The present invention relates generally to sealed bearing earth boring drill bits, such as rotary cone rock bits. More particularly, the invention relates to drill bits having one or more seals disposed therein for protecting internal bearing elements. Yet more particularly, the present invention relates to a seal construction that enables pressure communication between the interior and exterior environments of earth boring drill bits.
During earthen drilling operations using sealed bearing drill bits, such as rotary cone drill bits, it is necessary to protect the bearing elements of the bit from contamination in order to sustain bit operability. In particular, it is desirable to isolate and protect the bearing elements of the bit, such as bearings, bearing lubricant and bearing surfaces that are located in a bearing cavity or cavities between each corresponding bit leg and roller cone, from earthen cuttings, mud and other debris in the drilling environment. The introduction of such contaminants into the bearing system of the drill bit can lead to deterioration of the bearing lubricant, bearings and bearing surfaces, resulting in premature bit failure. An annular seal is, therefore, placed in the bit between the external environment and the bearing to prevent such unwanted contaminants from entering the drill bit through the annular opening and into a gap formed between each leg and corresponding roller cone that extends to the bearing cavity.
In a downhole drilling environment, the borehole contains “drilling fluid,” which can be drilling mud, other liquids, air, other gases, or a mixture or combination thereof. In a typical liquid drilling environment of a petroleum well, the downhole fluid pressure at the location of the drill bit, i.e., the “external pressure,” can be very high and fluctuating. At the same time, internal pressure within the bearing cavity, i.e., the “internal pressure,” can also be very high and fluctuating due, for example, to thermal expansion and out-gassing of lubricant in the bearing cavity, and to cone movement relative to the leg. These high pressure changes internal and external to the bearing cavity may cause a differential pressure across the annular seal, thus resulting in a major unchecked load on the seal.
When the internal pressure is greater than the external pressure, the seal may be drawn to and possibly extruded into the gap. Likewise, a greater external pressure can cause the seal to be drawn in the direction of the bearing cavity and possibly extruded therein. This may cause excessive wear to or tearing of the seal, which can eventually lead to bit inoperability. Furthermore, when the pressure differential between the bit internal and external environments reaches a certain level in each above scenario, the seal can leak, allowing lubricant to pass from the bearing cavity into the gap in the first scenario, and drilling fluid to pass from the gap into the bearing cavity in the second scenario.
Generally, when the internal pressure and the external pressure are equal, the differential pressure across the bearing cavity seal will be zero. There will be no pressure to force the drilling fluid or lubricant by the seal, or to force the seal into the gap or bearing cavity. Thus, it is generally desirable to achieve or maintain a differential pressure of approximately zero across the bit during operation. Drill bits are, therefore, constructed having a lubricant reservoir system disposed therein to equalize the internal and external pressure across the seal. Such lubricant reservoir systems typically have a flexible diaphragm located in a lubricant reservoir cavity placed in the bit leg. The flexible diaphragm operates to separate the internal lubricant from the external drilling fluid and communicates the external pressure to the portion of the bearing seal adjacent the bearing cavity. This type of pressure compensation system for a single seal bit is schematically shown in
Referring to
Dual seal arrangements have been proposed having an outer seal positioned within a seal gland located between the external environment and a primary inner seal. The purpose of including a second seal is typically to provide a second layer or barrier of protection from particles entering the gap through the annular opening. When an outer seal is added, it may be necessary, such as in drill bits used for petroleum wells, that the bit be capable of compensating for the differential pressure across both seals.
In this scenario, the incompressible fluid in space Sp between the seals S1 and S2 transmits pressure from Pg1, which is the (internal) bearing cavity pressure, to Pd and from Pd to Pg1. For example, when the external fluid pressure Pd increases, the diaphragm D1 will be pushed inwardly, causing the internal pressure Pg1 to equal the external pressure Pd. Because the fluid between seals S1 and S2 is incompressible, it will transmit the increased pressure between S1 and S2, and neither seal S1 nor S2 will be displaced.
However, during borehole drilling operations, such as with rotary cone sealed bearing drill bits, various factors will alter ideal conditions and require something more to equalize the differential pressure across both seals S1 and S2. For example, there can be a relative movement between the roller cone and bit leg, which causes the volume of the space Sp between the seals S1 and S2 to significantly increase and decrease. A change in the volume of the space Sp will change the chamber pressure Pg2 in the space Sp, causing conditions where Pg2>Pd, Pg1 upon contraction of the space Sp, and where Pg2<Pd, Pg1 upon expansion of the space Sp. Thus, there can be differential pressures across both seals S1, S2, causing their movement and possible extrusion, which can cause accelerated seal wear and eventual bit failure.
Another potential factor altering ideal conditions is the thermal expansion, or out-gassing, of the incompressible fluid between the seals S1, S2 due to elevated temperatures within the bit. Referring to
Still another factor is the existence of air trapped in the space Sp between the seals S1, S2. In this instance, the mixture of air and fluid in space Sp is not incompressible. When external pressure Pd increases, Pg1 will eventually equal Pd due to the diaphragm D1, but Pd>Pg2 and Pg1>Pg2 because of the presence of air in the space Sp between the seals S1, S2. The chamber pressure Pg2 in the space Sp will not increase until the seals S1, S2 move closer together and the air volume in space Sp decreases. This differential pressure across seals S1, S2 will cause the movement and possible extrusion of the seals into the space Sp and excessive wear on the seals.
U.S. Pat. No. 5,441,120, which is hereby incorporated by reference herein in its entirety, discloses the use of an additional flexible diaphragm D2, such as that shown in
U.S. Pat. Nos. 4,981,182 and 5,027,911, which are also hereby incorporated herein in their entireties, disclose various embodiments of drill bits having inner and outer seals where the lubricant is bled out of the bit past the outer seal to prevent drilling debris from accumulating and damaging the inner and outer seals. In some such embodiments, passages in the bit allow lubricant to travel from the bearing cavity to the space between the seals. In other embodiments, a hydrodynamic inner seal is used, which allows the leakage of lubricant from the bearing cavity to the space between the seals. In both instances, the pressure of the lubricant presumably forces the outer seal to open and allow the bleeding of lubricant from the bit.
These systems also have various disadvantages. For example, the continuous bleeding of lubricant past the outer seal (particularly if the outer seal fails) can lead to the depletion of bearing lubricant in the bit, and cause bearing and bit damage due to a lack of lubricant. For another example, if the space between the seals in such configurations is not filled with lubricant, which will occur if there is a decrease or stoppage in the flow of lubricant from the bearing cavity to the space, a high pressure differential across the seals can result, causing damage to the seals as described above. For yet another example, with many such embodiments, because the space between the seals and the bearing cavity are in fluid communication, there exists the possibility that debris or drilling fluid bypassing the outer seal, such as when the outer seal fails, will move through the space between the seals and into the bearing cavity, causing contamination and damage to therein and to the bearing elements.
Therefore, there remains a need for improved techniques and mechanisms for substantially balancing or minimizing the pressure differential imposed upon either a single seal within a drill bit, or upon primary and secondary seals of a dual-seal configuration, particularly by allowing pressure communication and for equalization between the interior and exterior of the drill bit. Ideally, the devices and techniques will accommodate cone movement, thermal expansion of the fluid and/or out-gassing between the primary and secondary seals, and trapped air in the space between the seals. It is also desired that such pressure communication devices that do not require substantial additional components, large space requirements in the bit, or highly complex manufacturing requirements.
Also well received would be a pressure communication technique and device capable of preventing the pressure differential across the dual seals from exceeding an upper limit, such as, for example, 100 psi. It would also be advantageous to include the use of an incompressible fluid having the capabilities of retaining sufficient viscosity to act as a medium for the transmission of energy between the primary and secondary seals, of retaining its lubrication properties, and/or of slowing the intrusion of abrasive particles to the primary seal when and after the incompressible fluid is exposed to drilling fluid.
Self relieving seals, constructed according to the practice of this invention, are useful for providing a desired degree of pressure communication within a single seal or multiple seal rotary cone drill bit. Seals of this invention comprise an elastomeric seal body having a first sealing surface and a second sealing surface for contact with respective drill bit sealing surfaces. The seal includes a pair of external surfaces that each extend along the seal body between the first and second sealing surfaces. A key feature of self relieving seals of this invention is that they include one or more relief ports that are disposed through the seal body and that have openings through each of the seal body external surfaces.
In an example embodiment, the first sealing surface is positioned along an outside diameter of the seal body, the second sealing surface is position along an inside diameter of the seal body, and the relief ports are disposed axially through the seal body and comprise openings in the seal body external surfaces that are each positioned facing axially outwardly from the seal body.
Self relieving seals of this invention may have a relief port that is specially configured to provide a degree of control over pressure equalization through the seal body when the seal is loaded within the drill bit. In one example, the relief port may be characterized by different diameter sections and/or by sections having constant and variable diameters. In other examples, the seal may include an element, e.g., a solid element, a tubular element, or a porous element, disposed within the relief port to provide a further desired degree of control over pressure equalization through the seal when the seal is loaded within the drill bit.
Additionally, seal of this invention may include a surface feature along one or both of the body external surfaces that is configured to maintain a desired offset between the relief port opening and an adjacent rock bit surface to not block off the opening when the seal is loaded in the drill bit. Alternatively, the rock bit may itself have a wall surface that is configured to provide a desired offset between itself and the seal external surface to ensure that the seal relief port opening is not blocked off.
Self relieving seals of this invention may also include a valve means disposed in fluid or gas flow communication with the relief port fort the purpose of providing further control over the equalization of pressure therethrough. In one example, the valve means can be in the form of a check valve that is designed to permit one-way checked flow through the relief port, e.g., to permit the passage of grease through the port when internal pressure within the drill bit exceeds the external drill bit pressures, but to prevent the unwanted passage of drilling fluid from the drill bit external environment into the drill bit.
Self relieving seals configured in this matter operate to equalize pressure differentials that may exist within a drill bit during operation by the control passage of fluid or gas therethrough. The ability to provide such pressure equalization function helps to avoid any unwanted pressure forces acting on the seal. If left unchecked, such pressure forces could operate to urge the seal outside of its provided seal cavity, which could cause the seal to become damaged and no longer able to provide a desired sealing function, e.g., either allowing lubricant to pass from the drill bit journal bearing, allowing drilling fluid to pass into the drill bit to the journal bearing or both. Accordingly, seal relieving seals of this invention operate to minimize or eliminate such unwanted pressure affects, thereby operating to extend the useful service life of a drill bit.
These and other features and advantages of the present invention will become appreciated as the same becomes better understood with reference to the drawings wherein:
Annular seals of this invention are useful, for example, in subterranean drill bits, and generally comprise one or more relief ports or passages disposed through an axial width of the seal body to facilitate passage and relief of otherwise unrelieved built up pressure that may occur with the drill bit, and more specifically, built up pressure that may occur between seals in a dual-seal drill bit.
Referring to
Annular journal seals, in the form of a ring seal, are generally thought of as comprising a cylindrical inside and outside diameter, and a circular radial cross section. However, it is to be understood that annular seals constructed in accordance with the principles of this invention may be configured as having either a circular or symmetric cross section (e.g., in the form of an O-ring seal), or as having a high-aspect ratio or asymmetric cross section.
While such an example has been illustrated, it is to be understood that annular seals of this invention can be configured to provide other than radially-oriented sealing, e.g., to provide sealing along an axially-oriented seal surface, or to provide sealing along a portion of the seal surface positioned between a radial and axial surface (such as along a canted sealing surface). Additionally, seals of this invention are intended to be used in bits where both of the seals provide a sealing function along a similar sealing surface, e.g., along the radial, axial, or canted surfaces of each seal, and in bits where both of the seals provide a sealing function along a different sealing surface, e.g., where one seal provides a seal along one of an axial, radial or canted surface of the seal, and the other seal provides a seal along another of an axial, radial or canted surface of the other seal.
Additionally, while annular seals of this invention have been illustrated for use with a dual-seal bit, annular seals of this invention are also intended to be used in drill bits comprising a single seal, whether such single seal bit includes or does not include a conventional pressure compensating reservoir. In such single seal bit applications, annular seals of this invention are used for the purposes of equalizing the pressure differential that may exist on opposite sides of the seal. Thereby, reducing and/or eliminating the potential for seal damage caused by such unchecked pressure forces.
Referring still to
Dual-seal bits come in many different sizes, depending on the particular application. Some of the larger dual-seal bits are configured having a pressure compensation subassembly (not shown) disposed therein for purposes of addressing unwanted pressure build up within the bit during operation. In a typical dual-seal bit, the pressure compensation subassembly is in communication with the journal bearing via a port extending thereto through the leg. Configured in this manner, only one side of the primary seal 22 is exposed to the pressure compensation subassembly. Thus, any built up pressure on the opposite side of the primary seal 22, e.g., built up pressure between the primary and secondary seal, has no way of being relieved. Such uncontrolled pressure effects within the bit can cause one or both of the seals to be damaged, e.g., by extrusion.
Internal pressures within rock bits are caused by the elevated temperatures that occur within a bit during operation as well as the elevated temperature of the down hole environment. In some deep hole drilling applications, internal rock bit temperatures can go as high as 300□F and beyond. During any drilling operation there are also external pressures acting on the rock bit that can be higher than 10,000 psi. This pressure is equalized within a bit by the pressure compensation subassembly, so that the annular seal has equivalent pressure acting on both the mud side (i.e., the side of the annular seal positioned adjacent the bit external environment) and the bearing side (i.e., the side of the annular seal positioned adjacent the bit bearing) of the seal. This pressure equalization is important for purposes of maintaining proper seal positioning within the seal gland in the bit.
Any unchecked differential pressure can exert an undesired pressure force on the seal in an axial direction within the seal gland. The direction that the seal is urged depends on whether the bit external or internal pressure is controlling, which will depend on the particular bit design, drilling application and operating conditions. In situations where the bit external pressure is controlling, the annular seal will be forced inwardly within the seal gland in an axial direction towards the bearing 30. In situations where the bit internal pressure is controlling, the annular seal will be forced outwardly within the seal gland in an axial direction towards the gap 32 and the bit external environment.
In a dual-seal bit, such as that illustrated in
In an effort to minimize and/or eliminate the above-described damage to bit annular seals, annular seals of this invention have been specifically constructed to include one or more relief ports, that are disposed axially through a width of the seal body. It is additionally important that the annular seal be resistant to crude gasoline and other chemical compositions found within oil wells, have a high heat and abrasion resistance, have low rubbing friction, and not be readily deformed under the pressure and temperature conditions in a well which could allow leakage of the grease from within the bit or drilling mud into the bit.
Seal constructions of this invention comprise a seal body that is formed from an elastomeric material selected from the group of carboxylated elastomers such as carboxylated nitrites, highly saturated nitrile (HSN) elastomers, nitrile-butadiene rubber (HBR), highly saturated nitrile-butadiene rubber (HNBR) and the like. Particularly preferred elastomeric materials are HNBR and HSN. An exemplary HNBR material is set forth in the examples below. Other desirable elastomeric materials include those HSN materials disclosed in U.S. Pat. No. 5,323,863, that is incorporated herein by reference, and a proprietary HSN manufactured by Smith International, Inc., under the product name HSN-8A. It is to be understood that the HNBR material set forth in the example, and the HSN materials described above, are only examples of elastomeric materials useful for making annular according to this invention, and that other elastomeric materials made from different chemical compounds and/or different amounts of such chemical compounds may also be used.
It is desired that such elastomeric materials have a modulus of elasticity at 100 percent elongation of from about 400 to 2,000 psi (3 to 12 megapascals), a minimum tensile strength of from about 1,000 to 7,000 psi (6 to 42 megapascals), elongation of from 100 to 500 percent, die C tear strength of at least 100 lb/in. (1.8 kilogram/millimeter), durometer hardness Shore A in the range of from about 60 to 95, and a compression set after 70 hours at 100□C of less than about 18 percent, and preferably less than about 16 percent.
An exemplary elastomeric composition may comprise per 100 parts by weight of elastomer (e.g., HSN, HNBR and the like), carbon black in the range of from 20 to 50 parts by weight, peroxide curing agent in the range of from 7 to 10 parts by weight, zinc oxide or magnesium oxide in the range of from 4 to 7 parts by weight, stearic acid in the range of from 0.5 to 2 parts by weight, and plasticizer up to about 10 parts by weight.
Generally speaking, annular seals of this invention are constructed having one or more relief or breathing ports disposed through an axial width of the seal body.
A key feature of the annular seal 40 is that it have a relief port 48 passing through an axial width of the seal body defined by seal walls 50 and 52. The port 48 extends through the seal body to openings 54 positioned at each seal wall 50 and 52. In this particular example embodiment, the port 48 is constructed having a constant diameter. The relief port 48 can be manufactured directly by molding it into the seal body during the molding process. The relief port may also be made laser drilling, as well as by other drilling methods. A hot needle or other element capable of making a hole by puncture method can also be used to make the relief port.
It is, therefore, important that the relief port 48 be sufficiently sized to permit a desired degree of pressure passage when loaded into the drill bit in response to a certain differential pressure. For example, the relief port can be sized to operate in the manner of a check valve, i.e., to permit the passage of pressure through the seal body after a determined pressure build up or pressure differential across the seal is achieved.
In this particular example embodiment, the port 78 is constructed having two distinct diameter sections; namely, a first section 86 that has a noncontinuous diameter, e.g., in a preferred embodiment it has a tapered diameter, and a second section 88 that has a constant diameter. The first section 86 of the relief port extends from the opening 85 positioned within seal wall 82, and has a decreasing diameter moving inwardly through the seal body. The second section 88 extends within the relief port from an end of the first section 86 to the opening 84 positioned within seal wall 84, and is characterized by a constant diameter.
The first section 86 can be shaped and sized to ensure that this portion of the relief port remains open when the seal is loaded into the drill bit. The second section 88 is defined by a web of the seal body having a thickness that extends from the seal wall 80 to the inner end of the first section 86. In an example embodiment, the second section 88 of the relief port is formed by using a sharp instrument or the like to pierce the web.
The seal can be designed to provide a desired fluid transfer characteristic by controlling such parameters as the modulus of the material used to form the seal body, the size and shape of the relief port first diameter section, the thickness of the web, and the diameter of the relief port second diameter section. Generally speaking, the thicker the web the higher the relief pressure needed to pass fluid through the relief port for a fixed relief port second diameter section.
Again, as mentioned above for the earlier seal embodiment, it is important that both sections of the relief port be sized and configured to permit a desired fluid or gas flow characteristic therethrough when the seal is loaded into the drill bit. The size and configuration of the relief port determines the relief pressure of the seal. If the relief port is sized too small and/or configured improperly, a large amount of pressure will be allowed to build up before being relieved which can lead to seal damage. If the relief port is sized too big and/or configured improperly, the amount of pressure relief will be too low, allowing the incompressible fluid between the seals (in a dual-seal bit) to escape and/or allow drilling mud into the space between the seals.
With this understanding, it is believed that the relief port be designed to relieve between 0 and 100 psi, and preferably around 50 to 70 psi. Many factors affect the relief pressure, of which those known are as follows: the axial seal body width, the seal body modulus, the diameter of the relief port second diameter section, the web thickness, the size and configuration of the relief port first diameter section, the thermal expansion of the seal, the overall seal geometry, and the amount of squeeze or deflection of the seal when it is installed in the drill bit between the cone and leg.
Methods for forming the relief port for annular seals of this invention have been described above. Alternatively, the relief port in annular seals of this invention can be formed by piercing the seal body with a needle or like instrument, whereas little or no material is removed from the seal body, and the relief port closes up upon removal of the needle. Forming the relief port by this method would result in a higher relief pressure being required to relieve pressure through a mechanism of this type. In an effort to address this issue, means could be inserted into the relief port for keeping the passage open. Such means can be in the form of a thread, cord, or any other material that is capable of being passed through the seal body relief port to maintain the relief port in an open condition, thereby providing an easier path for the pressure to transmit though the seal.
In an effort to ensure unimpaired passage of fluid or gas through annular seals of this invention, it may be desired to provide a surface feature adjacent one or both relief port openings that operates to prevent blockage of such opening(s) when loaded in the bit. Such surface feature can be positioned on a wall portion of the seal gland and/or on a wall portion of the seal itself.
It is to be understood that the means described above for protecting the seal relief port opening from blockage is but one structural embodiment of how this can be achieved, and that many other types of surface feature modifications can be provided to achieve the same goal. Thus, any and all surface feature modifications to the seal body that would result in preventing one or both of the relief port openings from being blocked when loaded into a drill bit are intended to be within the scope of this invention.
Alternatively, the means for preventing blocking of the relief port opening can be constructed as part of the seal gland in addition to/or in place of any modifications to the seal itself.
Although annular seals of this invention were illustrated in
Thus, it is to be understood that annular seals of this invention may comprise a seal body having first and second sealing surfaces formed from materials that are the same as or different from that used to form the seal body. For example, annular seals of this invention may comprise one or both sealing surfaces (e.g., a dynamic sealing surface) formed from an elastomeric material that is relatively harder than that used to form the seal body, as recited in U.S. Pat. No. 5,842,701, which is incorporated herein by reference. Annular seals of this invention may also comprise one or both sealing surfaces (e.g., a dynamic sealing surface) formed from a composite material in the form of an elastomer/fiber fabric, as recited in U.S. Pat. No. 5,842,700, which is also incorporated herein by reference. Thus, it is to be understood within the scope of this invention that annular seals of this invention may comprise a composite of more than one type of material.
As used herein, the term dynamic is used to describe a sealing surface of the seal that is placed into rotary contact with a drill bit surface, and the term static is used to describe a sealing surface of the seal that is placed into a principally static contact with a drill bit surface. The static sealing surface is qualified by the term principally because in drill bit operation it is known that the static sealing surface can go dynamic under certain operating circumstances, i.e., the static sealing surface can move relative to the contacting drill bit.
In this seal embodiment the element 126 serves to keep the relief port opened, to resist the relief port from being completely collapsed when the seal is squeezed during operation, thereby operating to maintain the open passage of fluid therethrough for pressure equalizing purposes. In an example embodiment, the element 126 is freely disposed within the relief port and is not bonded or otherwise attached therein. Also, the element 126 is sized and shaped to provide a defined annular passageway within the relief port to yield a desired fluid or gas flow characteristic through the seal. For example, when the element is sized having a smaller diameter relative to the relief port, fluid or gas flow through the annular passageway will be relatively unrestricted. When the element is sized having a larger diameter relative to the relief port, fluid or gas flow through the annular passageway will be somewhat restricted to provide a controlled degree of fluid flow.
The element 126 can include end portions 128 at one or both element axial ends for the purpose of retaining the element within the relief port. Additionally, such end portions can be configured to provide a filtering function, e.g., in the form of a porous material or the like, for the purpose of restricting entry into the relief port of unwanted particulate matter above a certain particle size into the port.
This seal embodiment 129 additionally includes an increased surface area feature 131 at each relief port opening that is sized and configured to improve access of the relief port to the seal external environment, thereby serving to minimize or reduce the possibility of the relief port becoming clogged or plugged at or near the port openings. In an example embodiment, the surface feature 131 can be in the form of an enlarged opening area or mouth disposed a desired depth within the external seal body side walls, and in communication with the relief port openings. The enlarged opening serves to increase the surface area exposure of the relief port openings to minimize unwanted plugging. If desired, the enlarged opening area or mouth can additionally be filled with a suitable breathable material, e.g., paper, cloth or the like, to further protect the relief port openings against unwanted clogging.
In such example embodiment, the collapsible tubular element is bonded or otherwise attached along an outside diameter to the inside diameter of the relief port, and is sized having a desired wall thickness to provide a desired collapsing property. Configured in this manner, the tubular element operates as a low-friction seal for the purpose of restricting the passage of fluid therethrough until a desired threshold differential pressure is placed across the seal body. This self sealing characteristic may be desired in certain applications for the purpose of restricting passage of fluid through the seal until a certain pressure differential is achieved.
In another example, the tubular element 132 is a rigid member that can be formed from a suitable structural material, such as metal and the like, resistant to collapsing when the seal is loaded within the bit. The rigid tubular element may or may not be bonded to the seal body. Configured in this manner, the tubular element 132 functions in a reinforcing manner to maintain a desired relief port passage diameter that will not close or be reduced in diameter when the seal is loaded into the bit. In such example embodiment, the tubular element is sized having a particular diameter that will provide the desired fluid flow and pressure transfer characteristics. In still another example, the tubular element 132 can be a rigid member as disclosed above, but include a non-rigid member disposed therein.
In an example embodiment, the non-rigid tubular member 138 can be formed from an elastomeric material, such as rubber or those materials noted above for forming the seal body, and can be bonded to the surrounding rigid tubular member. Ideally, the non-rigid tubular member 138 is formed from an elastomeric material that is capable of providing a desired fluid flow or pressure relieving characteristic.
In this particular embodiment, the combined use of a rigid tubular element and concentrically positioned non-rigid tubular element operates to provide a seal having a relief port 142 that will not be susceptible to collapse when the seal is loaded, yet will have an elastomeric orifice that is capable of functioning, i.e., deflecting, to provide a desired degree of control over the passage of fluid or gas and pressure relief therethrough. For example, in this particular embodiment the non-rigid tubular member 138 is configured having a diameter sized and/or material chosen to provide a desired resistance to fluid flow until a threshold differential pressure is achieved. In this example, the non-rigid tubular member 138 can be formed from an elastomeric material having a lower modulus than that of the seal body, thereby offering a greater level of orifice deflection than otherwise possible in a seal embodiment lacking a surrounding rigid tubular member to protect the same from the squeeze effects of seal loading.
Such annular seal embodiment can be formed by filling a rigid tubular member with an elastomeric material, inserting the rigid tubular member in the seal body relief port, and drilling the elastomeric material disposed within the rigid tubular member to provide a desired relief port diameter.
Although not illustrated in
Although annular seal embodiments discussed above and illustrated in
There are several areas in the seal that can be reinforced with different materials to ensure that fluid or gas communication be maintained. This is particularly important at high operating temperatures since the rubber seal components become very compliant. The relief port area itself is one of the more critical features since the opening is very small and can be easily closed.
In this example, the size and length of the relief port first diameter section 158 is selected to provide a minimum amount of compressive force in the region of the first diameter section. This is desired for the purpose of ensuring that the shape and the deflection of the rubber flaps creating the relief port orifice in this region are least affected by pressures and temperatures acting on other parts of the seal body when the bit is being operated. This particular seal design is optimized for releasing internal pressure in the seal gap adjacent the seal surface 162 and also resealing and not allowing unwanted contaminants into the seal gap when external pressures are high. By placing the first diameter section on the internal side of the seal, the internal pressure acts to open the valve with little influence of the surrounding rubber. As the internal pressure increases, forces that act to open the first diameter section also increases.
The reinforcing member 160 operates to isolate areas of the seal though hole so that other forces in the seal cannot influence the pressure relieving operation of the seal as temperatures and pressures deform the seal body. The reinforcing member can be bonded to the surrounding elastomeric seal body relief port and/or can be connected thereto by mechanical or interference fit. One of the highest forces acting on the seal is the sealing force or squeeze imparted on the seal to engage the sealing surfaces. Thermal expansion of the seal itself will increase the seal force as well. This force acts to collapse the relief port used to move grease or gases across the seal body. As a seal wears and/or takes compression set, the seal squeeze is reduced consequently reducing the fluid pressure required to pass through the relief port, possibly to the point where drilling fluid and grease flow freely through the port.
As illustrated in
Although the reinforcing member for this example is shown positioned within the seal body adjacent a seal body external axial surface, the reinforcing member can be placed within the relief port so that it is adjacent the seal body internal axial surface. In such an alternative arrangement, the relief port unreinforced portion, i.e., the first diameter section, would be positioned adjacent the seal body external axial surface. Configured in this manner, the first diameter section would additionally function to help keep out unwanted external debris from packing the relief port.
Additionally, although in this illustrated example the first diameter section of the relief port is shown having a relatively short axial length, it is to be understood that the exact diameter and length of the unreinforced relief port section can and will vary depending on such factors as the seal body material, the amount of seal loading or compression force, and the operating temperatures and pressures in the particular drill bit application. For example, in applications where seal body deflection is thought to be minimal during drill bit operation, a sufficient sealing function may be had by increasing the length of the unsupported relief port section beyond that called for by seal applications where the seal body deflection is relatively higher.
Although not illustrated, it is to be understood that the annular seal embodiments discussed above and illustrated in
A filtering ability may be desired to control or prevent the entry of certain sized drilling debris particulate matter that may migrate to the seal body and into the relief port. The porous material can be specifically designed to have a defined porosity that will prevent the migration of certain sized particles. It may also be desired that the porous element have the ability to permit the preferential passage of grease from the interior drill bit environment through the relief port, and restrict or control the passage of water from the exterior drill bit environment. In an example embodiment, the porous element can be formed from such a permeable or porous material having one or more pores, and that is specifically constructed to facilitates the preferential of passage of grease therethrough, but restricts the passage of water therethrough until a certain pressure is achieved, e.g., according to the Washburn equation.
The porous element can be used in conjunction with annular seal embodiments having completely reinforced, partially-reinforced, or non-reinforced relief ports. The porous element can be attached to the seal body by bonding or by mechanical attachment technique. In the example embodiment illustrated, the porous element 194 is disposed within a slightly enlarged diameter section 199 of the relief port adjacent the seal body axial exterior surface.
It is desired that the seal body relief port be in constant communication with the drill bit interior and exterior environments during operation of the drill bit for the purpose of maintaining the ability of compensating pressure differentials thereacross. As explained above, differential pressures acting on the seal body can move the seal body axially within the seal gland to cause the axial seal body surfaces to contact adjacent seal gland surfaces. Because such contact cannot be avoided, and because such contact can operate to seal off access to the seal body relief port, it is desired that this issue be addressed. One way of maintaining access to the openings of the seal body relief port was discussed above and illustrated in
However, an alternative way of addressing this issue is to provide the offsetting surface features either as part of the seal gland wall, or as part of a spacer that is interposed between the seal body and the seal gland wall.
More specifically, and referring also to
Configured in this manner, the circumferential groove operates to provide an adjoining wall structure to the seal that permits unblocked passage of fluid or gas to or from the seal body relief port independent of the rotational orientation of the annular seal in the seal gland. The radial grooves operate to provide a communication path between the circumferential groove and the gap 206 leading to the drill bit external environment to facilitate the passage of fluid or gas therebetween. Together, these seal gland surface features operate to provide for the unrestricted passage of fluid between the seal body relief port and the drill bit external environment.
Alternatively, referring now to
The spacer 220 includes a second circumferential groove 228 that is disposed a depth along the spacer seal gland contact surface, and is positioned on the spacer body generally opposed to the first circumferential groove 226. The spacer further includes one or more radial grooves 230 that are each disposed a depth below the seal gland wall contact surface 224, and that extend radially from the second circumferential groove 228 to a spacer inside diameter edge 232.
Configured in this manner, when placed within a seal gland between the annular seal of this invention and the seal gland wall, the spacer operates to provide an unrestricted communication path for fluid or gas to pass via the seal body from an internal or external environment within the drill bit. Specifically, fluid or gas can pass from the seal relief port outwardly through the spacer via the first circumferential groove 226, through the passages 227, to the second circumferential groove 228, and along the radial grooves 230 to a gap between the drill bit cone and journal that leads to the external environment.
Seal embodiments discussed and illustrated above can be configured to provide for the controlled passage of fluid or gas through the seal body relief port by the selective sizing and configuration of the relief port itself, or by use of a further member disposed within the relief port (as illustrated in
For such situations, annular seals of this invention can be configured having a separate movable member that is configured to interact with the relief port to provide the function of improved fluid or gas passage control.
In an example embodiment, the means for controlling 238 is in the form of a thickness of material that is designed to rupture upon exposure to a determined differential pressure across the relief port opening. Once ruptured, the means can either move clear of the relief port opening to permit unrestricted passage of fluid or gas therethrough, or can be designed to rupture in a manner that still affords a certain degree of control over the passage of fluid or gas therethrough. In this second example, the means for controlling may include a small orifice that itself ruptures and then operates to govern the passage of fluid or gas therethrough when a lower threshold differential pressure is achieved.
The particular valve mechanisms discussed above and illustrated in
Annular seals of this invention, configured in the above-described and illustrated manner, are useful in such applications as dual-seal bits for reducing built up pressure between the seal rings, and thereby equalizing pressure therebetween. The particular embodiments presented herein are provided for the purpose of reference, and are intended to be representative of some but not all annular seals that can embody the principles of this invention.
This patent application is a continuation of U.S. patent application Ser. No. 10/406,065, filed on Apr. 2, 2003, now U.S. Pat. No. 6,976,548, to be issued on Dec. 20, 2005, which in turn claims priority of U.S. Provisional Patent Application No. 60/369,497, filed on Apr. 3, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2760793 | Beak | Aug 1956 | A |
2807483 | Cornelius | Sep 1957 | A |
3531132 | Lissau | Sep 1970 | A |
3942805 | Sundqvist | Mar 1976 | A |
4337956 | Hopper | Jul 1982 | A |
4384724 | Derman | May 1983 | A |
4440423 | Pfeifler, II | Apr 1984 | A |
4457517 | Dunegan | Jul 1984 | A |
4981182 | Dysart | Jan 1991 | A |
5076589 | Marsi | Dec 1991 | A |
5513711 | Williams | May 1996 | A |
6343796 | Lee et al. | Feb 2002 | B1 |
6467547 | Maguire et al. | Oct 2002 | B2 |
6578647 | Page et al. | Jun 2003 | B2 |
6615926 | Hester et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
0267140 | May 1988 | EP |
Number | Date | Country | |
---|---|---|---|
20060096782 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60369497 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10406065 | Apr 2003 | US |
Child | 11312075 | US |