The present invention generally relates to medical systems, devices and uses thereof for treating obesity and/or obesity-related diseases. More specifically, the present invention relates to a mechanical interlock joint geometry for connecting two components.
Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND APO (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the cardia, or upper portion, of a patient's stomach forming a stoma that restricts the food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach may provide a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract. An example of a gastric banding system is disclosed in Roslin, et al., U.S. Patent Pub. No. 2006/0235448, the entire disclosure of which is incorporated herein by this specific reference.
These gastric banding systems may include components such as a gastric band, an access port, fluid reservoirs and tubing to connect the various aforementioned components. Typically, these implantable components can contain or carry fluid at pressures up to about 12 psi, and are constructed out of special grades of silicone rubber for biocompatibility reasons. Metal or plastic barbed connectors are used to connect these implantable components to one another or to the tubing. These barbed connectors function well with rubber parts of higher durometer (e.g., 70 Shore A durometer or higher) but suffer from a low “pull-out” force resulting in slippage and separation of the rubber part from the barbed connected for lower durometer rubber components. This connection issue has traditionally been addressed by a number of techniques such as using an adhesive to secure the joint, overmolding the rubber on top of the hard connector to create a stronger rubber-to-connector bond, using a screw geometry or a barbed connector against the high durometer rubber, or compression fitting.
However such approaches have various drawbacks. For example, using an adhesive is undesirable due to the difficulties in controlling the amount delivered and the degree of cure for proper strength. Moreover, the adhesive might not be biocompatible.
Employing overmolding is also problematic as it is expensive and requires a metal insert which may agitate the surrounding internal organs of the patient.
Adding a screw geometry increases the cost of the system and fails to guarantee a fluid-tight seal under pressure. In addition, the rubber requires higher durometer materials due to the required structural rigidity.
Using a barbed connector also adds cost and complexity, in addition to the above-discussed agitation possibility of internal organs due to the rigidity of the materials. Furthermore, the barbed connector may still be limited for use with only high durometer rubbers since the rubber-connector contact might not generate enough resistance against a pull-out force when using a softer rubber. Fatigue-stresses at the rubber-connector junction would also remain an issue under this approach.
Compression fittings are bulky, expensive and hard to attach during a laproscopic surgical procedure.
Fusco, U.S. Patent Pub. No. 2009/0220176, discloses an application for filling polyethylene bags for the food industry, which is tangentially related in that it is also geared towards sealing. However, the system of Fusco as illustrated in
As a result, none of these options are particularly attractive in effectively connecting two rubber components.
Accordingly, what is needed is a connection technique that creates a reliable seal against fluid leaks at typical pressures appropriate for implantation into a human body.
Generally described herein are apparatus, systems and methods related to a mechanical interlock joint geometry for various components and joining of components thereby creating a reliable seal against fluid leaks resistant at typical pressures experienced when the components are implanted into a human body. Furthermore, the seal may be enhanced when a pressure is increased (e.g., from 1 to 10 psi). In other words, fluid pressure may even increase the seal contact pressure.
In one embodiment, provided is a gastric banding system for the treatment of obesity. The gastric banding system includes a gastric band having an inflatable portion and a ring, a first tube having a first end and a second end, the first end of the first tube connected to the inflatable portion, a fluid reservoir including two halves and a first interlock, the first half having a first ball and a first flange, and the second half defining a first ball receiving cavity for receiving the first ball, and further defining a first flange receiving cavity for receiving the first flange, wherein the two halves of the fluid reservoir form the first interlock when the first ball receiving cavity receives the first ball, and when the first flange receiving cavity receives the first flange, the fluid reservoir further having a first end and a second end, the first end of the fluid reservoir connected to the second end of the first tube, a second tube having a first end and a second end, the first end of the second tube connected to the second end of the fluid reservoir, and an access port connected to the second end of the second tube.
In one embodiment, provided is a fluid reservoir for carrying fluid within a gastric banding system for the treatment of obesity. The gastric banding system includes a first half of the fluid reservoir and a second half of the fluid reservoir. The first half of the fluid reservoir may include a first connector for fluidly connecting the fluid reservoir to an inflatable portion of a gastric band, a first housing coupled to the connector, the first housing defining a first sub-reservoir, the first housing tapering to a first flat joining surface, a ball and flange coupled to the first flat joining surface, the ball and flange defining a second sub-reservoir. The second half of the fluid reservoir may include a second connector for fluidly connecting the fluid reservoir to an access port, a second housing coupled to the second connector, the second housing defining a third sub-reservoir, the second housing tapering to a second flat joining surface, the second housing further defining a ball receiving cavity for receiving the ball and a flange receiving cavity for receiving the flange to interlock the first half of the fluid reservoir with the second half of the fluid reservoir.
In one embodiment, provided is a tube-to-tube apparatus for establishing a fluid path between a first tube and a second tube to allow the tubes to carry fluid within a gastric banding system for the treatment of obesity. The apparatus includes a first sleeve and a second sleeve. The first sleeve may include a first end overmolding the first tube, an intermediate portion coupled to the first end, the intermediate portion defining a first sub-reservoir and having a first flat joining surface, a second end having a ball and flange, the second end protruding from the first flat joining surface and defining a second sub-reservoir fluidly coupled to the first sub-reservoir. The second sleeve may be interlocked to the first sleeve and may include a first end of the second sleeve overmolding the second tube, an intermediate portion coupled to the first end of the second sleeve, the intermediate portion defining a third sub-reservoir and having a second flat joining surface, and a second end of the second sleeve defining a ball receiving cavity for receiving the ball and a flange receiving cavity for receiving the flange to interlock the first sleeve with the second sleeve.
The features, obstacles, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
Apparatuses, systems and/or methods that implement the embodiments of the various features of the present invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the present invention and not to limit the scope of the present invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements.
While described generally herein with components of a gastric banding system, one of ordinary skill in the art will understand that the concepts are applicable to any scenario where sealing against leaks may be advantageous and is not meant to be limited to the scope of gastric banding systems.
The present invention generally provides mechanical interlock joint geometry for creating a reliable seal against fluid leaks at a range of pressures. Furthermore, the seal may be enhanced when a pressure is increased (e.g., from 1 to 10 psi). That is, fluid pressure may increase the seal contact pressure.
One embodiment of the components of the gastric banding system 200 is illustrated in
The access port 235 may be sutured onto the rectus muscle sheath or any other conveniently accessible muscle. The rectus muscle sheath provides a secure surface on which to attach the access port 235 under a layer of fat that separates the patient's skin from the muscle.
The inflatable portion 210 may be filled and drained with a fluid via the reservoir 203. For example, the second tubing 204 may be connected to the subcutaneous access port 235 for filling and draining the inflatable portion 210 via subcutaneous injections. When more fluid is introduced in the inflatable portion 210, the constriction around the stomach generally becomes tighter. Correspondingly, when less fluid is present, the constriction loosens and/or opens up.
The fluids used within the gastric band 205 may include any fluid that is biocompatible and incompressible. The fluid has no adverse effect on the patient in the unlikely event that a leak emanates from the system. The fluid can simply be water or any biocompatible polymer oil such as caster oil. In an example embodiment, the fluid is saline, a drug, and/or combinations thereof.
Certain components (e.g., the first tubing 202, the reservoir 203 and the second tubing 204, etc.), including their structure and the joining to adjacent components thereof will now be described.
While the two halves 310 and 315 are utilized, the fluid reservoir 303 may actually be considered to comprise three sub-reservoirs joined together and in fluid communication. As previously described, the male half 310 of the fluid reservoir 303 defines both the first sub-reservoir 304 and the second sub-reservoir 305, which in turns leads into the third sub-reservoir 306 defined by the female half 315. The second sub-reservoir 305 may be proximal to the mating features which interlock to join the male half 310 and the female half 315. In one embodiment, the second sub-reservoir 305 is formed in the shape of an hour-glass.
When assembled as shown in
The first seal 380, which occurs between the flange 355 and the flange receiving cavity 365 is enhanced by forces illustrated by arrows 363, 368 and 369. More particularly, the fluid inside the third sub-reservoir 306 causes the force as shown by the arrow 363 to press the flange 355 against a wall of the flange receiving cavity 365 in the direction of arrow 363. In other words, by employing a flap-shaped geometry with respect to the flange 355, and having fluid only on one side of the flange 355, the seal is enhanced. Additionally, fluid inside the first sub-reservoir 304 causes forces in the direction of arrows 369 to further press the flange 355 against the wall of the flange receiving cavity 365. Furthermore, the forces illustrated by arrows 368 pulls the wall of the flange receiving cavity 365 even more tightly into the flange 355. In this manner, in addition to initial interference, the seal 380 is greatly enhanced when the reservoir 303 is filled with fluid (which is precisely when the seal 380 is needed to be enhanced to prevent leakage).
The second seal 385 is caused initially by the interference between the ball 350 and the ball receiving cavity 360. However, the second seal 385 is enhanced when fluid is present in the second sub-reservoir 305. The fluid in the second sub-reservoir 305 causes an upward pressure shown by arrow 361 pressing the ball 350 further into the ball receiving cavity 360. Noticeably, relatively-speaking, the ball receiving cavity 360 displaces less than the ball 350 because fluid in the third sub-reservoir 306 actually causes a slight bulge in the direction of 359 since the wall of the female half 315 is thinner at the location of arrows 359. In this manner, the fluid within the second and third sub-reservoirs 305 and 306 enhance the seal between the ball 350 and the ball receiving cavity 360.
The third seal 390 is caused, in one embodiment, by opposing forces in directions shown by arrows 368 and 369. In other words, the pressure that tries to pull the male half 310 and the female half 315 of the reservoir 303 apart actually generates a better fluid seal at the joint created by the ball 350 and the ball receiving cavity 360. Moreover, the force illustrated by arrow 363 exerts and further press the ball 350 into the contacting wall portions of the ball receiving cavity 360. In addition, the ball 350 creates a wedge effect, which only further assists the sealing process.
The semi-sphere shaped ball 350 may provide the advantage of easier assembly. However, other shapes are possible, which may provide other advantages. For example, as shown in
The configuration of
The configuration of
Referring back to the fluid reservoir 303,
The female half 315 of the reservoir 303 illustrated in
While the above-described mating technique to create an enhanced seal has been discussed thus far in relationship with a fluid reservoir, such embodiments are mere examples and the applicability of the concepts may be applied to other devices or apparatuses including other portions of the gastric banding system.
For instance, the interlocking geometry may be used to connect two extruded silicone tubes to avoid the usage of barbed or compression fitting.
As far as the interlocking geometry is concerned, the proportions may be smaller in the sleeve 410 as compared to the fluid reservoir 303 of
Alternatively, or in addition, a tube-to-tube connection may be made without the over-molded sleeves. For example, a first tube may be molded to have the male features (e.g., ball and flange) while a second tube may be molded to have the female features (e.g., ball receiving cavity and the flange receiving cavity). By pressing the male features of the first tube into the female features of the second tube, the two tubes may be joined very similar to the manner described above with respect to fluid reservoir 303.
As an example,
It should be appreciated that the over-molding and/or the geometrical joint interlocks can be applied to a number of different components not explicitly described herein. Moreover, the geometrical shapes and the number of interlocks utilized to joint together a component or to join one component with another component may also be altered while still being within the spirit and scope of the invention.
Unless otherwise indicated, all numbers expressing quantities of ingredients, volumes of fluids, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
Specific embodiments disclosed herein may be further limited in the claims using consisting of or and consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
Number | Name | Date | Kind |
---|---|---|---|
1174814 | Brennan et al. | Mar 1916 | A |
1830947 | Klingel | Nov 1931 | A |
1999683 | Borresen | Apr 1935 | A |
2163048 | McKee | Jun 1939 | A |
2339138 | Black | Jan 1944 | A |
2405667 | Ottesen | Aug 1946 | A |
2438231 | Schultz et al. | Mar 1948 | A |
2635907 | Heimbuch | Apr 1953 | A |
2714469 | Carlson | Aug 1955 | A |
2936980 | Rapata | May 1960 | A |
3059645 | Hasbrouck et al. | Oct 1962 | A |
3189961 | Heller | Jun 1965 | A |
3667081 | Burger | Jun 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3955834 | Ahlrot | May 1976 | A |
4053176 | Hilbush | Oct 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4133315 | Berman et al. | Jan 1979 | A |
4157713 | Clarey | Jun 1979 | A |
4176412 | Peterson | Dec 1979 | A |
4236521 | Lauterjung | Dec 1980 | A |
4271827 | Angelchik | Jun 1981 | A |
4299012 | Oetiker | Nov 1981 | A |
4340083 | Cummins | Jul 1982 | A |
4399809 | Baro et al. | Aug 1983 | A |
4408597 | Tenney, Jr. et al. | Oct 1983 | A |
4417567 | Trick | Nov 1983 | A |
4424208 | Wallace et al. | Jan 1984 | A |
4442153 | Meltsch | Apr 1984 | A |
4450375 | Siegal | May 1984 | A |
4485805 | Foster, Jr. | Dec 1984 | A |
4492004 | Oetiker | Jan 1985 | A |
4551862 | Haber | Nov 1985 | A |
4558699 | Bashour | Dec 1985 | A |
4559699 | Owen et al. | Dec 1985 | A |
4582640 | Smestad et al. | Apr 1986 | A |
4582865 | Balazs et al. | Apr 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4667672 | Romanowski | May 1987 | A |
4671351 | Rappe | Jun 1987 | A |
4693695 | Cheng | Sep 1987 | A |
4694827 | Weiner et al. | Sep 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4708140 | Baron | Nov 1987 | A |
4716154 | Malson et al. | Dec 1987 | A |
4753086 | Schmidt | Jun 1988 | A |
4760837 | Petit | Aug 1988 | A |
4803075 | Wallace et al. | Feb 1989 | A |
4881939 | Newman | Nov 1989 | A |
4883467 | Franetzki et al. | Nov 1989 | A |
4886787 | De Belder et al. | Dec 1989 | A |
4896787 | Delamour et al. | Jan 1990 | A |
4915690 | Cone et al. | Apr 1990 | A |
4925446 | Garay et al. | May 1990 | A |
4944487 | Holtermann | Jul 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4958791 | Nakamura | Sep 1990 | A |
4969899 | Cox, Jr. | Nov 1990 | A |
4994019 | Fernandez et al. | Feb 1991 | A |
5045060 | Melsky et al. | Sep 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5084061 | Gau et al. | Jan 1992 | A |
5091171 | Yu et al. | Feb 1992 | A |
5116652 | Alzner | May 1992 | A |
5120313 | Elftman | Jun 1992 | A |
5143724 | Leshchiner et al. | Sep 1992 | A |
5152770 | Bengmark et al. | Oct 1992 | A |
5160338 | Vincent | Nov 1992 | A |
5188609 | Bayless et al. | Feb 1993 | A |
5224494 | Enhorning | Jul 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5246456 | Wilkinson | Sep 1993 | A |
5246698 | Leshchiner et al. | Sep 1993 | A |
5259399 | Brown | Nov 1993 | A |
5326349 | Baraff | Jul 1994 | A |
5330448 | Chu | Jul 1994 | A |
5343894 | Frisch et al. | Sep 1994 | A |
5356883 | Kuo et al. | Oct 1994 | A |
5360445 | Goldowsky | Nov 1994 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5399351 | Leshchiner et al. | Mar 1995 | A |
5449363 | Brust et al. | Sep 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5509888 | Miller | Apr 1996 | A |
5531716 | Luzio et al. | Jul 1996 | A |
5535752 | Halperin et al. | Jul 1996 | A |
5554113 | Novak et al. | Sep 1996 | A |
5562714 | Grevious | Oct 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5607418 | Arzbaecher | Mar 1997 | A |
5633001 | Agerup | May 1997 | A |
5653718 | Yoon | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5704893 | Timm | Jan 1998 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5733257 | Sternby | Mar 1998 | A |
5748200 | Funahashi | May 1998 | A |
5766232 | Grevious et al. | Jun 1998 | A |
5769877 | Barreras, Sr. | Jun 1998 | A |
5785295 | Tsai | Jul 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5827529 | Ono et al. | Oct 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5861014 | Familoni | Jan 1999 | A |
RE36176 | Kuzmak | Mar 1999 | E |
5886042 | Yu et al. | Mar 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5928195 | Malamud et al. | Jul 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5944696 | Bayless et al. | Aug 1999 | A |
5944751 | Laub | Aug 1999 | A |
5993473 | Chan et al. | Nov 1999 | A |
6013679 | Kuo et al. | Jan 2000 | A |
6024340 | Lazarus et al. | Feb 2000 | A |
6024704 | Meador et al. | Feb 2000 | A |
6048309 | Flom et al. | Apr 2000 | A |
6067991 | Forsell | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074378 | Mouri et al. | Jun 2000 | A |
6083249 | Familoni | Jul 2000 | A |
6090131 | Daley | Jul 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6171321 | Gifford, III et al. | Jan 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6203523 | Haller et al. | Mar 2001 | B1 |
6210345 | Van Brunt | Apr 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6221024 | Miesel | Apr 2001 | B1 |
6224857 | Romeo et al. | May 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6327503 | Familoni | Dec 2001 | B1 |
6371965 | Gifford, III et al. | Apr 2002 | B2 |
6372494 | Naughton et al. | Apr 2002 | B1 |
6383218 | Sourdile et al. | May 2002 | B1 |
6383219 | Telandro et al. | May 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6417750 | Shon | Jul 2002 | B1 |
6418934 | Chin | Jul 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6432040 | Meah | Aug 2002 | B1 |
6439539 | Powell | Aug 2002 | B1 |
6443957 | Addis | Sep 2002 | B1 |
6443965 | Gifford, III et al. | Sep 2002 | B1 |
6450173 | Forsell | Sep 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6451034 | Gifford, III et al. | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6454700 | Forsell | Sep 2002 | B1 |
6454701 | Forsell | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6457801 | Fish et al. | Oct 2002 | B1 |
6460543 | Forsell | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6463935 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6474584 | Ekich | Nov 2002 | B2 |
6475136 | Forsell | Nov 2002 | B1 |
6485496 | Suyker et al. | Nov 2002 | B1 |
6491704 | Gifford, III et al. | Dec 2002 | B2 |
6491705 | Gifford, III et al. | Dec 2002 | B2 |
6511490 | Robert | Jan 2003 | B2 |
6517556 | Monassevitch | Feb 2003 | B1 |
6527701 | Sayet et al. | Mar 2003 | B1 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6565582 | Gifford, III et al. | May 2003 | B2 |
6579301 | Bales et al. | Jun 2003 | B1 |
6601604 | Cooper | Aug 2003 | B1 |
6615084 | Cigaina | Sep 2003 | B1 |
6627620 | Nielsen | Sep 2003 | B1 |
6630486 | Royer | Oct 2003 | B1 |
6632239 | Snyder et al. | Oct 2003 | B2 |
6646628 | Shirochi et al. | Nov 2003 | B2 |
6676674 | Dudai | Jan 2004 | B1 |
6685668 | Cho et al. | Feb 2004 | B1 |
6685963 | Taupin et al. | Feb 2004 | B1 |
6691047 | Fredericks | Feb 2004 | B1 |
6715731 | Post et al. | Apr 2004 | B1 |
6729600 | Mattes et al. | May 2004 | B2 |
6754527 | Stroebel et al. | Jun 2004 | B2 |
6767924 | Yu et al. | Jul 2004 | B2 |
6811136 | Eberhardt et al. | Nov 2004 | B2 |
6820651 | Seuret et al. | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6871090 | He et al. | Mar 2005 | B1 |
6889086 | Mass et al. | May 2005 | B2 |
6916326 | Benchetrit | Jul 2005 | B2 |
6921819 | Piron et al. | Jul 2005 | B2 |
6924273 | Pierce | Aug 2005 | B2 |
6940467 | Fischer et al. | Sep 2005 | B2 |
6966875 | Longobardi | Nov 2005 | B1 |
7017583 | Forsell | Mar 2006 | B2 |
7021147 | Subramanian et al. | Apr 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7040349 | Moler et al. | May 2006 | B2 |
7054690 | Imran | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7060080 | Bachmann | Jun 2006 | B2 |
7066486 | Birk | Jun 2006 | B2 |
7118526 | Egle | Oct 2006 | B2 |
7119062 | Alvis et al. | Oct 2006 | B1 |
7128750 | Stergiopulos | Oct 2006 | B1 |
7144400 | Byrum et al. | Dec 2006 | B2 |
7172607 | Hofle et al. | Feb 2007 | B2 |
7177693 | Starkebsum | Feb 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7204821 | Clare et al. | Apr 2007 | B1 |
7204832 | Clare et al. | Apr 2007 | B2 |
7223239 | Schulze et al. | May 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7240607 | Fish | Jul 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7263405 | Boveja et al. | Aug 2007 | B2 |
7282023 | Frering | Oct 2007 | B2 |
7288064 | Boustani et al. | Oct 2007 | B2 |
7297103 | Jarsaillon et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310557 | Maschino et al. | Dec 2007 | B2 |
7311716 | Byrum | Dec 2007 | B2 |
7311717 | Egle | Dec 2007 | B2 |
7314443 | Jordan et al. | Jan 2008 | B2 |
7314636 | Caseres et al. | Jan 2008 | B2 |
7338433 | Coe | Mar 2008 | B2 |
7340306 | Barrett et al. | Mar 2008 | B2 |
7351198 | Byrum et al. | Apr 2008 | B2 |
7351240 | Hassler, Jr. et al. | Apr 2008 | B2 |
7364542 | Jambor et al. | Apr 2008 | B2 |
7367340 | Nelson et al. | May 2008 | B2 |
7367937 | Jambor et al. | May 2008 | B2 |
7374565 | Hassler, Jr. et al. | May 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7396353 | Lorenzen et al. | Jul 2008 | B2 |
7416528 | Crawford et al. | Aug 2008 | B2 |
7457668 | Cancel et al. | Nov 2008 | B2 |
7481763 | Hassler, Jr. et al. | Jan 2009 | B2 |
7500944 | Byrum et al. | Mar 2009 | B2 |
7502649 | Ben-Haim et al. | Mar 2009 | B2 |
7530943 | Lechner | May 2009 | B2 |
7594885 | Byrum | Sep 2009 | B2 |
7599743 | Hassler, Jr. et al. | Oct 2009 | B2 |
7599744 | Giordano et al. | Oct 2009 | B2 |
7601162 | Hassler, Jr. et al. | Oct 2009 | B2 |
7615001 | Jambor et al. | Nov 2009 | B2 |
7618365 | Jambor et al. | Nov 2009 | B2 |
7658196 | Ferreri et al. | Feb 2010 | B2 |
7670279 | Gertner | Mar 2010 | B2 |
7699770 | Hassler, Jr. et al. | Apr 2010 | B2 |
7712470 | Gertner | May 2010 | B2 |
7727141 | Hassler, Jr. et al. | Jun 2010 | B2 |
7741476 | Lebreton | Jun 2010 | B2 |
7758493 | Gingras | Jul 2010 | B2 |
7763039 | Ortiz et al. | Jul 2010 | B2 |
7766815 | Ortiz | Aug 2010 | B2 |
7771439 | Griffiths | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7775966 | Dlugos et al. | Aug 2010 | B2 |
7775967 | Gertner | Aug 2010 | B2 |
7794386 | Brooks | Sep 2010 | B2 |
7811298 | Birk | Oct 2010 | B2 |
7824422 | Benchetrit | Nov 2010 | B2 |
7828813 | Mouton | Nov 2010 | B2 |
7832407 | Gertner | Nov 2010 | B2 |
7841978 | Gertner | Nov 2010 | B2 |
7844342 | Dlugos, Jr. et al. | Nov 2010 | B2 |
7862502 | Pool et al. | Jan 2011 | B2 |
7879068 | Dlugos et al. | Feb 2011 | B2 |
7951067 | Byrum et al. | May 2011 | B2 |
20010011543 | Forsell | Aug 2001 | A1 |
20020072780 | Foley | Jun 2002 | A1 |
20020091395 | Gabbay | Jul 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020098097 | Singh | Jul 2002 | A1 |
20020139208 | Yatskov | Oct 2002 | A1 |
20020183765 | Adams | Dec 2002 | A1 |
20020193679 | Malave et al. | Dec 2002 | A1 |
20020198548 | Robert | Dec 2002 | A1 |
20030014003 | Gertner | Jan 2003 | A1 |
20030019498 | Forsell | Jan 2003 | A1 |
20030045775 | Forsell | Mar 2003 | A1 |
20030045902 | Weadock | Mar 2003 | A1 |
20030060873 | Gertner et al. | Mar 2003 | A1 |
20030066536 | Forsell | Apr 2003 | A1 |
20030073880 | Polsky et al. | Apr 2003 | A1 |
20030093157 | Casares et al. | May 2003 | A1 |
20030100910 | Gifford, III et al. | May 2003 | A1 |
20030120288 | Benchetrit | Jun 2003 | A1 |
20030148995 | Piron et al. | Aug 2003 | A1 |
20030158564 | Benchetrit | Aug 2003 | A1 |
20030158569 | Wazne | Aug 2003 | A1 |
20030181890 | Schulze et al. | Sep 2003 | A1 |
20030181917 | Gertner | Sep 2003 | A1 |
20030191433 | Prentiss | Oct 2003 | A1 |
20030208212 | Cigaina | Nov 2003 | A1 |
20040000843 | East | Jan 2004 | A1 |
20040044332 | Stergiopulos | Mar 2004 | A1 |
20040049209 | Benchetrit | Mar 2004 | A1 |
20040059393 | Policker et al. | Mar 2004 | A1 |
20040068847 | Belisle et al. | Apr 2004 | A1 |
20040106899 | McMichael et al. | Jun 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040147816 | Policker et al. | Jul 2004 | A1 |
20040148034 | Kagan et al. | Jul 2004 | A1 |
20040153106 | Dudai | Aug 2004 | A1 |
20040162595 | Foley | Aug 2004 | A1 |
20040215159 | Forsell | Oct 2004 | A1 |
20040230137 | Mouton | Nov 2004 | A1 |
20040254536 | Conlon et al. | Dec 2004 | A1 |
20040254537 | Conlon et al. | Dec 2004 | A1 |
20040260319 | Egle | Dec 2004 | A1 |
20040267288 | Byrum et al. | Dec 2004 | A1 |
20040267291 | Byrum et al. | Dec 2004 | A1 |
20040267292 | Byrum et al. | Dec 2004 | A1 |
20040267293 | Byrum et al. | Dec 2004 | A1 |
20040267377 | Egle | Dec 2004 | A1 |
20050002984 | Byrum et al. | Jan 2005 | A1 |
20050038484 | Knudson et al. | Feb 2005 | A1 |
20050038498 | Dubrow et al. | Feb 2005 | A1 |
20050055039 | Burnett et al. | Mar 2005 | A1 |
20050070934 | Tanaka et al. | Mar 2005 | A1 |
20050070937 | Jambor et al. | Mar 2005 | A1 |
20050100779 | Gertner | May 2005 | A1 |
20050104457 | Jordan et al. | May 2005 | A1 |
20050119672 | Benchetrit | Jun 2005 | A1 |
20050119674 | Gingras | Jun 2005 | A1 |
20050131383 | Chen et al. | Jun 2005 | A1 |
20050131485 | Krundson et al. | Jun 2005 | A1 |
20050136122 | Sadozai et al. | Jun 2005 | A1 |
20050142152 | Leshchiner et al. | Jun 2005 | A1 |
20050143765 | Bachmann et al. | Jun 2005 | A1 |
20050143766 | Bachmann et al. | Jun 2005 | A1 |
20050154274 | Jarsaillon et al. | Jul 2005 | A1 |
20050171568 | Duffy | Aug 2005 | A1 |
20050183730 | Byrum | Aug 2005 | A1 |
20050192531 | Birk | Sep 2005 | A1 |
20050192601 | Demarais | Sep 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050216042 | Gertner | Sep 2005 | A1 |
20050226936 | Agerup | Oct 2005 | A1 |
20050228415 | Gertner | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240155 | Conlon | Oct 2005 | A1 |
20050240156 | Conlon | Oct 2005 | A1 |
20050240279 | Kagan et al. | Oct 2005 | A1 |
20050244288 | O'Neil | Nov 2005 | A1 |
20050250979 | Coe | Nov 2005 | A1 |
20050251181 | Bachmann | Nov 2005 | A1 |
20050251182 | Bachmann | Nov 2005 | A1 |
20050267406 | Hassler, Jr. | Dec 2005 | A1 |
20050267500 | Hassler, Jr. | Dec 2005 | A1 |
20050267533 | Gertner | Dec 2005 | A1 |
20050271729 | Wang | Dec 2005 | A1 |
20050277899 | Conlon et al. | Dec 2005 | A1 |
20050283041 | Egle | Dec 2005 | A1 |
20050288739 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288740 | Hassler, Jr. et al. | Dec 2005 | A1 |
20060015138 | Gertner | Jan 2006 | A1 |
20060020298 | Camilleri et al. | Jan 2006 | A1 |
20060041183 | Massen et al. | Feb 2006 | A1 |
20060074439 | Garner et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060089571 | Gertner | Apr 2006 | A1 |
20060122147 | Wohlrab | Jun 2006 | A1 |
20060142700 | Sobelman et al. | Jun 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161186 | Hassler, Jr. et al. | Jul 2006 | A1 |
20060167531 | Gertner et al. | Jul 2006 | A1 |
20060173238 | Starkebaum | Aug 2006 | A1 |
20060173424 | Conlon | Aug 2006 | A1 |
20060183967 | Lechner | Aug 2006 | A1 |
20060189887 | Hassler et al. | Aug 2006 | A1 |
20060189888 | Hassler, Jr. et al. | Aug 2006 | A1 |
20060189889 | Gertner | Aug 2006 | A1 |
20060194758 | Lebreton | Aug 2006 | A1 |
20060195139 | Gertner | Aug 2006 | A1 |
20060197412 | Rasmussen | Sep 2006 | A1 |
20060199997 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060211912 | Dlugos et al. | Sep 2006 | A1 |
20060211913 | Dlugos et al. | Sep 2006 | A1 |
20060211914 | Hassler, Jr. et al. | Sep 2006 | A1 |
20060212051 | Snyder et al. | Sep 2006 | A1 |
20060212053 | Gertner | Sep 2006 | A1 |
20060235448 | Roslin et al. | Oct 2006 | A1 |
20060246137 | Hermitte et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060252982 | Hassler, Jr. | Nov 2006 | A1 |
20060252983 | Lembo et al. | Nov 2006 | A1 |
20060257488 | Hubbard | Nov 2006 | A1 |
20060264699 | Gertner | Nov 2006 | A1 |
20060276812 | Hill et al. | Dec 2006 | A1 |
20060293627 | Byrum et al. | Dec 2006 | A1 |
20070015954 | Dlugos | Jan 2007 | A1 |
20070015955 | Tsonton | Jan 2007 | A1 |
20070015956 | Crawford et al. | Jan 2007 | A1 |
20070016231 | Jambor et al. | Jan 2007 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070027356 | Ortiz | Feb 2007 | A1 |
20070027358 | Gertner et al. | Feb 2007 | A1 |
20070044655 | Fish | Mar 2007 | A1 |
20070077292 | Pinsky | Apr 2007 | A1 |
20070078476 | Hull, Sr. et al. | Apr 2007 | A1 |
20070125826 | Shelton | Jun 2007 | A1 |
20070129705 | Trombley et al. | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070167672 | Dlugos et al. | Jul 2007 | A1 |
20070167982 | Gertner et al. | Jul 2007 | A1 |
20070173685 | Jambor et al. | Jul 2007 | A1 |
20070173888 | Gertner et al. | Jul 2007 | A1 |
20070179335 | Gertner et al. | Aug 2007 | A1 |
20070185373 | Tsonton | Aug 2007 | A1 |
20070185462 | Byrum | Aug 2007 | A1 |
20070213836 | Paganon | Sep 2007 | A1 |
20070218083 | Brooks | Sep 2007 | A1 |
20070232848 | Forsell | Oct 2007 | A1 |
20070232849 | Gertner | Oct 2007 | A1 |
20070233170 | Gertner | Oct 2007 | A1 |
20070235083 | Dlugos | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070250085 | Bachmann et al. | Oct 2007 | A1 |
20070250086 | Wiley et al. | Oct 2007 | A1 |
20070255335 | Herbert et al. | Nov 2007 | A1 |
20070255336 | Herbert et al. | Nov 2007 | A1 |
20070265598 | Karasik | Nov 2007 | A1 |
20070265645 | Birk et al. | Nov 2007 | A1 |
20070265646 | McCoy et al. | Nov 2007 | A1 |
20070293716 | Baker et al. | Dec 2007 | A1 |
20070298005 | Thibault | Dec 2007 | A1 |
20080009680 | Hassler, Jr. | Jan 2008 | A1 |
20080015406 | Dlugos et al. | Jan 2008 | A1 |
20080015501 | Gertner | Jan 2008 | A1 |
20080027269 | Gartner | Jan 2008 | A1 |
20080027469 | Bachmann | Jan 2008 | A1 |
20080071306 | Gertner | Mar 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080103476 | Schulte | May 2008 | A1 |
20080108862 | Jordan et al. | May 2008 | A1 |
20080147002 | Gertner | Jun 2008 | A1 |
20080161717 | Gertner | Jul 2008 | A1 |
20080161875 | Stone | Jul 2008 | A1 |
20080167647 | Gertner | Jul 2008 | A1 |
20080167648 | Gertner | Jul 2008 | A1 |
20080172072 | Pool et al. | Jul 2008 | A1 |
20080188766 | Gertner | Aug 2008 | A1 |
20080191466 | Knipple et al. | Aug 2008 | A1 |
20080195092 | Kim et al. | Aug 2008 | A1 |
20080208240 | Paz | Aug 2008 | A1 |
20080221598 | Dlugos et al. | Sep 2008 | A1 |
20080243071 | Quijano et al. | Oct 2008 | A1 |
20080249806 | Dlugos et al. | Oct 2008 | A1 |
20080250340 | Dlugos et al. | Oct 2008 | A1 |
20080250341 | Dlugos et al. | Oct 2008 | A1 |
20080255403 | Voegele et al. | Oct 2008 | A1 |
20080255414 | Voegele et al. | Oct 2008 | A1 |
20080255425 | Voegele et al. | Oct 2008 | A1 |
20080255459 | Voegele et al. | Oct 2008 | A1 |
20080255537 | Voegele et al. | Oct 2008 | A1 |
20080275294 | Gertner | Nov 2008 | A1 |
20080275295 | Gertner | Nov 2008 | A1 |
20080275484 | Gertner | Nov 2008 | A1 |
20080281347 | Gertner | Nov 2008 | A1 |
20080287969 | Tsonton et al. | Nov 2008 | A1 |
20080287974 | Widenhouse et al. | Nov 2008 | A1 |
20080287976 | Weaner et al. | Nov 2008 | A1 |
20080300618 | Gertner | Dec 2008 | A1 |
20080319435 | Rioux et al. | Dec 2008 | A1 |
20090054914 | Lechner | Feb 2009 | A1 |
20090062825 | Pool et al. | Mar 2009 | A1 |
20090062826 | Steffen | Mar 2009 | A1 |
20090082793 | Birk | Mar 2009 | A1 |
20090118572 | Lechner | May 2009 | A1 |
20090149874 | Ortiz et al. | Jun 2009 | A1 |
20090157106 | Marcotte et al. | Jun 2009 | A1 |
20090157107 | Kierath et al. | Jun 2009 | A1 |
20090157113 | Marcotte et al. | Jun 2009 | A1 |
20090171375 | Coe et al. | Jul 2009 | A1 |
20090171378 | Coe et al. | Jul 2009 | A1 |
20090171379 | Coe et al. | Jul 2009 | A1 |
20090187202 | Ortiz et al. | Jul 2009 | A1 |
20090192404 | Ortiz et al. | Jul 2009 | A1 |
20090192415 | Ortiz et al. | Jul 2009 | A1 |
20090192533 | Dlugos, Jr. et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090192541 | Ortiz et al. | Jul 2009 | A1 |
20090198261 | Schweikert | Aug 2009 | A1 |
20090202387 | Dlugos, Jr. et al. | Aug 2009 | A1 |
20090204131 | Ortiz et al. | Aug 2009 | A1 |
20090204132 | Ortiz et al. | Aug 2009 | A1 |
20090209995 | Byrum et al. | Aug 2009 | A1 |
20090216255 | Coe et al. | Aug 2009 | A1 |
20090220176 | Fusco | Sep 2009 | A1 |
20090222031 | Axelsson | Sep 2009 | A1 |
20090222065 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090228063 | Dlugos, Jr. et al. | Sep 2009 | A1 |
20090228072 | Coe et al. | Sep 2009 | A1 |
20090270904 | Birk et al. | Oct 2009 | A1 |
20090306462 | Lechner | Dec 2009 | A1 |
20100010291 | Birk et al. | Jan 2010 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
20100087843 | Bertolote et al. | Apr 2010 | A1 |
20100099945 | Birk et al. | Apr 2010 | A1 |
20100100079 | Berkcan | Apr 2010 | A1 |
20100145378 | Gertner | Jun 2010 | A1 |
20100152532 | Marcotte | Jun 2010 | A1 |
20100168508 | Gertner | Jul 2010 | A1 |
20100185049 | Birk et al. | Jul 2010 | A1 |
20100191265 | Lau et al. | Jul 2010 | A1 |
20100191271 | Lau et al. | Jul 2010 | A1 |
20100204647 | Gertner | Aug 2010 | A1 |
20100204723 | Gertner | Aug 2010 | A1 |
20100217071 | Ricol | Aug 2010 | A1 |
20100226988 | Lebreton | Sep 2010 | A1 |
20100228080 | Tavori et al. | Sep 2010 | A1 |
20100234682 | Gertner | Sep 2010 | A1 |
20100249803 | Griffiths | Sep 2010 | A1 |
20100280310 | Raven | Nov 2010 | A1 |
20100305397 | Birk et al. | Dec 2010 | A1 |
20100312046 | Lau et al. | Dec 2010 | A1 |
20100312147 | Gertner | Dec 2010 | A1 |
20100324358 | Birk et al. | Dec 2010 | A1 |
20100324359 | Birk | Dec 2010 | A1 |
20110201874 | Birk et al. | Aug 2011 | A1 |
20110207995 | Snow | Aug 2011 | A1 |
20110313240 | Phillips et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
949965 | Jun 1974 | CA |
1250382 | Apr 2000 | CN |
1367670 | Sep 2002 | CN |
4225524 | Feb 1994 | DE |
10020688 | Dec 2000 | DE |
0119596 | Sep 1984 | EP |
0230747 | Aug 1987 | EP |
0416250 | Mar 1991 | EP |
0611561 | Aug 1994 | EP |
0695558 | Feb 1996 | EP |
0876808 | Nov 1998 | EP |
1036545 | Sep 2000 | EP |
1072282 | Jan 2001 | EP |
1105073 | Jun 2001 | EP |
1396242 | Mar 2004 | EP |
1396243 | Mar 2004 | EP |
1491167 | Dec 2004 | EP |
1491168 | Dec 2004 | EP |
1529502 | May 2005 | EP |
1547549 | Jun 2005 | EP |
1574189 | Sep 2005 | EP |
1600183 | Nov 2005 | EP |
1602346 | Dec 2005 | EP |
1704833 | Sep 2006 | EP |
1719480 | Nov 2006 | EP |
1736123 | Dec 2006 | EP |
1736195 | Dec 2006 | EP |
1736202 | Dec 2006 | EP |
1743605 | Jan 2007 | EP |
1829504 | Sep 2007 | EP |
1829505 | Sep 2007 | EP |
1829506 | Sep 2007 | EP |
1967168 | Sep 2008 | EP |
1992315 | Nov 2008 | EP |
2074970 | Jul 2009 | EP |
2074971 | Jul 2009 | EP |
2074972 | Jul 2009 | EP |
2095796 | Sep 2009 | EP |
2095798 | Sep 2009 | EP |
2191796 | Jun 2010 | EP |
1566202 | May 1969 | FR |
2688693 | Sep 1993 | FR |
2769491 | Apr 1999 | FR |
2783153 | Mar 2000 | FR |
2797181 | Feb 2001 | FR |
2799118 | Apr 2001 | FR |
2823663 | Oct 2002 | FR |
2855744 | Dec 2004 | FR |
2921822 | Apr 2009 | FR |
1174814 | Dec 1969 | GB |
2090747 | Jul 1982 | GB |
57-171676 | Oct 1982 | JP |
1-67309 | Apr 1989 | JP |
2-019147 | Jan 1990 | JP |
2-132104 | Nov 1990 | JP |
3-105702 | Nov 1991 | JP |
11-244395 | Sep 1999 | JP |
2003-526410 | Sep 2003 | JP |
2005-131380 | May 2005 | JP |
2005-334658 | Dec 2005 | JP |
8503144 | Dec 1986 | SE |
WO 8600079 | Jan 1986 | WO |
WO 8600912 | Feb 1986 | WO |
WO 8911701 | Nov 1989 | WO |
WO 9000369 | Jan 1990 | WO |
WO 9220349 | Nov 1992 | WO |
WO 9402517 | Feb 1994 | WO |
WO 9633751 | Jan 1996 | WO |
96-14894 | May 1996 | WO |
9614894 | May 1996 | WO |
WO 9835639 | Aug 1998 | WO |
WO 9835640 | Aug 1998 | WO |
WO 0000108 | Jan 2000 | WO |
WO 0001428 | Jan 2000 | WO |
WO 0009047 | Feb 2000 | WO |
WO 0009049 | Feb 2000 | WO |
WO 0015158 | Mar 2000 | WO |
00-61981 | Oct 2000 | WO |
0061981 | Oct 2000 | WO |
WO 0066196 | Nov 2000 | WO |
WO 0110359 | Feb 2001 | WO |
WO 0112078 | Feb 2001 | WO |
WO 0141671 | Jun 2001 | WO |
WO 0147435 | Jul 2001 | WO |
WO 0147575 | Jul 2001 | WO |
WO 0149245 | Jul 2001 | WO |
WO 0152777 | Jul 2001 | WO |
WO 0168007 | Sep 2001 | WO |
WO 0185071 | Nov 2001 | WO |
WO 0205753 | Jan 2002 | WO |
WO 0209792 | Feb 2002 | WO |
WO 0219953 | Mar 2002 | WO |
WO 0226317 | Apr 2002 | WO |
WO 02053093 | Jul 2002 | WO |
WO 02065948 | Aug 2002 | WO |
WO 02096326 | Dec 2002 | WO |
WO 03007782 | Jan 2003 | WO |
WO 03055420 | Jul 2003 | WO |
WO 03057092 | Jul 2003 | WO |
WO 03059215 | Jul 2003 | WO |
WO 03077191 | Sep 2003 | WO |
WO 03101352 | Dec 2003 | WO |
WO 03105732 | Dec 2003 | WO |
WO 2004014245 | Feb 2004 | WO |
WO 2004019671 | Mar 2004 | WO |
WO 2004108025 | Dec 2004 | WO |
WO 2004112563 | Dec 2004 | WO |
WO 2005007232 | Jan 2005 | WO |
WO 2005009305 | Feb 2005 | WO |
WO 2005067994 | May 2005 | WO |
WO 2005072195 | Aug 2005 | WO |
WO 2005087147 | Sep 2005 | WO |
WO 2005094447 | Oct 2005 | WO |
WO 2005112888 | Dec 2005 | WO |
WO 2006040647 | Apr 2006 | WO |
WO 2006049725 | May 2006 | WO |
WO 2006083885 | Aug 2006 | WO |
WO 2006108203 | Oct 2006 | WO |
WO 2007067206 | Jun 2007 | WO |
WO 2007081304 | Jul 2007 | WO |
WO 2007106727 | Sep 2007 | WO |
WO 2007114905 | Oct 2007 | WO |
WO 2007145638 | Dec 2007 | WO |
WO 2008063673 | May 2008 | WO |
WO 2008134755 | Nov 2008 | WO |
WO 2009050709 | Apr 2009 | WO |
WO 2009132127 | Oct 2009 | WO |
WO 2009136126 | Nov 2009 | WO |
WO 2010042493 | Apr 2010 | WO |
Entry |
---|
Acuna-Goycolea et al.; “Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus”; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005. |
Adrian et al.; “Mechanism of Pancreatic Polypeptide Release in Man.” The Lancet; pp. 161-163; Jan. 22, 1977. |
Anson; “Shape Memory Alloys—Medical Applications,” Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999. |
Asakawa et al; “Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice”; Gut.; V.52; pp. 947-952; 2003. |
Baggio et al. “Biology of Incretins: GLP-1 and GIP”; Gastroenrology; V. 132; pp. 2131-2157; 2007. |
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions”; Obesity Surgery; V.16; pp. 651-658; 2006. |
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006. |
Berne et al; “Physiology”; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004. |
BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub., pp. 1-115; Aug. 28, 2003. |
Boulant et al.; “Cholecystokinin in Transient Lower Oesophageal Sphincter Relaxation Due to Gastric Distension in Humans”; Gut.; V. 40; pp. 575-581; 1997. |
Bradjewin et al.; “Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers”; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991. |
Brown et al; “Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management”; Obesity Surgery; V. 18, pp. 1104-1108; 2008. |
Burdyga et al.; “Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach”; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008. |
Ceelen et al.; “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients”; Annals of Surgery; V. 237, No. 1; pp. 10-16; 2003. |
Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008. |
Chaudhri; “Can Gut Hormones Control Appetite and Prevent Obesity?” Diabetes Care; V. 31;.Supp 2; pp. S284-S289; Feb. 2008. |
Cohen et al.; “Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans”; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003. |
Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow”; New ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; 10 pages. |
Corno et al.; “FlowWatchTM in clipped and inclipped position”; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright @ 2002 The European Association for Cardio-thoracic Surgery; 1 page. |
Cummings et al.; “Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Surgery”; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002. |
Cummings; “Gastrointestinal Regulation of Foot Intake”; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007. |
Dakin et al.; “Oxyntomodulin Inhibits Food Intake in the Rat”; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001. |
Dakin et al.; “Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats”; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004. |
Davison; “Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin”; Proc. West. Pharmocol. Soc.; V. 29; pp. 363-366; 1986. |
De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001. |
De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001. |
Desai et al.; “Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy” Journal of Pharmaceutical Science, V. 84, I 2; 1995, Abstract only. |
Dixon et al.; “Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes”; Obesity Surgery; V. 11, pp. 59-65; 2001. |
Doldi et al.; “Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity”; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan-Feb 2004. |
Doldi et al.; “Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet”; Obesity Surgery; V. 10, pp. 583-587; 2000. |
Doldi et al; “Intragastric Balloon in Obese Patients”; Obesity Surgery; V. 10, 578-581; 2000. |
Ekblad et al.; “Distribution of Pancreatic Peptide and Peptide-YY”; Peptides; V. 23; pp. 251-261; 2002. |
El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006. |
Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999. |
GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008. |
Girard; “The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions”; Diabetes and Metabolism; V. 34; pp. 550-559; 2008. |
Greenough et al.; “Untangling the Effects of Hunger, Anxiety, and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion”; Physiology & Behavior; V. 65, No. 2; pp. 303-310; 1998. |
Grise et al.; “Peptide YY Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999. |
Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006. |
Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988. |
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997. |
Hameed et al.; “Gut hormones and appetite control.” Oral Diseases; V. 15; pp. 18-26; 2009. |
Hassan et al.; “Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid” Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985. |
Helioscopie Product Insert for Heliogast, 1 page; Jun. 2009. |
Hodson et al.; “Management of Obesity with the New Intragastric Balloon”; Obesity Surgery; V. 11, pp. 327-329, 2001. |
Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001. |
Houpt; “Gastrointestinal Factors in Hunger and Satiety.” Neuroscience and Behavioral Reviews; V. 6; pp. 145-164; 1982. |
Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009. |
Kerem et al.; “Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats”; J. Gastrointest Surg.; V. 13; pp. 775-783, 2009. |
Kesty et al.; “Hormone-based therapies in the regulation of fuel metabolism and body weight”; Expert Opin. Biol. Ther.; V. 8; No. 11; pp. 1733-1747; 2008. |
Kissileff et al.; “Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans”; Am. J. Physiol. Regul. Integr. Comp. Physiol; V. 285; pp. 992-998; 2003. |
Kojima et al.; “A role for pancreatic polypeptide in feeding and body weight regulation.” Peptides; V. 28; pp. 459-463; 2007. |
Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008. |
Lap-Band AP System Adjustable Gastric Banding System With OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009. |
Le Roux et al.; “Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters”; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006. |
Liu et al.; “Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth”; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996. |
Mathus-Vliegen et al. “Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span”; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990. |
Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000. |
Medeiros et al.; “Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11”; Endocrinology; V. 134, No. 5; pp. 2088-2094; 1994. |
Naslund et al. “Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects”; British Journal of Nutrition; V. 91; pp. 439-446; 2004. |
Neary et al.; “Peptide YY(3-36) and Glucagon-Like Peptide-1(7-36) Inhibit Food Intake Additively”; Endocrinology; V.146; pp. 5120-5127; 2005. |
Padidela et al.; “Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period”; European Journal of Endocrinology; v. 160; pp. 53-58; 2009. |
Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009. |
Qjan et al.; “Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117”; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008. |
Rang et al.; “Pharmacology”; V. 5; pp. 203, 397, 402, 524; 2004. |
Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994. |
Renshaw et al. “Peptide YY: A Potential Therapy for Obesity”; Current Drug Targets; V. 6; pp. 171-179; 2005. |
Sannino et al.; “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46; pp. 11206-11212; 2005. |
Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005. |
Shi et al.; “Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy”; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007. |
Silver et al.; “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability” Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994. |
Small et al.; “Gut hormones and the control of appetite”; TRENDS in Endocrinology and Metabolism; V. 15. No. 6; pp. 259-263; Aug. 2004. |
Stanley et al.; “Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and Pancreatic polypeptide”; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004. |
Tezel; “The Science of Hyaluronic Acid Dermal Fillers,” Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42. |
Tolhurst et al.; “Nutritional regulation of glucagon-like peptidel secretion”; J. Physiol.; V. 587, No. 1; pp. 27-32; 2009. |
Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001. |
Tough et al.; “Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa”; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006. |
Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002. |
Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008. |
Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004. |
Verdich et al. “A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans”; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001. |
Wahlen et al.; “The BioEnterics Intragastric Balloon (BIB): How to Use It”; Obesity Surgery; V. 11; pp. 524-527; 2001. |
Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008. |
Weiner et al.; “Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy”; Obesity Surgery; V. 9, pp. 261-264, 1999. |
Wynne et al.; “Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind Randomized, Controlled Trial”; Diabetes; V. 54; pp. 2390-2395; 2005. |
Xanthakos et al.; “Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis”; Pathophysiology; V. 15; pp. 135-146; 2008. |
Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; Faseb J.; V. 21; pp. 2108-2112; 2007. |
Number | Date | Country | |
---|---|---|---|
20130158343 A1 | Jun 2013 | US |