The present invention relates to hydrofoil devices and, more specifically, to hydrofoil devices that may be configured for self propelled operation, provide greater user control of drive foil operation and/or are efficient in design.
Relevant prior art hydrofoil devices include the “Trampofoil” device disclosed in Swedish Design Patent no. 98-0088 and a Water Vehicle disclosed in U.S. Pat. No. 6,099,369 issued to Puzey.
The Trampofoil discloses a basic self-propelled hydrofoil device having a main foil in the rear and a steerable foil in the front. The '369 patent issued to Puzey discloses a related device that has a biased pivot point located substantially above the rear foil, i.e., under the area at which a user stands when in use (FIG. 9, item 82, or FIG. 10, item 72).
Disadvantageous aspects of the Trampofoil device and the '369 patent include that they are inefficient in their transfer of the user generated driving force to drive the foil. This inefficiency in turn renders them relatively exhausting to use and the experience short lived. The Trampofoil and '369 device have a drive foil that is biased into the “coast” position. To move it into a drive position, a user must jump onto the user platform and thrust downward. A large portion of this thrust does not go to driving the foil but rather to reorienting the foil from the coast to the drive position. Once reoriented, the remaining thrust force may go to driving the foil.
A need thus exists for a self-propelled hydrofoil device in which the drive foil may be placed in the appropriate drive position prior to a user thrust so that the energy of the user thrust is more efficiently used for driving the hydrofoil device forward. A need also exists for a hydrofoil device that affords a user greater control over foil position, leverage to assert that control and a simplicity of design that decreases costs while not impacting (and potentially improving) performance.
Accordingly, the present invention is directed towards a hydrofoil device that is more efficient to operate.
The present invention is also directed towards a hydrofoil device that affords a user greater control over the angle of attack of the drive foil.
The present invention is further directed towards a hydrofoil device that provides a simpler design.
These and related objects of the present invention are achieved by use of a self-propelled hydrofoil device with leverage based control of the drive foil as described herein.
In one embodiment, the present invention may include a front foil; a steering structure including a steering shaft and a handle bar coupled to the front foil; second foil; a user platform provided above the second foil; and a support frame that movably couples the steering structure to the user platform; wherein the device is configured such that the handle bar can be placed up or down by a user and through this up or down placement of the handle a user can change the angle of attack of the second foil.
In another embodiment, the present invention may include a related structure yet wherein the device is configured to operate in a coast position and a drive position and the handle bar can be placed up or down by a user, placement of the handle bar up or down in the coast position while in use serving to alter the height of the device in the water.
In yet other embodiment, the present invention may include a related structure yet wherein the steering shaft is pivotally coupled to the support frame at a main frame pivot and configured with the support frame to permit a user to alter the angle of attack of the second foil by exerting an upward or downward force on the handle bar of 25% or less of the weight of the user.
In other embodiments, the present invention may include a self-propelled hydrofoil device with a flexible joining member through which the steering shaft is movable coupled, a steering shaft that extends 30% or more above its point of attachment to the support frame or a dihedral foil.
The attainment of the foregoing and related advantages and features of the invention should be more readily apparent to those skilled in the art, after review of the following more detailed description of the invention taken together with the drawings.
Referring to
Hydrofoil device 10 may include a front foil 20, a rear foil 30, a steering structure 40, a support frame structure 50 and a user platform 60, among other components. The front foil 20 may be arranged in a “canard” configuration with a water surface finding foil or spoon 21. In the canard configuration, foil 20 and spoon 21 are coupled in a fixed relationship and are in turn coupled at pivot 24 to that lower end of a steering shaft 41. Canard structures for locking on to the water surface are known in the art and any suitable arrangement may be incorporated without deviating from the present invention.
The opposite or top end of steering shaft 41 may include a handle bar 43 or other suitable steering/control handle. Frame structure 50 couples the steering shaft 41 to the user platform 60. Frame structure 50 may include a support shaft 51 that may be comprised of one or more members.
The main frame pivot 55 is provided between steering shaft 41 and support shaft 51. Steering structure 40 may include a coupling member 45 that is pivotally coupled to one end of support shaft 51 at main pivot 55. Steering shaft coupling member 45 may include a cylindrical support shaft 47 with an internal bushing or the like for securely holding steering shaft 41 in a manner that permits user rotation of the steering shaft to achieve turning.
At rest or in coast position (the non-phantom line position in
The user platform may include left and right foot placement platforms 61,62, a joint structure for coupling to support shaft 51 and a frame member 64 for coupling to the rear or, in the case of the embodiment of
Device 10 operates generally as follows. To operate, a user stands on user platform 60 and places his or her hands on handle bar 43. A user may push off of a dock or boat or the like or, if the hydrofoil device has additional flotation components so that it attains a desired position at rest, begin from a still position in the water.
To generate forward movement, a user moves the handle bar to place the drive foil in a desired drive position and then thrusts downward with his or her legs. The downward handle bar movement causes the angle α to decrease and front edge 31 of foil 30 to angle downward as shown in phantom lines in
As the effect of the downward driving thrust trails off, a user moves the handle bar upward causing the angle α to increase and the front edge 31 of foil 30 to be pulled upward towards the position shown in non-phantom lines in
In prior art self-propelled hydrofoil devices such as Puzey (the '369 patent), a very strong spring biases the drive foil in the coast position. This spring is too strong for a user to change the position of the drive foil merely through the use of their forearm strength on the handle bar. The spring force of Puzey is overcome by a user jumping on the user platform, using their full weight plus the momentum of the jump to compress the spring.
In contrast, the present invention may be operated without a spring and a user can nearly effortlessly move the handle bar to change the angle of attack of the drive foil with forearm strength alone, and minimal exertion of forearm strength. This is achieved in part because the connection point of the steering shaft is located relatively low to give a user sufficient leverage at the handle bar to readily change the angle of attack of foil 30 (by changing the position of the handle bar). The embodiment of device 10 and others herein give a user much greater control over the drive and coast phases of operation and the overall experience of riding the hydrofoil device.
Further to the embodiment of
An added advantage of the present invention is that since a user has control over the angle of attack, by changing the handle bar position, the user can move the drive foil to a given angle of attack as desired. This is particularly helpful when the height of the water surface is changing rapidly, for example, in the presence of a wave or a large boat wake. This level of control permits a user to use the device for surfing. In maneuvering the device out past the wave break line, a user advantageously changes the angle of attack of the foil, e.g., raising the device in the water to effectively ride over an incoming wave.
Referring to
In device 110 of
The support shaft and steering shaft are preferably arranged at an angle α that affords suitable leverage to a user as discussed herein.
The steering structure may include a support cylinder 147 that supports the steering shaft for rotatable movement therein. Support cylinder 147 may include a bushing or other suitable mechanism for permitting ready turning of the steering shaft in the cylinder.
Referring to
In device 210 of
The support shaft and steering shaft are preferably arranged at an angle α that affords suitable leverage to a user as discussed herein.
In contrast to device 110 of
Referring to
Referring to
Hydrofoil device 310 may be similar or identical to hydrofoil devices 10 in many aspects, including a front foil 320, rear foil 330, steering structure 340, frame support structure 350 and a user platform 360.
In the embodiment of
The main frame pivot 355 is provided between the primary and coupling frame members. The coupling frame member serves principally as an extension of steering shaft 341, and thus, the main pivot 355 is essentially a pivot between steering shaft 341 and support shaft 351. It should be recognized that coupling frame member 353 may be very short, approaching zero as shown in previous figures, or may be longer or otherwise configured.
The primary frame member 352, if extended out as indicated by the dash-dot line (from the top of the user platform to the pivot), would intersect the steering shaft at a point approximately halfway down the steering shaft. This is the effective pivot point of the steering shaft, and is designed to be at a position that affords appropriate leverage and defines the angles α discussed above.
It should be recognized that the steering shaft has at least approximately 40% of its length extending above the point of attachment of frame member 353 to the steering shaft (at cylindrical shaft 347). This percentage may be 33% (one-third of its length), 30% or less, depending on the length of frame member 353.
Referring to
Referring to
The support shaft 51 may be movably coupled to the steering shaft and the steering shaft movably coupled to the canard. With the canard locking onto the surface of the water, raising handle bar up 43 (direction Arrow A) will move the rear foil higher in the water column and raise user platform 60 and device 10 in general. Conversely, lowering handle bar up 43 (direction Arrow B) will move the rear foil lower in the water column and lower user platform 60 and device 10 in general. This feature provides the user with more control, enhancing the riding experience and providing a user with tools for more sustained and enjoyable operation, e.g., riding over waves and wakes, avoiding objects in the water or turbulent water, etc.
Note that the hydrofoil devices herein may be constructed with a collapsible drive foil and with other collapsible members for compact storage and transport, as taught at least in part by the parent application.
While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification, and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as fall within the scope of the invention and the limits of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/375,538, filed Mar. 13, 2006 now U.S. Pat. No. 7,434,530, and entitled “Collapsible Self Propelled Hydrofoil Device” by the same inventor as above. Patent application Ser. No. 11/375,538 is a continuation-in-part of U.S. patent application Ser. No. 10/657,664, filed Sep. 7, 2003, and entitled “Self Propelled Hydrofoil Device” by the same inventor as above, now issued as U.S. Pat. No. 7,021,232. These two documents are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2955559 | Palmer et al. | Oct 1960 | A |
4077351 | Girona | Mar 1978 | A |
4349340 | Hoffmann | Sep 1982 | A |
5042412 | Fouch | Aug 1991 | A |
6178905 | Dynes et al. | Jan 2001 | B1 |
7144285 | Hendricks | Dec 2006 | B1 |
20040139905 | Chen | Jul 2004 | A1 |
20050051074 | Chen | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070125288 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11375538 | Mar 2006 | US |
Child | 11593141 | US | |
Parent | 10657664 | Sep 2003 | US |
Child | 11375538 | US |