Claims
- 1. A self-piercing rivet setting machine comprising a C-shaped frame, a punch disposed at one end of said C-shaped frame, and a die disposed at the other end of said C-shaped frame, wherein said punch is attached to the edge of a receiver unit for receiving a self-piercing rivet fed from a feeding device to hold the self-piercing rivet, and said punch is adapted to be pressed against said die by punch-driving means, whereby a plurality of workpieces are placed between said die and said punch with the self-piercing rivet held therein to be connected with each other by driving said self-piercing rivet in said workpieces to cause said self-piercing rivet to pierce said workpieces; wherein said receiver unit includes;
a hollow shaft having one end connected with a feeding tube extending from said feeding device, said hollow shaft being supported by support means provided on said one end of said C-shaped frame, and a receiver head having an edge to which said punch is attached, said receiver head being adapted to receive the self-piercing rivet fed from the other end of said hollow shaft and allow said received self-piercing rivet to be held by said punch one by one, and; wherein said hollow shaft is supported to said support means of said C-shaped frame slidably in the axial direction of and rotatably in the circumferential direction of said hollow shaft, and said receiver head is connected to said hollow shaft to be selectively positioned to either a first position where said punch is faced with said die or a second position where said punch is spaced apart from said die in both said axial and circumferential directions to provide an enlarged distance between said die and said punch, according to the slide and rotation of said hollow shaft.
- 2. A self-piercing rivet setting machine as defined in claim 1, wherein said support means is a support tube formed as a part of said C-shaped frame, said support tube supporting the outer peripheral surface of said hollow shaft of said receiver unit to allow said hollow shaft to be slid in the axial direction and rotated in the circumferential direction thereof.
- 3. A self-piercing rivet setting machine as defined in claim 2, wherein said punch driving means includes a spindle having an axis in parallel with the axis of said support tube of said C-shaped frame.
- 4. A self-piercing rivet setting machine as defined in claim 3, wherein said other end of said hollow shaft and a receiving port of said receiver head are coupled with each other through a rigid and hollow coupling tube.
- 5. A setting machine as defined in claim 4, wherein said hollow shaft has a continuous biasing force acting thereon in a direction allowing said punch coupled with said receiver head to be moved away from said die, said biasing force allowing said punch to be pressed onto the edge of said punch driving means.
- 6. A self-piercing rivet setting machine as defined in claim 5, wherein said punch driving means is formed with a tapered guide protruding from the edge thereof, and said receiver head holding said punch is formed with a tapered guide hole having a shape in conformity with that of said tapered guide.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-117912 |
Apr 2002 |
JP |
|
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of copending international patent application PCT/US02/10964 filed on Apr. 9, 2002 and designating the U.S., and claims priority of Japanese patent application 2001-117912, filed Apr. 17, 2002, which is incorporated herein by reference.
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/US02/10964 |
Apr 2002 |
US |
Child |
10680987 |
Oct 2003 |
US |