation of the frangible glass substrate is sufficient to also powderize the electronic devices, along with the trigger mechanism and any other structures that might be disposed on the frangible glass substrate.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings, where:
The present invention relates to an improvement in transient electronic devices. The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. As used herein, directional terms such as “upper”, “upward”, “lower”, “downward” and “over” are intended to provide relative positions for purposes of description, and are not intended to designate an absolute frame of reference. The terms “coupled” and “connected”, which are utilized herein, are defined as follows. The term “connected” is used to describe a direct connection between two circuit elements, for example, by way of a metal line formed in accordance with normal integrated circuit fabrication techniques. In contrast, the term “coupled” is used to describe either a direct connection or an indirect connection between two circuit elements. For example, two coupled elements may be directly connected by way of a metal line, or indirectly connected by way of an intervening circuit element (e.g., a capacitor, resistor, inductor, or by way of the source/drain terminals of a transistor). Various modifications to the preferred embodiment will be apparent to those with skill in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.
In order to produce transient electronic device 100 such that it achieves the preferred post-transience “powerderized” state depicted in
Functional electronics 120 include electronic elements 122 fabricated on a semiconductor base layer 121 (e.g., an SOI layer or an integrated circuit (IC) die/chip) that is fixedly attached to upper surface 111 and dispose over a corresponding region 110-1 of frangible glass substrate 110. As set forth above, the main purpose of transient electronics is to provide a way to essentially entirely eliminate an IC or other electronic elements for purposes of protecting the environment or maintaining confidentiality (i.e., preventing unauthorized reverse engineering of the elements/circuit). A benefit of fabricating transient electronic device 100 on frangible glass substrate 110 is that this approach both facilitates forming functional electronics 120 using low cost manufacturing techniques, and facilitates reliable elimination of functional electronics 120 by way of causing disaggregation of frangible glass substrate 110. In a preferred embodiment, functional electronics 120 are fabricated by way of forming electronic elements 122 on a suitable semiconductor (base) layer 121 using existing IC fabrication techniques (e.g., CMOS), and electronic elements 122 are configured to perform a prescribed useful function (e.g., sensor operations) up until the transient event. In one embodiment, the semiconductor layer 121 is a silicon “chip” (die) upon which electronic elements 122 are fabricated, and then the semiconductor layer 121 is fixedly attached to glass substrate 110 using known die bonding techniques (e.g., anodic bonding or by way of sealing glass) that assure coincident powderization of electronic elements 122 with frangible glass substrate 110. In a presently preferred embodiment, functional electronics 120 includes electronic elements 122 configured to form an IC device using standard silicon-on-insulator (SOI) fabrication techniques (i.e., such that the functional circuitry is implemented as an SOI integrated circuit structure). In another embodiment, functional electronics 120 are fabricated on an IC die that is “thinned” (e.g., subjected to chemical mechanical polishing) before the bonding process.
As set forth above, trigger mechanism 130 is configured to generate an initial fracture force in frangible glass substrate 110 in response to an electronic trigger signal TS. According to the present invention, trigger mechanism 130 achieves this function using a self-limiting resistive element 140 and a switch element 150 that are connected in series between a battery (or other DC power source PS) and ground. As depicted in
Referring to the top of
Referring to block 205 near the top of
As indicated in block 210 (
As indicated in block 220 (
As indicated in block 230 (
As indicated in block 240 (
As indicated in block 240 (
As depicted by the alternative embodiments shown in
Although the present invention has been described with respect to certain specific embodiments, it will be clear to those skilled in the art that the inventive features of the present invention are applicable to other embodiments as well, all of which are intended to fall within the scope of the present invention. For example, although self-limiting resistive elements having bowtie-type arrangements are described above, other arrangements may be used.
This application is a continuation of U.S. Ser. No. 16/033,783, filed Jul. 12, 2018, which is a continuation of U.S. Ser. No. 15/220,164, filed Jul. 26, 2016, now U.S. Pat. No. 10,026,579, which are incorporated herein by reference in their entireties.
This invention is based upon work supported by DARPA under Contract No. HR0011-14-C-0013. Therefore, the Government has certain rights to this invention.
Number | Name | Date | Kind |
---|---|---|---|
2529210 | Butler | Nov 1950 | A |
3397278 | Pomerantz | Aug 1968 | A |
3601114 | Cook | Aug 1971 | A |
3666967 | Keister et al. | May 1972 | A |
3673667 | Lowenstein et al. | Jul 1972 | A |
3882323 | Smolker | May 1975 | A |
4102664 | Dunbaugh, Jr. | Jul 1978 | A |
4139359 | Johnson et al. | Feb 1979 | A |
4471895 | Lisec, Jr. | Sep 1984 | A |
4558622 | Tausheck | Dec 1985 | A |
4598274 | Holmes | Jul 1986 | A |
4673453 | Georgi | Jun 1987 | A |
4739555 | Jurgens | Apr 1988 | A |
5374564 | Bruel | Dec 1994 | A |
5418628 | Perkins | May 1995 | A |
5584219 | Dunn et al. | Dec 1996 | A |
5791056 | Messina | Aug 1998 | A |
7002517 | Noujeim | Feb 2006 | B2 |
7068254 | Yamazaki et al. | Jun 2006 | B2 |
7153758 | Hata et al. | Dec 2006 | B2 |
7554085 | Lee | Jun 2009 | B2 |
7880248 | Pham et al. | Feb 2011 | B1 |
7944049 | Fujii | May 2011 | B2 |
8130072 | De Bruyker et al. | Mar 2012 | B2 |
8740030 | Purdy et al. | Jun 2014 | B2 |
9154138 | Limb et al. | Oct 2015 | B2 |
9294098 | Shah et al. | Mar 2016 | B2 |
9356603 | Limb et al. | May 2016 | B2 |
9577047 | Chua et al. | Feb 2017 | B2 |
9630870 | Zhao et al. | Apr 2017 | B2 |
9780044 | Limb et al. | Oct 2017 | B2 |
10012250 | Limb et al. | Jul 2018 | B2 |
10026579 | Whiting et al. | Jul 2018 | B2 |
10026651 | Limb et al. | Jul 2018 | B1 |
10308543 | Lee | Jun 2019 | B2 |
20030089755 | Peers-Smith et al. | May 2003 | A1 |
20040031966 | Forrest | Feb 2004 | A1 |
20040222500 | Aspar et al. | Nov 2004 | A1 |
20050061032 | Yoshizawa | Mar 2005 | A1 |
20050082331 | Yang | Apr 2005 | A1 |
20050084679 | Sglavo et al. | Apr 2005 | A1 |
20050176573 | Thoma et al. | Aug 2005 | A1 |
20060138798 | Oehrlein | Jun 2006 | A1 |
20060270190 | Nastasi et al. | Nov 2006 | A1 |
20070113886 | Arao et al. | May 2007 | A1 |
20080029195 | Lu | Feb 2008 | A1 |
20080311686 | Morral et al. | Dec 2008 | A1 |
20090086170 | El-Ghoroury et al. | Apr 2009 | A1 |
20100035038 | Barefoot et al. | Feb 2010 | A1 |
20100133641 | Kim | Jun 2010 | A1 |
20100225380 | Hsu et al. | Sep 2010 | A1 |
20110048756 | Shi et al. | Mar 2011 | A1 |
20110089506 | Hoofman et al. | Apr 2011 | A1 |
20110183116 | Hung et al. | Jul 2011 | A1 |
20120052252 | Kohli et al. | Mar 2012 | A1 |
20120135177 | Cornejo et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120196071 | Comejo et al. | Aug 2012 | A1 |
20120288676 | Sondergard et al. | Nov 2012 | A1 |
20130037308 | Wang et al. | Feb 2013 | A1 |
20130082383 | Aoya | Apr 2013 | A1 |
20130140649 | Rogers et al. | Jun 2013 | A1 |
20130192305 | Black et al. | Aug 2013 | A1 |
20130273717 | Hwang et al. | Oct 2013 | A1 |
20140091374 | Assefa et al. | Apr 2014 | A1 |
20140103957 | Fritz et al. | Apr 2014 | A1 |
20140266946 | Billy et al. | Sep 2014 | A1 |
20140300520 | Nguyen et al. | Oct 2014 | A1 |
20140323968 | Rogers et al. | Oct 2014 | A1 |
20150001733 | Karhade | Jan 2015 | A1 |
20150044445 | Garner et al. | Feb 2015 | A1 |
20150076677 | Ebefors | Mar 2015 | A1 |
20150089977 | Li | Apr 2015 | A1 |
20150102852 | Limb | Apr 2015 | A1 |
20150121964 | Zhao et al. | May 2015 | A1 |
20150229028 | Billy et al. | Aug 2015 | A1 |
20150232369 | Majanovic et al. | Aug 2015 | A1 |
20150318618 | Chen et al. | Nov 2015 | A1 |
20150348940 | Woychik | Dec 2015 | A1 |
20150358021 | Limb et al. | Dec 2015 | A1 |
20150372389 | Chen et al. | Dec 2015 | A1 |
20160122225 | Wada et al. | May 2016 | A1 |
20160137548 | Cabral, Jr. et al. | May 2016 | A1 |
20170036942 | Abramov et al. | Feb 2017 | A1 |
20170217818 | Dumenil et al. | Aug 2017 | A1 |
20170292546 | Limb et al. | Oct 2017 | A1 |
20180005963 | Limb et al. | Jan 2018 | A1 |
20180033577 | Whiting et al. | Feb 2018 | A1 |
20180033742 | Chua et al. | Feb 2018 | A1 |
20180114761 | Chua et al. | Apr 2018 | A1 |
20180306218 | Limb et al. | Oct 2018 | A1 |
20180330907 | Whiting et al. | Nov 2018 | A1 |
20190106069 | Wheeler et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
102004015546 | Oct 2005 | DE |
0143228 | Jun 2001 | WO |
Entry |
---|
File History for U.S. Appl. No. 15/299,385. |
File History for U.S. Appl. No. 15/981,328. |
File History for U.S. Appl. No. 16/273,397. |
Limb et al., U.S. Appl. No. 15/726,944, filed Oct. 6, 2017. |
Murphy et al., U.S. Appl. No. 15/981,328, filed May 16, 2018. |
Limb et al., U.S. Appl. No. 16/025,573, filed Jul. 2, 2018. |
File History for U.S. Appl. No. 14/796,440, 183 pages. |
File History for U.S. Appl. No. 15/092,313, 195 pages. |
File History for U.S. Appl. No. 15/220,164, 192 pages. |
File History for U.S. Appl. No. 15/220,221, 198 pages. |
File History for U.S. Appl. No. 15/629,506, 121 pages. |
File History for U.S. Appl. No. 15/689,566, 188 pages. |
File History for U.S. Appl. No. 15/726,944, 130 pages. |
File History for U.S. Appl. No. 16/025,573, 153 pages. |
File History for US. Appl. No. 16/033,783, 105 pages. |
File History for U.S. Appl. No. 15/229,385, 425 pages. |
File History for U.S. Appl. No. 15/981,328, 243 pages. |
File History for U.S. Appl. No. 16/207,709, 159 pages. |
File History for U.S. Appl. No. 16/257,304, 152 pages. |
File History for U.S. Appl. No. 16/273,397, 146 pages. |
File History for U.S. Appl. No. 16/433,603, 113 pages. |
Number | Date | Country | |
---|---|---|---|
20190311872 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16033783 | Jul 2018 | US |
Child | 16433603 | US | |
Parent | 15220164 | Jul 2016 | US |
Child | 16033783 | US |