Self-sealing fluid joint for use with a gastric band

Information

  • Patent Grant
  • 8961394
  • Patent Number
    8,961,394
  • Date Filed
    Tuesday, December 20, 2011
    13 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
Generally described herein are apparatus, systems and methods related to a mechanical interlock joint geometry for various components and joining of components thereby creating a reliable seal against fluid leaks that is resistant at typical pressures experienced when the components are implanted into a human body. Furthermore, the seal may be enhanced when a fluid pressure exerted inside the components is increased (e.g., from 1 to 10 psi).
Description
FIELD

The present invention generally relates to medical systems, devices and uses thereof for treating obesity and/or obesity-related diseases. More specifically, the present invention relates to a mechanical interlock joint geometry for connecting two components.


BACKGROUND

Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND APO (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts the food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach may provide a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract. An example of a gastric banding system is disclosed in Roslin, et al., U.S. Patent Pub. No. 2006/0235448, the entire disclosure of which is incorporated herein by this specific reference.


These gastric banding systems may include components such as a gastric band, an access port, fluid reservoirs and tubing to connect the various aforementioned components. Typically, these implantable components can contain or carry fluid at pressures up to about 12 psi, and are constructed out of special grades of silicone rubber for biocompatibility reasons. Metal or plastic barbed connectors are used to connect these implantable components to one another or to the tubing. These barbed connectors function well with rubber parts of higher durometer (e.g., 70 Shore A durometer or higher) but suffer from a low “pull-out” force resulting in slippage and separation of the rubber part from the barbed connected for lower durometer rubber components. This connection issue has traditionally been addressed by a number of techniques such as using an adhesive to secure the joint, overmolding the rubber on top of the hard connector to create a stronger rubber-to-connector bond, using a screw geometry or a barbed connector against the high durometer rubber, or compression fitting.


However such approaches have various drawbacks. For example, using an adhesive is undesirable due to the difficulties in controlling the amount delivered and the degree of cure for proper strength. Moreover, the adhesive might not be biocompatible.


Employing overmolding is also problematic as it is expensive and requires a metal insert which may agitate the surrounding internal organs of the patient.


Adding a screw geometry increases the cost of the system and fails to guarantee a fluid-tight seal under pressure. In addition, the rubber requires higher durometer materials due to the required structural rigidity.


Using a barbed connector also adds cost and complexity, in addition to the above-discussed agitation possibility of internal organs due to the rigidity of the materials. Furthermore, the barbed connector may still be limited for use with only high durometer rubbers since the rubber-connector contact might not generate enough resistance against a pull-out force when using a softer rubber. Fatigue-stresses at the rubber-connector junction would also remain an issue under this approach.


Compression fittings are bulky, expensive and hard to attach during a laproscopic surgical procedure.


Fusco, U.S. Patent Pub. No. 2009/0220176, discloses an application for filling polyethylene bags for the food industry, which is tangentially related in that it is also geared towards sealing. However, the system of Fusco as illustrated in FIG. 1 does not appear usable in a human body. Furthermore, the system of Fusco is structurally and functionally different than the present invention.


As a result, none of these options are particularly attractive in effectively connecting two rubber components.


Accordingly, what is needed is a connection technique that creates a reliable seal against fluid leaks at typical pressures appropriate for implantation into a human body.


SUMMARY

Generally described herein are apparatus, systems and methods related to a mechanical interlock joint geometry for various components and joining of components thereby creating a reliable seal against fluid leaks resistant at typical pressures experienced when the components are implanted into a human body. Furthermore, the seal may be enhanced when a pressure is increased (e.g., from 1 to 10 psi). In other words, fluid pressure may even increase the seal contact pressure.


In one embodiment, provided is a gastric banding system for the treatment of obesity. The gastric banding system includes a gastric band having an inflatable portion and a ring, a first tube having a first end and a second end, the first end of the first tube connected to the inflatable portion, a fluid reservoir including two halves and a first interlock, the first half having a first ball and a first flange, and the second half defining a first ball receiving cavity for receiving the first ball, and further defining a first flange receiving cavity for receiving the first flange, wherein the two halves of the fluid reservoir form the first interlock when the first ball receiving cavity receives the first ball, and when the first flange receiving cavity receives the first flange, the fluid reservoir further having a first end and a second end, the first end of the fluid reservoir connected to the second end of the first tube, a second tube having a first end and a second end, the first end of the second tube connected to the second end of the fluid reservoir, and an access port connected to the second end of the second tube.


In one embodiment, provided is a fluid reservoir for carrying fluid within a gastric banding system for the treatment of obesity. The gastric banding system includes a first half of the fluid reservoir and a second half of the fluid reservoir. The first half of the fluid reservoir may include a first connector for fluidly connecting the fluid reservoir to an inflatable portion of a gastric band, a first housing coupled to the connector, the first housing defining a first sub-reservoir, the first housing tapering to a first flat joining surface, a ball and flange coupled to the first flat joining surface, the ball and flange defining a second sub-reservoir. The second half of the fluid reservoir may include a second connector for fluidly connecting the fluid reservoir to an access port, a second housing coupled to the second connector, the second housing defining a third sub-reservoir, the second housing tapering to a second flat joining surface, the second housing further defining a ball receiving cavity for receiving the ball and a flange receiving cavity for receiving the flange to interlock the first half of the fluid reservoir with the second half of the fluid reservoir.


In one embodiment, provided is a tube-to-tube apparatus for establishing a fluid path between a first tube and a second tube to allow the tubes to carry fluid within a gastric banding system for the treatment of obesity. The apparatus includes a first sleeve and a second sleeve. The first sleeve may include a first end overmolding the first tube, an intermediate portion coupled to the first end, the intermediate portion defining a first sub-reservoir and having a first flat joining surface, a second end having a ball and flange, the second end protruding from the first flat joining surface and defining a second sub-reservoir fluidly coupled to the first sub-reservoir. The second sleeve may be interlocked to the first sleeve and may include a first end of the second sleeve overmolding the second tube, an intermediate portion coupled to the first end of the second sleeve, the intermediate portion defining a third sub-reservoir and having a second flat joining surface, and a second end of the second sleeve defining a ball receiving cavity for receiving the ball and a flange receiving cavity for receiving the flange to interlock the first sleeve with the second sleeve.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, obstacles, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:



FIG. 1 illustrates a prior art self-sealing container.



FIG. 2 illustrates a gastric banding system including various components according to an embodiment of the present invention.



FIG. 3A illustrates a fluid reservoir according to an embodiment of the present invention.



FIG. 3B illustrates a cross-sectional view of the fluid reservoir of FIG. 3A according to an embodiment of the present invention.



FIG. 3C illustrates a finite element analysis model of the fluid reservoir of FIG. 3A according to an embodiment of the present invention.



FIG. 3D illustrates the structure of a first half of the fluid reservoir of FIG. 3A according to an embodiment of the present invention.



FIG. 3E illustrates the structure of a second half of the fluid reservoir of FIG. 3A according to an embodiment of the present invention.



FIG. 4A illustrates a tubing according to an embodiment of the present invention.



FIG. 4B illustrates a cross-sectional view of the tubing of FIG. 4A according to an embodiment of the present invention.



FIG. 4C illustrates a close-up view of a portion of the tubing of FIG. 4A according to an embodiment of the present invention.



FIG. 4D illustrates a close-up view of a portion of the tubing of FIG. 4A according to an embodiment of the present invention.



FIG. 5A illustrates a fluid reservoir connected to tubing on both ends according to an embodiment of the present invention.



FIG. 5B illustrates a cross-sectional view of the fluid reservoir-tubing system of FIG. 5A according to an embodiment of the present invention.



FIG. 5C illustrates a close-up view of a portion of the reservoir-tubing system of FIG. 5A according to an embodiment of the present invention.



FIG. 6 illustrates a fluid reservoir having a trapezoidal-shaped element according to an embodiment of the present invention.



FIG. 7 illustrates a fluid reservoir having a triangular-shaped element according to an embodiment of the present invention.





DETAILED DESCRIPTION

Apparatuses, systems and/or methods that implement the embodiments of the various features of the present invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the present invention and not to limit the scope of the present invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements.


While described generally herein with components of a gastric banding system, one of ordinary skill in the art will understand that the concepts are applicable to any scenario where sealing against leaks may be advantageous and is not meant to be limited to the scope of gastric banding systems.


The present invention generally provides mechanical interlock joint geometry for creating a reliable seal against fluid leaks at a range of pressures. Furthermore, the seal may be enhanced when a pressure is increased (e.g., from 1 to 10 psi). That is, fluid pressure may increase the seal contact pressure.


One embodiment of the components of the gastric banding system 200 is illustrated in FIG. 2 and comprises a gastric band 205 coupled to a subcutaneous injection port 235 via a first tubing 202, a reservoir 203 and a second tubing 204. The gastric band 205 comprises a circular ring 207 and an inflatable portion 210 disposed on the inside of the ring 207. The inflatable portion 210 separates the patient's stomach from the ring 207 when the gastric band 205 is implanted around the esophageal-gastric junction of the patient's stomach. The ring 207 provides structure and support to the inflatable portion 210, and facilitates implanting the gastric band 205 around the patient's stomach.


The access port 235 may be sutured onto the rectus muscle sheath or any other conveniently accessible muscle. The rectus muscle sheath provides a secure surface on which to attach the access port 235 under a layer of fat that separates the patient's skin from the muscle.


The inflatable portion 210 may be filled and drained with a fluid via the reservoir 203. For example, the second tubing 204 may be connected to the subcutaneous access port 235 for filling and draining the inflatable portion 210 via subcutaneous injections. When more fluid is introduced in the inflatable portion 210, the constriction around the stomach generally becomes tighter. Correspondingly, when less fluid is present, the constriction loosens and/or opens up.


The fluids used within the gastric band 205 may include any fluid that is biocompatible and incompressible. The fluid has no adverse effect on the patient in the unlikely event that a leak emanates from the system. The fluid can simply be water or any biocompatible polymer oil such as caster oil. In an example embodiment, the fluid is saline, a drug, and/or combinations thereof.


Certain components (e.g., the first tubing 202, the reservoir 203 and the second tubing 204, etc.), including their structure and the joining to adjacent components thereof will now be described.



FIG. 3A illustrates a fluid reservoir 303, which may be the reservoir 203 of FIG. 2, with other components of the gastric banding system removed for clarity. While described with respect to the gastric banding system, the assembly of the fluid reservoir 303 may be used in any implantable apparatus including obesity-controlling products. Here, the fluid reservoir 303 may include two halves, a male half 310 and a female half 315. The two halves 310 and 315 may be molded separately and then pushed or pressed together to create the fluid-tight fluid reservoir 303. No adhesive, external rings, clamps or other devices are necessary. In this example, the two halves 310 and 315 may be constructed out of silicone rubber of Shore A durometer of 50 or greater and may be molded over a pair of standard metal connectors 320 and 325, as the fluid reservoir 303 can be connected to an extruded tube. The metal connectors 320 and 325 may serve as an interface for transferring fluid into and out of the fluid reservoir 303.



FIG. 3B illustrates a cross-sectional view of the fluid reservoir 303 of FIG. 3A. Here, the two halves 310 and 315 of the fluid reservoir 303 are illustrated to be interlocked via a ball 350 and a flange 355. That is, when the ball 350 and the flange 355 of the male half 310 are inserted and/or pushed into a ball receiving cavity 360 and a flange receiving cavity 365 of the female half 315, respectively, the flat, circumferential joining surface 376 and 375 of the male half 310 and the female half 315, respectively, are brought into contact to create the sealed fluid reservoir 303.


While the two halves 310 and 315 are utilized, the fluid reservoir 303 may actually be considered to comprise three sub-reservoirs joined together and in fluid communication. As previously described, the male half 310 of the fluid reservoir 303 defines both the first sub-reservoir 304 and the second sub-reservoir 305, which in turns leads into the third sub-reservoir 306 defined by the female half 315. The second sub-reservoir 305 may be proximal to the mating features which interlock to join the male half 310 and the female half 315. In one embodiment, the second sub-reservoir 305 is formed in the shape of an hour-glass.


When assembled as shown in FIG. 3B, pressure introduced by the carrying of fluid within the first, second and third sub-reservoirs 304, 305 and 306 promotes the sealing capabilities of the fluid reservoir 303 as a whole. More particularly, as shown in FIG. 3C, three seals or sealing surfaces 380, 385 and 390 are enhanced or provided when the reservoir 303 is filled with fluid.


The first seal 380, which occurs between the flange 355 and the flange receiving cavity 365 is enhanced by forces illustrated by arrows 363, 368 and 369. More particularly, the fluid inside the third sub-reservoir 306 causes the force as shown by the arrow 363 to press the flange 355 against a wall of the flange receiving cavity 365 in the direction of arrow 363. In other words, by employing a flap-shaped geometry with respect to the flange 355, and having fluid only on one side of the flange 355, the seal is enhanced. Additionally, fluid inside the first sub-reservoir 304 causes forces in the direction of arrows 369 to further press the flange 355 against the wall of the flange receiving cavity 365. Furthermore, the forces illustrated by arrows 368 pulls the wall of the flange receiving cavity 365 even more tightly into the flange 355. In this manner, in addition to initial interference, the seal 380 is greatly enhanced when the reservoir 303 is filled with fluid (which is precisely when the seal 380 is needed to be enhanced to prevent leakage).


The second seal 385 is caused initially by the interference between the ball 350 and the ball receiving cavity 360. However, the second seal 385 is enhanced when fluid is present in the second sub-reservoir 305. The fluid in the second sub-reservoir 305 causes an upward pressure shown by arrow 361 pressing the ball 350 further into the ball receiving cavity 360. Noticeably, relatively-speaking, the ball receiving cavity 360 displaces less than the ball 350 because fluid in the third sub-reservoir 306 actually causes a slight bulge in the direction of 359 since the wall of the female half 315 is thinner at the location of arrows 359. In this manner, the fluid within the second and third sub-reservoirs 305 and 306 enhance the seal between the ball 350 and the ball receiving cavity 360.


The third seal 390 is caused, in one embodiment, by opposing forces in directions shown by arrows 368 and 369. In other words, the pressure that tries to pull the male half 310 and the female half 315 of the reservoir 303 apart actually generates a better fluid seal at the joint created by the ball 350 and the ball receiving cavity 360. Moreover, the force illustrated by arrow 363 exerts and further press the ball 350 into the contacting wall portions of the ball receiving cavity 360. In addition, the ball 350 creates a wedge effect, which only further assists the sealing process.


The semi-sphere shaped ball 350 may provide the advantage of easier assembly. However, other shapes are possible, which may provide other advantages. For example, as shown in FIGS. 6 and 7, configurations such as trapezoid and/or a triangle are illustrated.


The configuration of FIG. 6 illustrates a fluid reservoir 600 having a trapezoid-shaped engaging element 610 in place of the ball-shaped engaging element (e.g., ball 350 of FIG. 3). The trapezoid-shaped engaging element 610 may be formed to include angles 605 in the range of between 92-135 degrees. By having an angle closer to about 92 degrees, the mechanical advantage provided by the wedge effect may be maximized.


The configuration of FIG. 7 illustrates a fluid reservoir 700 of yet another shape. Here, the fluid reservoir 700 has a triangular-shaped engaging element 710 in place of the ball-shaped engaging element (e.g., ball 350 of FIG. 3). Similar to the trapezoidal-shaped engaging element 610 of FIG. 6, the triangular-shaped engaging element 710 may be formed to include angles 705 in the range of between 92-135 degrees to improve the mechanical advantage and hence, the seal.


Referring back to the fluid reservoir 303, FIGS. 3D and 3E illustrate the male half 310 and the female half 315 of the reservoir 303 separated for clarity. As shown in FIG. 3D, the male half 310 may be molded and may include a “bottle-shaped” housing portion defining the first sub-reservoir 304 outwardly tapering to a flat, circumferential joining surface 370 which is integrated, on the other side, to the ball 350 and flange 355 which not only serves as mating members but defines on its interiors the second sub-reservoir 305. This male half 310 may be molded out of silicone rubber and may stretch to allow the core of the mold to be pulled out from the larger hole on the connection side.


The female half 315 of the reservoir 303 illustrated in FIG. 3E may include a similar “bottle-shaped” portion defining the third sub-reservoir 306 outwardly tapering to a flat circumferential joining surface 375, which is of equal diameter to the circumferential joining surface 370 of the male half 310. The female half 315 may include the female mating members including the ball receiving cavity 360 and the flange receiving cavity 365 hidden from view, and may also be constructed out of silicone rubber or other appropriate materials and may be molded despite undercut features.


While the above-described mating technique to create an enhanced seal has been discussed thus far in relationship with a fluid reservoir, such embodiments are mere examples and the applicability of the concepts may be applied to other devices or apparatuses including other portions of the gastric banding system.


For instance, the interlocking geometry may be used to connect two extruded silicone tubes to avoid the usage of barbed or compression fitting.



FIG. 4A illustrates how a tube 401 may be connected to another tube 402 using an over-molded sleeve 410. The extruded tubes 401 and 402 can be as long as desired, but are shown truncated in FIG. 4A for clarity. The tube 401, for example, may be connected to an inflatable portion of a gastric band while the tube 402 may be a connecting tube of a reservoir or an access port. More particularly, the tubes 401 and 402 may be extruded and might not itself incorporate the interlocking geometry. Instead, as shown in the cross-sectional view of FIG. 4B, the tubes 401 and 402 may be connected to the sleeve 410, which may comprise a male sleeve 411 and a female sleeve 412, which are interlocked together via similar geometry as discussed above with respect to the fluid reservoir of FIG. 3. Since the sleeve is overmolded on the tubes 401 and 402, adhesives are not required to attach the tubes 401 and 402 to their respective ends of the sleeve 410.


As far as the interlocking geometry is concerned, the proportions may be smaller in the sleeve 410 as compared to the fluid reservoir 303 of FIG. 3, but similarly, three sub-reservoirs are established to create the forces that enhance the sealing ability at the interlock.



FIG. 4C illustrates a close-up view of the connection between the extruded tube 401 and the male sleeve 411. The male sleeve 411 may be a single structural component and hollowed out and overmolded on the tube 401 at one end defining the first sub-reservoir 403 and the second sub-reservoir 404. The first sub-reservoir 403 may lead directly into an opening of the tube 401. Depending on the size of the first sub-reservoir 403 desired, the portion of the tube 401 that is overmolded by the male sleeve 411 may be configured. In addition, the length of the tube 401 that is overmolded may also impact lateral flexibility, such that more flexibility may be achieved where the overmolded area is minimized.



FIG. 4D illustrates a close-up view of the connection between extruded tube 402 and the female sleeve 412. The female sleeve 412 may be a single structural component and hollowed out and overmolded on the tube 402 at one end defining the third sub-reservoir 405. The third sub-reservoir 405 may lead directly into an opening of the tube 402. Similarly, depending on the size of the third sub-reservoir 405 desired, the portion of the tube 402 that is overmolded by the female sleeve 412 may be configured, which in turn may also impact lateral flexibility.


Alternatively, or in addition, a tube-to-tube connection may be made without the over-molded sleeves. For example, a first tube may be molded to have the male features (e.g., ball and flange) while a second tube may be molded to have the female features (e.g., ball receiving cavity and the flange receiving cavity). By pressing the male features of the first tube into the female features of the second tube, the two tubes may be joined very similar to the manner described above with respect to fluid reservoir 303.



FIG. 5A illustrates how the concepts of the self-locking and self-sealing mechanical interlocks as applied to a reservoir and the tubing may be applied in combination to eliminate the need for metal or plastic connectors. As shown, three distinct interlocks 510, 515 and 520 may be employed to connect a reservoir 503 with a pair of tubes 504 and 505 (one on each side of the reservoir 503) to create a self-sealing, self-locking fluid path able to transfer fluid from one end 506 of the first tubing 504 to a distal end 507 of the second tubing 505. In one embodiment, the end 506 may lead to an inflatable portion of the gastric band, while the other end 507 may lead to an access port. Or, where the reservoir 503 is only attached to the access port, the reservoir 503 may be attached to the tubing on one end (e.g., end 506) while closed at the other end.



FIG. 5B is a cross-sectional view of the system of FIG. 5A illustrating the three interlocked joints 510, 515 and 520 functioning in unison to create the self-sealing, self-locking fluid path able to transfer fluid from one end 506 of the first tubing 504 to a distal end 507 of the second tubing 505. Also shown in this view is how the sleeves 521 and 522 may be overmolded on not only the tube portions 531 and 532, respectively, but also over the end portions 533 and 534 of the reservoir 503.


As an example, FIG. 5C illustrates a close-up view of the portion of the sleeve 522 overmolded on the end portion 534 of the reservoir 503, thus eliminating the need for a connector or an adhesive.


It should be appreciated that the over-molding and/or the geometrical joint interlocks can be applied to a number of different components not explicitly described herein. Moreover, the geometrical shapes and the number of interlocks utilized to joint together a component or to join one component with another component may also be altered while still being within the spirit and scope of the invention.


Unless otherwise indicated, all numbers expressing quantities of ingredients, volumes of fluids, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


Specific embodiments disclosed herein may be further limited in the claims using consisting of or and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. A gastric banding system for the treatment of obesity, the gastric banding system comprising: a gastric band having an inflatable portion configured to constrict a stomach of a patient;an access port coupled to the gastric band for insertion of fluid to or removal of fluid from the inflatable portion of the gastric band to adjust the constriction of the inflatable portion of the gastric band about the stomach of the patient;a fluid reservoir for holding fluid and connected between the gastric band and the access port, the fluid reservoir including a first end and a second end, the fluid reservoir having a first male half and a first female half, the first male half extending from a first outer end to a first inner end and the first female half extending from a second outer end to a second inner end,the first male half of unitary construction having a first ring and a first flange, the first ring having a first side that faces the first flange and having a second side opposite the first side that faces the first outer end, the first flange located at the first inner end of the first male half and the first ring spaced between the first flange and the first outer end, andthe first female half defining a first circumferential groove for receiving the first ring and for surrounding the first and second sides of the first ring, and further defining a first annular wall facing the second outer end that seals with the first flange,wherein when the first ring extends into and is surrounded by the first groove, and when the first annular wall seals with the first flange, physical interference between the first ring and the first groove and between the first flange and the first annular wall cause the first male half and the first female half to form a first interlock therebetween;a first tube for carrying fluid between the inflatable portion of the gastric band and the fluid reservoir, the first tube having a first end connected to the inflatable portion of the gastric band and a second end connected to the first end of the fluid reservoir; anda second tube for carrying fluid between the access port and the fluid reservoir, the second tube having a first end connected to the second end of the fluid reservoir and a second end connected to the access port,wherein the first interlock creates a fluid tight seal.
  • 2. The gastric banding system of claim 1 wherein when the first male half and the first female half are interlocked, the fluid reservoir is self-sealed.
  • 3. The gastric banding system of claim 1 wherein the fluid reservoir defines three fluidly coupled sub-reservoirs when the first male half and the first female half are interlocked.
  • 4. The gastric banding system of claim 3 wherein a first and a second sub-reservoir are defined by the first male half and the third sub-reservoir is defined by the first female half.
  • 5. The gastric banding system of claim 4 wherein the second sub-reservoir is located between the first sub-reservoir and the third sub-reservoir.
  • 6. The gastric banding system of claim 5 wherein when the second sub-reservoir is filled with fluid, a resultant force presses the first ring into the first groove and presses the first flange against the first annular wall further sealing the reservoir and preventing leaking.
  • 7. The gastric banding system of claim 5, wherein the first flange extends into the third sub-reservoir.
  • 8. The gastric banding system of claim 5, wherein the second sub-reservoir tapers from opposite ends.
  • 9. The gastric banding system of claim 4, wherein the second sub-reservoir defines a cavity having an hourglass shape.
  • 10. The gastric banding system of claim 1 further comprising a second interlock and a first sleeve, wherein the first tube is connected to the fluid reservoir via the second interlock and the first sleeve is overmolded on the second interlock, a portion of the first tube and a portion of the fluid reservoir.
  • 11. The gastric banding system of claim 10 wherein the second interlock fluidly couples the first tube and the fluid reservoir and comprises a second male half and a second female half, the second male half having a second ring and a second flange, the second female half defining a second groove for receiving the second ring, and further defining a second annular wall for sealing with the second flange.
  • 12. The gastric banding system of claim 11 further comprising a third interlock and a second sleeve, wherein the second tube is connected to the fluid reservoir via the third interlock and the second sleeve is overmolded on the third interlock, a portion of the second tube and a portion of the fluid reservoir.
  • 13. The gastric banding system of claim 12 wherein the third interlock fluidly couples the second tube and the fluid reservoir and comprises a third male half and a third female half, the third male half having a third ring and a third flange, the third female half of the third interlock defining a third groove for receiving the third ring, and further defining a third annular wall for sealing with the third flange.
  • 14. The gastric banding system of claim 1, wherein the first circumferential groove is defined by a first sidewall and a second sidewall facing the first sidewall, and wherein when the first male half and the first female half are interlocked, the first ring extends into the groove and the first sidewall is adjacent to the first side of the ring and the second sidewall is adjacent to the second side of the ring.
  • 15. A fluid reservoir for carrying fluid within a gastric banding system for the treatment of obesity, the fluid reservoir comprising: a first half of the fluid reservoir of unitary construction including: a first connector for fluidly connecting the fluid reservoir to an inflatable portion of a gastric band,a first housing coupled to the connector, the first housing defining a first sub-reservoir, the first housing extending to a first flat joining surface, anda ring and flange coupled to the first flat joining surface, the ring and flange defining a second sub-reservoir, the ring spaced between the first flat joining surface and the flange, the ring having a first side that faces the flange and having a second side opposite the first side that faces the first flat joining surface; anda second half of the fluid reservoir including: a second connector for fluidly connecting the fluid reservoir to an access port, anda second housing coupled to the second connector, the second housing defining a third sub-reservoir, the second housing tapering to a second flat joining surface, the second housing further defining a circumferential groove for receiving the ring and for surrounding the first and second sides of the ring and defining an annular wall facing a direction opposite the second flat joining surface that seals with the flange,wherein when the ring extends into and is surrounded by the groove, and when the annular wall seals with the flange, physical interference between the ring and the groove and between the flange and the annular wall cause the first half and the second half to form a first interlock therebetween.
  • 16. The fluid reservoir of claim 15 wherein when the first half of the fluid reservoir is interlocked with the second half of the fluid reservoir, a fluid path is established between the first sub-reservoir, the second sub-reservoir and the third sub-reservoir.
  • 17. The fluid reservoir of claim 15 wherein the first housing and the second housing are constructed out of rubber silicone and wherein the first connector and the second connector are constructed out of a metal.
  • 18. The fluid reservoir of claim 15 wherein when the second sub-reservoir is filled with fluid, a resultant force presses the ring into the groove and presses the annular wall against the flange further sealing the fluid reservoir and preventing leaking.
  • 19. The fluid reservoir of claim 15, wherein the flange extends into the third sub-reservoir.
  • 20. The fluid reservoir of claim 15, wherein the second sub-reservoir is between the first sub-reservoir and the third sub-reservoir when the first half is interlocked with the second half.
  • 21. A tube-to-tube apparatus for establishing a fluid path between a first tube and a second tube to allow the tubes to carry fluid within a gastric banding system for the treatment of obesity, the apparatus comprising: a first sleeve of unitary construction including: a first end overmolding the first tube,an intermediate portion coupled to the first end, the intermediate portion defining a first sub-reservoir and having a first flat joining surface, anda second end having a ring and a flange, the second end protruding from the first flat joining surface and defining a second sub-reservoir fluidly coupled to the first sub-reservoir, the ring spaced between the flange and the first flat joining surface, the ring having a first side that faces the flange and having a second side opposite the first side that faces the first flat joining surface; anda second sleeve interlocked to the first sleeve, the second sleeve including: a first end of the second sleeve overmolding the second tube,an intermediate portion coupled to the first end of the second sleeve, the intermediate portion defining a third sub-reservoir and having a second flat joining surface for interfacing with the first flat joining surface, anda second end of the second sleeve defining a circumferential groove for receiving the ring and for surrounding the first and second sides of the ring and defining an annular wall facing a direction opposite that of the second flat joining surface that seals with the flangewherein when the ring extends into and is surrounded by the groove, and when the annular wall seals with the flange, physical interference between the ring and the groove and between the flange and the annular wall cause the first sleeve and the second sleeve to form a first interlock therebetween.
  • 22. The apparatus of claim 21 wherein when the first sleeve is interlocked with the second sleeve, a fluid path is established between the first tube and the second tube via the first sub-reservoir, the second sub-reservoir and the third sub-reservoir.
  • 23. The apparatus of claim 21 wherein the first sleeve and the second sleeve are constructed out of rubber silicone.
  • 24. The apparatus of claim 21 wherein when the second sub-reservoir is filled with fluid, a resultant force presses the ring into the groove and presses the flange against the annular wall further sealing the interlock and preventing leaking.
  • 25. The fluid reservoir of claim 21, wherein the flange extends into the third sub-reservoir.
  • 26. The fluid reservoir of claim 21, wherein the second sub-reservoir is between the first sub-reservoir and the third sub-reservoir when the first sleeve is interlocked with the second sleeve.
  • 27. The fluid reservoir of claim 26, wherein the diameter of the second sub-reservoir is smaller than the diameter of the first sub-reservoir and is smaller than the diameter of the third sub-reservoir.
US Referenced Citations (532)
Number Name Date Kind
1174814 Brennan et al. Mar 1916 A
1830947 Klingel Nov 1931 A
1999683 Borresen Apr 1935 A
2163048 McKee Jun 1939 A
2339138 Black Jan 1944 A
2405667 Ottesen Aug 1946 A
2438231 Schultz et al. Mar 1948 A
2635907 Heimbuch Apr 1953 A
2714469 Carlson Aug 1955 A
2936980 Rapata May 1960 A
3059645 Hasbrouck et al. Oct 1962 A
3189961 Heller Jun 1965 A
3667081 Burger Jun 1972 A
3840018 Heifetz Oct 1974 A
3955834 Ahlrot May 1976 A
4053176 Hilbush Oct 1977 A
4118805 Reimels Oct 1978 A
4133315 Berman et al. Jan 1979 A
4157713 Clarey Jun 1979 A
4176412 Peterson Dec 1979 A
4236521 Lauterjung Dec 1980 A
4271827 Angelchik Jun 1981 A
4299012 Oetiker Nov 1981 A
4340083 Cummins Jul 1982 A
4399809 Baro et al. Aug 1983 A
4408597 Tenney, Jr. et al. Oct 1983 A
4417567 Trick Nov 1983 A
4424208 Wallace et al. Jan 1984 A
4442153 Meltsch Apr 1984 A
4450375 Siegal May 1984 A
4485805 Foster, Jr. Dec 1984 A
4492004 Oetiker Jan 1985 A
4551862 Haber Nov 1985 A
4558699 Bashour Dec 1985 A
4559699 Owen et al. Dec 1985 A
4582640 Smestad et al. Apr 1986 A
4582865 Balazs et al. Apr 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4601713 Fuqua Jul 1986 A
4667672 Romanowski May 1987 A
4671351 Rappe Jun 1987 A
4693695 Cheng Sep 1987 A
4694827 Weiner et al. Sep 1987 A
4696288 Kuzmak et al. Sep 1987 A
4708140 Baron Nov 1987 A
4716154 Malson et al. Dec 1987 A
4753086 Schmidt Jun 1988 A
4760837 Petit Aug 1988 A
4803075 Wallace et al. Feb 1989 A
4881939 Newman Nov 1989 A
4883467 Franetzki et al. Nov 1989 A
4886787 De Belder et al. Dec 1989 A
4896787 Delamour et al. Jan 1990 A
4915690 Cone et al. Apr 1990 A
4925446 Garay et al. May 1990 A
4944487 Holtermann Jul 1990 A
4944659 Labbe et al. Jul 1990 A
4958791 Nakamura Sep 1990 A
4969899 Cox, Jr. Nov 1990 A
4994019 Fernandez et al. Feb 1991 A
5045060 Melsky et al. Sep 1991 A
5074868 Kuzmak Dec 1991 A
5084061 Gau et al. Jan 1992 A
5091171 Yu et al. Feb 1992 A
5116652 Alzner May 1992 A
5120313 Elftman Jun 1992 A
5143724 Leshchiner et al. Sep 1992 A
5152770 Bengmark et al. Oct 1992 A
5160338 Vincent Nov 1992 A
5188609 Bayless et al. Feb 1993 A
5224494 Enhorning Jul 1993 A
5226429 Kuzmak Jul 1993 A
5246456 Wilkinson Sep 1993 A
5246698 Leshchiner et al. Sep 1993 A
5259399 Brown Nov 1993 A
5326349 Baraff Jul 1994 A
5330448 Chu Jul 1994 A
5343894 Frisch et al. Sep 1994 A
5356883 Kuo et al. Oct 1994 A
5360445 Goldowsky Nov 1994 A
5391156 Hildwein et al. Feb 1995 A
5399351 Leshchiner et al. Mar 1995 A
5449363 Brust et al. Sep 1995 A
5449368 Kuzmak Sep 1995 A
5458568 Racchini et al. Oct 1995 A
5509888 Miller Apr 1996 A
5531716 Luzio et al. Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5554113 Novak et al. Sep 1996 A
5562714 Grevious Oct 1996 A
5601604 Vincent Feb 1997 A
5607418 Arzbaecher Mar 1997 A
5633001 Agerup May 1997 A
5653718 Yoon Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5695504 Gifford, III et al. Dec 1997 A
5704893 Timm Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5733257 Sternby Mar 1998 A
5748200 Funahashi May 1998 A
5766232 Grevious et al. Jun 1998 A
5769877 Barreras, Sr. Jun 1998 A
5785295 Tsai Jul 1998 A
5817113 Gifford, III et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5861014 Familoni Jan 1999 A
RE36176 Kuzmak Mar 1999 E
5886042 Yu et al. Mar 1999 A
5904697 Gifford, III et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5928195 Malamud et al. Jul 1999 A
5938669 Klaiber et al. Aug 1999 A
5944696 Bayless et al. Aug 1999 A
5944751 Laub Aug 1999 A
5993473 Chan et al. Nov 1999 A
6013679 Kuo et al. Jan 2000 A
6024340 Lazarus et al. Feb 2000 A
6024704 Meador et al. Feb 2000 A
6048309 Flom et al. Apr 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6074378 Mouri et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6090131 Daley Jul 2000 A
6102678 Peclat Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6171321 Gifford, III et al. Jan 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6203523 Haller et al. Mar 2001 B1
6210345 Van Brunt Apr 2001 B1
6210347 Forsell Apr 2001 B1
6221024 Miesel Apr 2001 B1
6224857 Romeo et al. May 2001 B1
6306088 Krausman et al. Oct 2001 B1
6327503 Familoni Dec 2001 B1
6371965 Gifford, III et al. Apr 2002 B2
6372494 Naughton et al. Apr 2002 B1
6383218 Sourdile et al. May 2002 B1
6383219 Telandro et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6417750 Shon Jul 2002 B1
6418934 Chin Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6432040 Meah Aug 2002 B1
6439539 Powell Aug 2002 B1
6443957 Addis Sep 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6457801 Fish et al. Oct 2002 B1
6460543 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6474584 Ekich Nov 2002 B2
6475136 Forsell Nov 2002 B1
6485496 Suyker et al. Nov 2002 B1
6491704 Gifford, III et al. Dec 2002 B2
6491705 Gifford, III et al. Dec 2002 B2
6511490 Robert Jan 2003 B2
6517556 Monassevitch Feb 2003 B1
6527701 Sayet et al. Mar 2003 B1
6547801 Dargent et al. Apr 2003 B1
6565582 Gifford, III et al. May 2003 B2
6579301 Bales et al. Jun 2003 B1
6601604 Cooper Aug 2003 B1
6615084 Cigaina Sep 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6632239 Snyder et al. Oct 2003 B2
6646628 Shirochi et al. Nov 2003 B2
6676674 Dudai Jan 2004 B1
6685668 Cho et al. Feb 2004 B1
6685963 Taupin et al. Feb 2004 B1
6691047 Fredericks Feb 2004 B1
6715731 Post et al. Apr 2004 B1
6729600 Mattes et al. May 2004 B2
6754527 Stroebel et al. Jun 2004 B2
6767924 Yu et al. Jul 2004 B2
6811136 Eberhardt et al. Nov 2004 B2
6820651 Seuret et al. Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6871090 He et al. Mar 2005 B1
6889086 Mass et al. May 2005 B2
6916326 Benchetrit Jul 2005 B2
6921819 Piron et al. Jul 2005 B2
6924273 Pierce Aug 2005 B2
6940467 Fischer et al. Sep 2005 B2
6966875 Longobardi Nov 2005 B1
7017583 Forsell Mar 2006 B2
7021147 Subramanian et al. Apr 2006 B1
7037344 Kagan et al. May 2006 B2
7040349 Moler et al. May 2006 B2
7054690 Imran May 2006 B2
7058434 Wang et al. Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7066486 Birk Jun 2006 B2
7118526 Egle Oct 2006 B2
7119062 Alvis et al. Oct 2006 B1
7128750 Stergiopulos Oct 2006 B1
7144400 Byrum et al. Dec 2006 B2
7172607 Hofle et al. Feb 2007 B2
7177693 Starkebsum Feb 2007 B2
7191007 Desai et al. Mar 2007 B2
7204821 Clare et al. Apr 2007 B1
7204832 Clare et al. Apr 2007 B2
7223239 Schulze et al. May 2007 B2
7238191 Bachmann Jul 2007 B2
7240607 Fish Jul 2007 B2
7255675 Gertner et al. Aug 2007 B2
7263405 Boveja et al. Aug 2007 B2
7282023 Frering Oct 2007 B2
7288064 Boustani et al. Oct 2007 B2
7297103 Jarsaillon et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310557 Maschino et al. Dec 2007 B2
7311716 Byrum Dec 2007 B2
7311717 Egle Dec 2007 B2
7314443 Jordan et al. Jan 2008 B2
7314636 Caseres et al. Jan 2008 B2
7338433 Coe Mar 2008 B2
7340306 Barrett et al. Mar 2008 B2
7351198 Byrum et al. Apr 2008 B2
7351240 Hassler, Jr. et al. Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7367340 Nelson et al. May 2008 B2
7367937 Jambor et al. May 2008 B2
7374565 Hassler, Jr. et al. May 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7396353 Lorenzen et al. Jul 2008 B2
7416528 Crawford et al. Aug 2008 B2
7457668 Cancel et al. Nov 2008 B2
7481763 Hassler, Jr. et al. Jan 2009 B2
7500944 Byrum et al. Mar 2009 B2
7502649 Ben-Haim et al. Mar 2009 B2
7530943 Lechner May 2009 B2
7594885 Byrum Sep 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7599744 Giordano et al. Oct 2009 B2
7601162 Hassler, Jr. et al. Oct 2009 B2
7615001 Jambor et al. Nov 2009 B2
7618365 Jambor et al. Nov 2009 B2
7658196 Ferreri et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7699770 Hassler, Jr. et al. Apr 2010 B2
7712470 Gertner May 2010 B2
7727141 Hassler, Jr. et al. Jun 2010 B2
7741476 Lebreton Jun 2010 B2
7758493 Gingras Jul 2010 B2
7763039 Ortiz et al. Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7771439 Griffiths Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7775966 Dlugos et al. Aug 2010 B2
7775967 Gertner Aug 2010 B2
7794386 Brooks Sep 2010 B2
7811298 Birk Oct 2010 B2
7824422 Benchetrit Nov 2010 B2
7828813 Mouton Nov 2010 B2
7832407 Gertner Nov 2010 B2
7841978 Gertner Nov 2010 B2
7844342 Dlugos, Jr. et al. Nov 2010 B2
7862502 Pool et al. Jan 2011 B2
7879068 Dlugos et al. Feb 2011 B2
7951067 Byrum et al. May 2011 B2
20010011543 Forsell Aug 2001 A1
20020072780 Foley Jun 2002 A1
20020091395 Gabbay Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020098097 Singh Jul 2002 A1
20020139208 Yatskov Oct 2002 A1
20020183765 Adams Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20020198548 Robert Dec 2002 A1
20030014003 Gertner Jan 2003 A1
20030019498 Forsell Jan 2003 A1
20030045775 Forsell Mar 2003 A1
20030045902 Weadock Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030073880 Polsky et al. Apr 2003 A1
20030093157 Casares et al. May 2003 A1
20030100910 Gifford, III et al. May 2003 A1
20030120288 Benchetrit Jun 2003 A1
20030148995 Piron et al. Aug 2003 A1
20030158564 Benchetrit Aug 2003 A1
20030158569 Wazne Aug 2003 A1
20030181890 Schulze et al. Sep 2003 A1
20030181917 Gertner Sep 2003 A1
20030191433 Prentiss Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20040000843 East Jan 2004 A1
20040044332 Stergiopulos Mar 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059393 Policker et al. Mar 2004 A1
20040068847 Belisle et al. Apr 2004 A1
20040106899 McMichael et al. Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040147816 Policker et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040162595 Foley Aug 2004 A1
20040215159 Forsell Oct 2004 A1
20040230137 Mouton Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20040260319 Egle Dec 2004 A1
20040267288 Byrum et al. Dec 2004 A1
20040267291 Byrum et al. Dec 2004 A1
20040267292 Byrum et al. Dec 2004 A1
20040267293 Byrum et al. Dec 2004 A1
20040267377 Egle Dec 2004 A1
20050002984 Byrum et al. Jan 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050070937 Jambor et al. Mar 2005 A1
20050100779 Gertner May 2005 A1
20050104457 Jordan et al. May 2005 A1
20050119672 Benchetrit Jun 2005 A1
20050119674 Gingras Jun 2005 A1
20050131383 Chen et al. Jun 2005 A1
20050131485 Krundson et al. Jun 2005 A1
20050136122 Sadozai et al. Jun 2005 A1
20050142152 Leshchiner et al. Jun 2005 A1
20050143765 Bachmann et al. Jun 2005 A1
20050143766 Bachmann et al. Jun 2005 A1
20050154274 Jarsaillon et al. Jul 2005 A1
20050171568 Duffy Aug 2005 A1
20050183730 Byrum Aug 2005 A1
20050192531 Birk Sep 2005 A1
20050192601 Demarais Sep 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050226936 Agerup Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050244288 O'Neil Nov 2005 A1
20050250979 Coe Nov 2005 A1
20050251181 Bachmann Nov 2005 A1
20050251182 Bachmann Nov 2005 A1
20050267406 Hassler, Jr. Dec 2005 A1
20050267500 Hassler, Jr. Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050271729 Wang Dec 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283041 Egle Dec 2005 A1
20050288739 Hassler, Jr. et al. Dec 2005 A1
20050288740 Hassler, Jr. et al. Dec 2005 A1
20060015138 Gertner Jan 2006 A1
20060020298 Camilleri et al. Jan 2006 A1
20060041183 Massen et al. Feb 2006 A1
20060074439 Garner et al. Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060122147 Wohlrab Jun 2006 A1
20060142700 Sobelman et al. Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060161139 Levine et al. Jul 2006 A1
20060161186 Hassler, Jr. et al. Jul 2006 A1
20060167531 Gertner et al. Jul 2006 A1
20060173238 Starkebaum Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060189887 Hassler et al. Aug 2006 A1
20060189888 Hassler, Jr. et al. Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060194758 Lebreton Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060197412 Rasmussen Sep 2006 A1
20060199997 Hassler, Jr. et al. Sep 2006 A1
20060211912 Dlugos et al. Sep 2006 A1
20060211913 Dlugos et al. Sep 2006 A1
20060211914 Hassler, Jr. et al. Sep 2006 A1
20060212051 Snyder et al. Sep 2006 A1
20060212053 Gertner Sep 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060246137 Hermitte et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060252982 Hassler, Jr. Nov 2006 A1
20060252983 Lembo et al. Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060264699 Gertner Nov 2006 A1
20060276812 Hill et al. Dec 2006 A1
20060293627 Byrum et al. Dec 2006 A1
20070015954 Dlugos Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070015956 Crawford et al. Jan 2007 A1
20070016231 Jambor et al. Jan 2007 A1
20070016262 Gross et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070027358 Gertner et al. Feb 2007 A1
20070044655 Fish Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070078476 Hull, Sr. et al. Apr 2007 A1
20070125826 Shelton Jun 2007 A1
20070129705 Trombley et al. Jun 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070167982 Gertner et al. Jul 2007 A1
20070173685 Jambor et al. Jul 2007 A1
20070173888 Gertner et al. Jul 2007 A1
20070179335 Gertner et al. Aug 2007 A1
20070185373 Tsonton Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070213836 Paganon Sep 2007 A1
20070218083 Brooks Sep 2007 A1
20070232848 Forsell Oct 2007 A1
20070232849 Gertner Oct 2007 A1
20070233170 Gertner Oct 2007 A1
20070235083 Dlugos Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070250085 Bachmann et al. Oct 2007 A1
20070250086 Wiley et al. Oct 2007 A1
20070255335 Herbert et al. Nov 2007 A1
20070255336 Herbert et al. Nov 2007 A1
20070265598 Karasik Nov 2007 A1
20070265645 Birk et al. Nov 2007 A1
20070265646 McCoy et al. Nov 2007 A1
20070293716 Baker et al. Dec 2007 A1
20070298005 Thibault Dec 2007 A1
20080009680 Hassler, Jr. Jan 2008 A1
20080015406 Dlugos et al. Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080027269 Gartner Jan 2008 A1
20080027469 Bachmann Jan 2008 A1
20080071306 Gertner Mar 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080103476 Schulte May 2008 A1
20080108862 Jordan et al. May 2008 A1
20080147002 Gertner Jun 2008 A1
20080161717 Gertner Jul 2008 A1
20080161875 Stone Jul 2008 A1
20080167647 Gertner Jul 2008 A1
20080167648 Gertner Jul 2008 A1
20080172072 Pool et al. Jul 2008 A1
20080188766 Gertner Aug 2008 A1
20080191466 Knipple et al. Aug 2008 A1
20080195092 Kim et al. Aug 2008 A1
20080208240 Paz Aug 2008 A1
20080221598 Dlugos et al. Sep 2008 A1
20080243071 Quijano et al. Oct 2008 A1
20080249806 Dlugos et al. Oct 2008 A1
20080250340 Dlugos et al. Oct 2008 A1
20080250341 Dlugos et al. Oct 2008 A1
20080255403 Voegele et al. Oct 2008 A1
20080255414 Voegele et al. Oct 2008 A1
20080255425 Voegele et al. Oct 2008 A1
20080255459 Voegele et al. Oct 2008 A1
20080255537 Voegele et al. Oct 2008 A1
20080275294 Gertner Nov 2008 A1
20080275295 Gertner Nov 2008 A1
20080275484 Gertner Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287969 Tsonton et al. Nov 2008 A1
20080287974 Widenhouse et al. Nov 2008 A1
20080287976 Weaner et al. Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080319435 Rioux et al. Dec 2008 A1
20090054914 Lechner Feb 2009 A1
20090062825 Pool et al. Mar 2009 A1
20090062826 Steffen Mar 2009 A1
20090082793 Birk Mar 2009 A1
20090118572 Lechner May 2009 A1
20090149874 Ortiz et al. Jun 2009 A1
20090157106 Marcotte et al. Jun 2009 A1
20090157107 Kierath et al. Jun 2009 A1
20090157113 Marcotte et al. Jun 2009 A1
20090171375 Coe et al. Jul 2009 A1
20090171378 Coe et al. Jul 2009 A1
20090171379 Coe et al. Jul 2009 A1
20090187202 Ortiz et al. Jul 2009 A1
20090192404 Ortiz et al. Jul 2009 A1
20090192415 Ortiz et al. Jul 2009 A1
20090192533 Dlugos, Jr. et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090192541 Ortiz et al. Jul 2009 A1
20090198261 Schweikert Aug 2009 A1
20090202387 Dlugos, Jr. et al. Aug 2009 A1
20090204131 Ortiz et al. Aug 2009 A1
20090204132 Ortiz et al. Aug 2009 A1
20090209995 Byrum et al. Aug 2009 A1
20090216255 Coe et al. Aug 2009 A1
20090220176 Fusco Sep 2009 A1
20090222031 Axelsson Sep 2009 A1
20090222065 Dlugos, Jr. et al. Sep 2009 A1
20090228063 Dlugos, Jr. et al. Sep 2009 A1
20090228072 Coe et al. Sep 2009 A1
20090270904 Birk et al. Oct 2009 A1
20090306462 Lechner Dec 2009 A1
20100010291 Birk et al. Jan 2010 A1
20100049224 Vargas Feb 2010 A1
20100087843 Bertolote et al. Apr 2010 A1
20100099945 Birk et al. Apr 2010 A1
20100100079 Berkcan Apr 2010 A1
20100145378 Gertner Jun 2010 A1
20100152532 Marcotte Jun 2010 A1
20100168508 Gertner Jul 2010 A1
20100185049 Birk et al. Jul 2010 A1
20100191265 Lau et al. Jul 2010 A1
20100191271 Lau et al. Jul 2010 A1
20100204647 Gertner Aug 2010 A1
20100204723 Gertner Aug 2010 A1
20100217071 Ricol Aug 2010 A1
20100226988 Lebreton Sep 2010 A1
20100228080 Tavori et al. Sep 2010 A1
20100234682 Gertner Sep 2010 A1
20100249803 Griffiths Sep 2010 A1
20100280310 Raven Nov 2010 A1
20100305397 Birk et al. Dec 2010 A1
20100312046 Lau et al. Dec 2010 A1
20100312147 Gertner Dec 2010 A1
20100324358 Birk et al. Dec 2010 A1
20100324359 Birk Dec 2010 A1
20110201874 Birk et al. Aug 2011 A1
20110207995 Snow Aug 2011 A1
20110313240 Phillips et al. Dec 2011 A1
Foreign Referenced Citations (129)
Number Date Country
949965 Jun 1974 CA
1250382 Apr 2000 CN
1367670 Sep 2002 CN
4225524 Feb 1994 DE
10020688 Dec 2000 DE
0119596 Sep 1984 EP
0230747 Aug 1987 EP
0416250 Mar 1991 EP
0611561 Aug 1994 EP
0695558 Feb 1996 EP
0876808 Nov 1998 EP
1036545 Sep 2000 EP
1072282 Jan 2001 EP
1105073 Jun 2001 EP
1396242 Mar 2004 EP
1396243 Mar 2004 EP
1491167 Dec 2004 EP
1491168 Dec 2004 EP
1529502 May 2005 EP
1547549 Jun 2005 EP
1574189 Sep 2005 EP
1600183 Nov 2005 EP
1602346 Dec 2005 EP
1704833 Sep 2006 EP
1719480 Nov 2006 EP
1736123 Dec 2006 EP
1736195 Dec 2006 EP
1736202 Dec 2006 EP
1743605 Jan 2007 EP
1829504 Sep 2007 EP
1829505 Sep 2007 EP
1829506 Sep 2007 EP
1967168 Sep 2008 EP
1992315 Nov 2008 EP
2074970 Jul 2009 EP
2074971 Jul 2009 EP
2074972 Jul 2009 EP
2095796 Sep 2009 EP
2095798 Sep 2009 EP
2191796 Jun 2010 EP
1566202 May 1969 FR
2688693 Sep 1993 FR
2769491 Apr 1999 FR
2783153 Mar 2000 FR
2797181 Feb 2001 FR
2799118 Apr 2001 FR
2823663 Oct 2002 FR
2855744 Dec 2004 FR
2921822 Apr 2009 FR
1174814 Dec 1969 GB
2090747 Jul 1982 GB
57-171676 Oct 1982 JP
1-67309 Apr 1989 JP
2-019147 Jan 1990 JP
2-132104 Nov 1990 JP
3-105702 Nov 1991 JP
11-244395 Sep 1999 JP
2003-526410 Sep 2003 JP
2005-131380 May 2005 JP
2005-334658 Dec 2005 JP
8503144 Dec 1986 SE
WO 8600079 Jan 1986 WO
WO 8600912 Feb 1986 WO
WO 8911701 Nov 1989 WO
WO 9000369 Jan 1990 WO
WO 9220349 Nov 1992 WO
WO 9402517 Feb 1994 WO
WO 9633751 Jan 1996 WO
96-14894 May 1996 WO
9614894 May 1996 WO
WO 9835639 Aug 1998 WO
WO 9835640 Aug 1998 WO
WO 0000108 Jan 2000 WO
WO 0001428 Jan 2000 WO
WO 0009047 Feb 2000 WO
WO 0009049 Feb 2000 WO
WO 0015158 Mar 2000 WO
00-61981 Oct 2000 WO
0061981 Oct 2000 WO
WO 0066196 Nov 2000 WO
WO 0110359 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0141671 Jun 2001 WO
WO 0147435 Jul 2001 WO
WO 0147575 Jul 2001 WO
WO 0149245 Jul 2001 WO
WO 0152777 Jul 2001 WO
WO 0168007 Sep 2001 WO
WO 0185071 Nov 2001 WO
WO 0205753 Jan 2002 WO
WO 0209792 Feb 2002 WO
WO 0219953 Mar 2002 WO
WO 0226317 Apr 2002 WO
WO 02053093 Jul 2002 WO
WO 02065948 Aug 2002 WO
WO 02096326 Dec 2002 WO
WO 03007782 Jan 2003 WO
WO 03055420 Jul 2003 WO
WO 03057092 Jul 2003 WO
WO 03059215 Jul 2003 WO
WO 03077191 Sep 2003 WO
WO 03101352 Dec 2003 WO
WO 03105732 Dec 2003 WO
WO 2004014245 Feb 2004 WO
WO 2004019671 Mar 2004 WO
WO 2004108025 Dec 2004 WO
WO 2004112563 Dec 2004 WO
WO 2005007232 Jan 2005 WO
WO 2005009305 Feb 2005 WO
WO 2005067994 May 2005 WO
WO 2005072195 Aug 2005 WO
WO 2005087147 Sep 2005 WO
WO 2005094447 Oct 2005 WO
WO 2005112888 Dec 2005 WO
WO 2006040647 Apr 2006 WO
WO 2006049725 May 2006 WO
WO 2006083885 Aug 2006 WO
WO 2006108203 Oct 2006 WO
WO 2007067206 Jun 2007 WO
WO 2007081304 Jul 2007 WO
WO 2007106727 Sep 2007 WO
WO 2007114905 Oct 2007 WO
WO 2007145638 Dec 2007 WO
WO 2008063673 May 2008 WO
WO 2008134755 Nov 2008 WO
WO 2009050709 Apr 2009 WO
WO 2009132127 Oct 2009 WO
WO 2009136126 Nov 2009 WO
WO 2010042493 Apr 2010 WO
Non-Patent Literature Citations (87)
Entry
Acuna-Goycolea et al.; “Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus”; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005.
Adrian et al.; “Mechanism of Pancreatic Polypeptide Release in Man.” The Lancet; pp. 161-163; Jan. 22, 1977.
Anson; “Shape Memory Alloys—Medical Applications,” Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999.
Asakawa et al; “Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice”; Gut.; V.52; pp. 947-952; 2003.
Baggio et al. “Biology of Incretins: GLP-1 and GIP”; Gastroenrology; V. 132; pp. 2131-2157; 2007.
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions”; Obesity Surgery; V.16; pp. 651-658; 2006.
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006.
Berne et al; “Physiology”; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004.
BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub., pp. 1-115; Aug. 28, 2003.
Boulant et al.; “Cholecystokinin in Transient Lower Oesophageal Sphincter Relaxation Due to Gastric Distension in Humans”; Gut.; V. 40; pp. 575-581; 1997.
Bradjewin et al.; “Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers”; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991.
Brown et al; “Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management”; Obesity Surgery; V. 18, pp. 1104-1108; 2008.
Burdyga et al.; “Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach”; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008.
Ceelen et al.; “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients”; Annals of Surgery; V. 237, No. 1; pp. 10-16; 2003.
Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008.
Chaudhri; “Can Gut Hormones Control Appetite and Prevent Obesity?” Diabetes Care; V. 31;.Supp 2; pp. S284-S289; Feb. 2008.
Cohen et al.; “Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans”; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003.
Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow”; New ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; 10 pages.
Corno et al.; “FlowWatchTM in clipped and inclipped position”; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright @ 2002 The European Association for Cardio-thoracic Surgery; 1 page.
Cummings et al.; “Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Surgery”; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002.
Cummings; “Gastrointestinal Regulation of Foot Intake”; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007.
Dakin et al.; “Oxyntomodulin Inhibits Food Intake in the Rat”; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001.
Dakin et al.; “Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats”; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004.
Davison; “Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin”; Proc. West. Pharmocol. Soc.; V. 29; pp. 363-366; 1986.
De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001.
De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001.
Desai et al.; “Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy” Journal of Pharmaceutical Science, V. 84, I 2; 1995, Abstract only.
Dixon et al.; “Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes”; Obesity Surgery; V. 11, pp. 59-65; 2001.
Doldi et al.; “Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity”; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan-Feb 2004.
Doldi et al.; “Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet”; Obesity Surgery; V. 10, pp. 583-587; 2000.
Doldi et al; “Intragastric Balloon in Obese Patients”; Obesity Surgery; V. 10, 578-581; 2000.
Ekblad et al.; “Distribution of Pancreatic Peptide and Peptide-YY”; Peptides; V. 23; pp. 251-261; 2002.
El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006.
Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999.
GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008.
Girard; “The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions”; Diabetes and Metabolism; V. 34; pp. 550-559; 2008.
Greenough et al.; “Untangling the Effects of Hunger, Anxiety, and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion”; Physiology & Behavior; V. 65, No. 2; pp. 303-310; 1998.
Grise et al.; “Peptide YY Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999.
Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006.
Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988.
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997.
Hameed et al.; “Gut hormones and appetite control.” Oral Diseases; V. 15; pp. 18-26; 2009.
Hassan et al.; “Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid” Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985.
Helioscopie Product Insert for Heliogast, 1 page; Jun. 2009.
Hodson et al.; “Management of Obesity with the New Intragastric Balloon”; Obesity Surgery; V. 11, pp. 327-329, 2001.
Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001.
Houpt; “Gastrointestinal Factors in Hunger and Satiety.” Neuroscience and Behavioral Reviews; V. 6; pp. 145-164; 1982.
Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009.
Kerem et al.; “Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats”; J. Gastrointest Surg.; V. 13; pp. 775-783, 2009.
Kesty et al.; “Hormone-based therapies in the regulation of fuel metabolism and body weight”; Expert Opin. Biol. Ther.; V. 8; No. 11; pp. 1733-1747; 2008.
Kissileff et al.; “Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans”; Am. J. Physiol. Regul. Integr. Comp. Physiol; V. 285; pp. 992-998; 2003.
Kojima et al.; “A role for pancreatic polypeptide in feeding and body weight regulation.” Peptides; V. 28; pp. 459-463; 2007.
Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008.
Lap-Band AP System Adjustable Gastric Banding System With OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009.
Le Roux et al.; “Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters”; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006.
Liu et al.; “Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth”; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996.
Mathus-Vliegen et al. “Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span”; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990.
Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000.
Medeiros et al.; “Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11”; Endocrinology; V. 134, No. 5; pp. 2088-2094; 1994.
Naslund et al. “Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects”; British Journal of Nutrition; V. 91; pp. 439-446; 2004.
Neary et al.; “Peptide YY(3-36) and Glucagon-Like Peptide-1(7-36) Inhibit Food Intake Additively”; Endocrinology; V.146; pp. 5120-5127; 2005.
Padidela et al.; “Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period”; European Journal of Endocrinology; v. 160; pp. 53-58; 2009.
Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009.
Qjan et al.; “Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117”; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008.
Rang et al.; “Pharmacology”; V. 5; pp. 203, 397, 402, 524; 2004.
Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994.
Renshaw et al. “Peptide YY: A Potential Therapy for Obesity”; Current Drug Targets; V. 6; pp. 171-179; 2005.
Sannino et al.; “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46; pp. 11206-11212; 2005.
Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005.
Shi et al.; “Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy”; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007.
Silver et al.; “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability” Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994.
Small et al.; “Gut hormones and the control of appetite”; TRENDS in Endocrinology and Metabolism; V. 15. No. 6; pp. 259-263; Aug. 2004.
Stanley et al.; “Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and Pancreatic polypeptide”; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004.
Tezel; “The Science of Hyaluronic Acid Dermal Fillers,” Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42.
Tolhurst et al.; “Nutritional regulation of glucagon-like peptidel secretion”; J. Physiol.; V. 587, No. 1; pp. 27-32; 2009.
Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001.
Tough et al.; “Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa”; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006.
Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002.
Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008.
Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004.
Verdich et al. “A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans”; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001.
Wahlen et al.; “The BioEnterics Intragastric Balloon (BIB): How to Use It”; Obesity Surgery; V. 11; pp. 524-527; 2001.
Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008.
Weiner et al.; “Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy”; Obesity Surgery; V. 9, pp. 261-264, 1999.
Wynne et al.; “Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind Randomized, Controlled Trial”; Diabetes; V. 54; pp. 2390-2395; 2005.
Xanthakos et al.; “Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis”; Pathophysiology; V. 15; pp. 135-146; 2008.
Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; Faseb J.; V. 21; pp. 2108-2112; 2007.
Related Publications (1)
Number Date Country
20130158343 A1 Jun 2013 US