This application claims the benefit of Japan Application No. 2018-202120, filed on Oct. 26, 2018. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a semiconductor apparatus including a display driver which drives a display device according to a video signal.
At present, TV or various mobile terminals equipped with a liquid crystal display panel or an organic electroluminescence (hereinafter, referred to as organic EL) display panel as a display device are commercialized.
For example in a liquid crystal display panel which serves as a display device, a plurality of source electrodes and a plurality of gate electrodes are arranged intersecting with each other. In each intersection portion of the source electrodes and the gate electrodes in the liquid crystal display panel, a display element including a capacitive liquid crystal layer sandwiched between a pair of liquid crystal electrodes and a transistor is formed. The source end of the transistor is connected to the source electrode, and the drain end is connected to one of the pair of liquid crystal electrodes. A common voltage is applied to the other of the pair of liquid crystal electrodes.
In addition, a display driver including a gradation voltage generation circuit and a gradation voltage selection circuit is known as the display driver which drives such a liquid crystal display panel (for example, see Japanese Patent Laid-Open No. 2016-206283 (Patent Literature 1)).
The gradation voltage generation circuit includes a ladder resistor configured by connecting a plurality of resistors in series, and obtains a plurality of gradation voltages subjected to gamma correction by selecting a plurality of voltages in accordance with gamma characteristics from a plurality of voltages that includes a voltage on one end of each resistor in the ladder resistor.
The gradation voltage selection circuit selects, from the plurality of gradation voltages, one gradation voltage corresponding to the brightness level represented by display data as the gradation voltage applied to the source electrode and outputs the gradation voltage.
Meanwhile, in the liquid crystal display panel, a voltage value of the gradation voltage applied to a capacitive liquid crystal portion via the source electrode and the transistor may change significantly inside each display element according to contents of the display image, and the common voltage temporarily fluctuates accordingly. Therefore, a fluctuation amount of the common voltage is reflected in the gradation voltage, and there is a risk of image quality deterioration.
Therefore, in the display driver, a difference between the common voltage and the reference voltage of the display device is obtained as the fluctuation amount of the common voltage, and the difference is applied as a correction voltage to one end of a specific resistor in the ladder resistor. Therefore, the voltage value of the gradation voltage that is output from the gradation voltage selection circuit is level shifted by the correction voltage, and the voltage fluctuation occurring in the common voltage is canceled. In this way, the image quality deterioration due to the voltage fluctuation of the common voltage is suppressed.
Meanwhile, in the above display driver, an inverted amplification circuit including an operational amplifier is employed to generate the difference between the common voltage and the reference voltage of the display device as the correction voltage. Therefore, in a period from the occurrence of the voltage fluctuation in the common voltage to the reflection of the fluctuation of the common voltage in the gradation voltage, a delay due to the inverted amplification circuit intervenes in addition to a circuit responsible for gamma correction.
Accordingly, at a head portion of a zone of the voltage fluctuation generated in the common voltage, the voltage fluctuation cannot be canceled, and thus the image quality deterioration cannot be favorably suppressed.
A semiconductor apparatus according to the disclosure drives a display device including source lines which receive driving signals corresponding to brightness levels represented by display data and including display cells which emit light with brightness corresponding to the driving signals received by the source lines based on a power supply voltage, and the semiconductor apparatus includes: a gradation voltage generation portion generating a first representative gradation voltage to a kth (k is an integer greater than 2) representative gradation voltage in accordance with gamma characteristics and generating a first gradation voltage to an Nth (N is an integer greater than k) gradation voltage based on the first representative gradation voltage to the kth representative gradation voltage; a driving portion selecting one gradation voltage corresponding to the display data from the first gradation voltage to the Nth gradation voltage and applying a signal showing the selected one gradation voltage as the driving signal to the source lines; and a fluctuating voltage superposition portion generating, when a voltage fluctuation occurs in the power supply voltage, a voltage fluctuation corresponding to the voltage fluctuation in at least one of the first representative gradation voltage to the kth representative gradation voltage.
The disclosure provides a semiconductor apparatus including a driver capable of favorably suppressing image deterioration accompanying a voltage fluctuation even if the voltage fluctuation occurs in a display device.
In the disclosure, the voltage fluctuation the same as the voltage fluctuation generated in the power supply voltage is generated in the representative gradation voltages subjected to gamma correction. In this way, the image quality deterioration accompanying the voltage fluctuation of the power supply voltage can be favorably suppressed.
In the following, embodiments of the disclosure are specifically described with reference to drawings.
The display apparatus 100 includes, in addition to the source driver 13, a driving control portion 11, a gate driver 12, a display device 20 and a display power portion 21.
The display device 20 is, for example, a display panel of an active matrix type in which a plurality of display cells PC respectively including an organic electroluminescence element (hereinafter, simply referred to as EL element) serving as a display element is arranged in a matrix shape.
The display device 20 includes gate lines G1 to Gm (m is an integer greater than 2) respectively extending horizontally in a two-dimensional screen, source lines S1 to Sn (n is an integer greater than 2) respectively extending vertically in the two-dimensional screen, and a power supply line LN. In the display device 20, a display cell PC is formed in each intersection portion (regions surrounded by dashed lines) of the gate lines G1 to Gm and the source lines S1 to Sn. The power supply line LN is connected to all the display cells PC included in the display device 20 and connected to terminals T0 and T1. The terminal T0 is connected to the display power portion 21, and the terminal T1 is connected to the source driver 13.
As shown in
The source line S is connected to a source of the transistor Q1, and the gate line G is connected to a gate of the transistor Q1. A first electrode of the capacitor CP for holding driving signals and a gate of the transistor Q2 serving as a driving transistor are connected to a drain of the transistor Q1. A source of the transistor Q2 and the power supply line LN are connected to a second electrode of the capacitor CP. An anode of the EL element LD is connected to a drain of the transistor Q2. A ground potential VSS is applied to a cathode of the EL elements LD.
According to the configuration, the transistor Q1 of the display cell PC is in an on-state when receiving a selection signal of logic level 0 via the gate line G, and supplies a driving signal received via the source line S to the gate of the transistor Q2 and the capacitor CP. In this way, the capacitor CP holds charges corresponding to a gradation voltage represented by the driving signal. In addition, the transistor Q2 generates, based on a power supply voltage VDD received via the power supply line LN, a driving current of a current amount corresponding to the charges held in the capacitor CP, and supplies the driving current to the anode of the EL element LD. The EL element LD emits light at a brightness corresponding to the current amount of the driving current.
In
The driving control portion 11 receives a video signal VS and detects a horizontal synchronization signal from the video signal VS to supply the horizontal synchronization signal to the gate driver 12. In addition, the driving control portion 11 generates, based on the video signal VS, an image data signal VPD including a series of display data pieces that representing the brightness level of each display cell PC by, for example, 8-bit gradation and supplies the same to the source driver 13.
The gate driver 12 sequentially and selectively applies, according to the horizontal synchronization signal, a selection signal including a selection pulse having a peak voltage corresponding to the logic level 0 to each of the gate lines G1 to Gm.
The source driver 13 converts, for n display data pieces of one horizontal scanning in the series of the display data pieces included in the image data signal VPD, each display data piece to a gradation voltage corresponding to a brightness level represented by this display data piece. Then, the source driver 13 generates n driving signals having gradation voltages corresponding to each of the n display data pieces and supplies the same to the source lines S1 to Sn of the display device 20, respectively. Furthermore, the source driver 13 is formed in a single semiconductor chip or being divided into a plurality of semiconductor chips.
As shown in
The data latch portion 131 incorporates the series of the display data pieces included in the image data signal VPD into every n display data pieces of one horizontal scanning and supplies the same as display data P1 to Pn to the DA conversion portion 132.
The gradation voltage generation portion 133 includes a basic gradation voltage generation portion 1330 and a gamma correction portion 1331. The gradation voltage generation portion 133 generates, by the basic gradation voltage generation portion 1330 and the gamma correction portion 1331, gradation voltages VR0 to VR255 as a 256-gradation red gradation voltage group subjected to gamma correction corresponding to red components and supplies the same to the DA conversion portion 132. In addition, the gradation voltage generation portion 133 generates gradation voltages VG0 to VG255 as a 256-gradation green gradation voltage group subjected to gamma correction corresponding to green components and supplies the same to the DA conversion portion 132. In addition, the gradation voltage generation portion 133 generates gradation voltages VB0 to VB255 as a 256-gradation blue gradation voltage group subjected to gamma correction corresponding to blue components and supplies the same to the DA conversion portion 132.
Furthermore, the gradation voltage generation portion 133 generates, in each of the gradation voltages VR0 to VR255, VG0 to VG255, and VB0 to VB255, a voltage fluctuation the same as the voltage fluctuation generated in the feedback power supply voltage VDDr supplied from the display device 20.
The DA conversion portion 132 selects, for each of the display data P1 to Pn, the gradation voltage corresponding to the brightness levels represented by the display data P from one group of the red gradation voltage group (VR0 to VR255), the green gradation voltage group (VG0 to VG255) and the blue gradation voltage group (VB0 to VB255).
For example, if the display data P1 represents a brightness level of the red components, the DA conversion portion 132 selects the gradation voltage which corresponds to the brightness level represented by the display data P1 from the gradation voltages VR0 to VR255. In addition, if the display data P2 represents a brightness level of the green components, the DA conversion portion 132 selects the gradation voltage which corresponds to the brightness level represented by the display data P2 from the gradation voltages VG0 to VG255. In addition, if display data P3 represents a brightness level of the blue components, the DA conversion portion 132 selects the gradation voltage which corresponds to the brightness level represented by the display data P3 from the gradation voltages VBO to VB255.
The DA conversion portion 132 supplies n gradation voltages selected and obtained as described above to the amplifier portion 134 as gradation voltages A1 to An for each of the display data P1 to Pn.
The amplifier portion 134 has n amplifiers (not shown) individually amplifying the gradation voltages A1 to An with a gain of one and supplies n output voltages output from these n amplifiers as gradation voltages B1 to Bn to the output switch portion 135.
The output switch portion 135 takes in the gradation voltages B1 to Bn during an on-state and supplies driving signals D1 to Dn having the gradation voltages B1 to Bn to the source lines S1 to Sn of the display device 20.
Next, a configuration of the above gradation voltage generation portion 133 is specifically described.
As shown in
The basic gradation voltage generation portion 1330 generates the high voltage Vtp applied to one end of the resistor r1 as a basic gradation voltage Vr0 which corresponds to the lowest brightness and generates the low voltage Vbt applied to one end of the resistor r1023 as a basic gradation voltage Vr1023 which corresponds to the highest brightness. In addition, the basic gradation voltage generation portion 1330 generates voltages of connection points between resistors in the resistors r1 to r1023 as basic gradation voltages Vr1 to Vr1022.
The basic gradation voltage generation portion 1330 supplies the basic gradation voltages Vr0 to Vr1023 generated as described above to the gamma correction portion 1331.
The gamma correction portion 1331 includes a red gamma correction circuit GM1, a green gamma correction circuit GM2, and a blue gamma correction circuit GM3.
The red gamma correction circuit GM1 selects, among the basic gradation voltages Vr0 to Vr1023, 256 basic gradation voltages Vr for 256 gradations having voltage values in accordance with a gamma characteristic of red. The red gamma correction circuit GM1 outputs the selected basic gradation voltages Vr for 256 gradations as the gradation voltages VR0 to VR255 subjected to the gamma correction corresponding to the red components. Furthermore, the red gamma correction circuit GM1 generates in the gradation voltages VR0 to VR255 a voltage fluctuation the same as the voltage fluctuation generated in the feedback power supply voltage VDDr.
The green gamma correction circuit GM2 selects, among the basic gradation voltages Vr0 to Vr1023, 256 basic gradation voltages Vr for 256 gradations having voltage values in accordance with a gamma characteristic of green. The green gamma correction circuit GM2 outputs the selected basic gradation voltages Vr for 256 gradations as the gradation voltages VG0 to VG255 subjected to the gamma correction corresponding to the green components. Furthermore, the green gamma correction circuit GM2 generates in the gradation voltages VG0 to VG255 a voltage fluctuation the same as the voltage fluctuation generated in the feedback power supply voltage VDDr.
The blue gamma correction circuit GM3 selects, among the basic gradation voltages Vr0 to Vr1023, 256 basic gradation voltages Vr for 256 gradations having voltage values in accordance with a gamma characteristic of blue. The blue gamma correction circuit GM3 outputs the selected basic gradation voltages Vr for 256 gradations as the gradation voltages VB0 to VB255 subjected to the gamma correction corresponding to the blue components. Furthermore, the blue gamma correction circuit GM3 generates in the gradation voltages VB0 to VB255 a voltage fluctuation the same as the voltage fluctuation generated in the feedback power supply voltage VDDr.
Furthermore, the red gamma correction circuit GM1, the green gamma correction circuit GM2, and the blue gamma correction circuit GM3 have the same circuit configuration except that the respective gamma characteristic is different.
As shown in
The decoder CR0 to CR10 first selects, from the basic gradation voltages Vr0 to Vr1023, the basic gradation voltages which respectively correspond to 11 specific gradations having voltage values in accordance with the gamma characteristic and outputs the selected basic gradation voltages as representative gradation voltages U.
That is, the decoder CR0 of the red gamma correction circuit GM1 selects, from the basic gradation voltages Vr0 to Vr1023, the basic gradation voltage which is in accordance with the gamma characteristic of red and corresponds to a 0th gradation, and outputs the same as the representative gradation voltage U0. In addition, the decoder CR1 of the red gamma correction circuit GM1 selects, from the basic gradation voltages Vr0 to Vr1023, the basic gradation voltage which is in accordance with the gamma characteristic of red and corresponds to the first gradation, and outputs the same as the representative gradation voltage U1. In addition, the decoder CR2 of the red gamma correction circuit GM1 selects, from the basic gradation voltages Vr0 to Vr1023, the basic gradation voltage which is in accordance with the gamma characteristic of red and corresponds to the seventh gradation, and outputs the same as the representative gradation voltage U7.
In this way, the decoders CR0 to CR10 of the red gamma correction circuit GM1 select, from the Vr0 to Vr1023, 11 basic gradation voltages which are in accordance with the gamma characteristic of red and respectively correspond to the 0th, 1st, 7th, 11th, 23rd, 35th, 51st, 87th, 151st, 203rd, and 255th gradations. Then, the basic gradation voltages respectively corresponding to the selected 11 gradations are output as the representative gradation voltages U0, U1, U7, U11, U23, U35, U51, U87, U151, U203 and U255.
Furthermore, similarly, the decoders CR0 to CR10 of the green gamma correction circuit GM2 selects, from the Vr0 to Vr1023, the basic gradation voltages which are in accordance with the gamma characteristic of green and respectively correspond to the 0th, 1st, 7th, 11th, 23rd, 35th, 51st, 87th, 151st, 203rd, and 255th gradations. Then, the basic gradation voltages respectively corresponding to the selected 11 gradations are output as the representative gradation voltages U0, U1, U7, U11, U23, U35, U51, U87, U151, U203 and U255.
In addition, similarly, the decoders CR0 to CR10 of the blue gamma correction circuit GM3 selects, from the Vr0 to Vr1023, the basic gradation voltages which are in accordance with the gamma characteristic of blue and respectively correspond to the 0th, 1st, 7th, 11th, 23rd, 35th, 51st, 87th, 151st, 203rd, and 255th gradations. Then, the basic gradation voltages respectively corresponding to the selected 11 gradations are output as the representative gradation voltages U0, U1, U7, U11, U23, U35, U51, U87, U151, U203 and U255.
These representative gradation voltages U0, U1, U7 . . . U203 and U255 are supplied to non-inverted input terminals (+) of each of the amplifiers AM0 to AM10 via a representative gradation voltage transmission line LS for individually transmitting each of the representative gradation voltages to the ladder resistor LDR.
Each of the amplifiers AM0 to AM10 includes an operational amplifier whose output terminal and inverted input terminal are directly connected to each other, that is, a voltage follower with a gain of one. The amplifiers AM0 to AM10 amplify, at a gain of 1, the representative gradation voltages U0, U1, U7, U11, U23, U35, U51, U87, U151, U203 and U255 received by each of the non-inverted input terminals (+). The amplifier AM0 to AM10 apply amplified results as representative gradation voltages V0, V1, V7, V11, V23, V35, V51, V87, V151, V203 and V255 to one end of the resistors at 11 positions in a series resistor group included in the ladder resistor LDR.
The ladder resistor LDR outputs, as the gradation voltages VR0 to VR1023, voltages generated at one end of the resistors at 256 positions in the series resistor group due to the application of the representative gradation voltages V0, V1, V7, V11, V23, V35, V51, V87, V151, V203 and V255.
The fluctuating voltage superposition portion H0 includes a capacitor CQ. The feedback power supply voltage VDDr is applied to a first electrode of the capacitor CQ, and a second electrode of the capacitor CQ is connected to the representative gradation voltage transmission line LS which transmits the representative gradation voltage U0. The capacitor CQ has for example an electrostatic capacitance the same as the capacitor CP for holding driving signals included in each display cell PC as shown in
According to the configuration, the fluctuating voltage superposition portion H0 extracts a steep voltage fluctuation amount of the feedback power supply voltage VDDr and superposes the voltage fluctuation amount on the representative gradation voltage U0. Accordingly, the fluctuating voltage superposition portion H0 suppresses, as described below, the image quality deterioration of the display device 20 accompanying the voltage fluctuation of the power supply voltage VDD.
In the display image shown in
Here, when the display shown in
Then, as shown in
Accordingly, immediately after the time point t1 shown in
Therefore, if the fluctuating voltage superposition portion H0 is not provided, inside all the display cells PC connected to the gate line Gf, gate-source voltages Vgs of the transistors Q2 increase due to the voltage fluctuation VXa generated in the power supply voltage VDD as shown in
In this way, in the display area of one display line corresponding to the gate line Gf, especially in an area Ecc shown in
Therefore, in order to prevent the image quality deterioration accompanying the voltage fluctuation VXa of the power supply voltage VDD, in the display apparatus 100, the fluctuating voltage superposition portion H0 shown in
The fluctuating voltage superposition portion H0 includes for example the capacitor CQ as shown in
Therefore, when the voltage fluctuation VXa as shown in
In this way, the ladder resistor LDR generates the gradation voltages VR0 to VR255 (VG0 to VG255, VB0 to VB255) based on the representative gradation voltages V0 under which the voltage fluctuation corresponding to the voltage fluctuation VXa is generated. Therefore, voltage fluctuations corresponding to the voltage fluctuation VXa are also generated immediately after the time point t1 shown in
Here, the gate-source voltage of the transistor Q2 determining the light emission brightness of the EL element LD in each display cell PC is a potential difference between the gradation voltage supplied via the source line S and the power supply voltage VDD. Therefore, even if the voltage fluctuation VXa is generated in the power supply voltage VDD as shown in
For example, in
Thereafter, as shown in
Therefore, according to the fluctuating voltage superposition portion H0, even if the voltage fluctuation in which the power supply voltage VDD increases temporarily is generated, a brightness level increase of the display image accompanying the increase of the power supply voltage VDD is suppressed. In this way, the image quality deterioration in which an unintentional high-brightness display line is shown, for example, in the area Ecc shown in
Furthermore, the fluctuating voltage superposition portion H0 generates the voltage fluctuation which is generated in the power supply voltage VDD in the representative gradation voltage U0 after being subjected to the gamma correction. In addition, in the example shown in
Moreover, in the embodiment shown in
However, as shown in
In brief, at least the fluctuating voltage superposition portion H0 is provided which generates, in at least one of the 11 representative gradation voltages supplied to the ladder resistor LDR generating the 256-gradation gradation voltage, the voltage fluctuation the same as the voltage fluctuation generated in the power supply voltage VDD.
In addition, in the embodiment shown in
However, in place of the fluctuating voltage superposition portion H0 and the amplifier AM0 shown in
The fluctuating voltage superposition portion H0a shown in
According to the configuration shown in
Therefore, in a case when the fluctuating voltage superposition portion H0a shown in
In addition, in the embodiment shown in
However, as shown in
In addition, in the configuration shown in
In addition, in the above embodiment, the fluctuating voltage superposition portion HO shown in
In addition, in the above embodiment, the ladder resistor LDR generates the gradation voltage groups for 256 gradations by receiving 11 representative gradation voltage groups, but the number of the representative gradation voltages is not limited to 11, and the number of the generated gradation voltages, that is, the number of the gradations is not limited to 256.
In brief, the source driver 13 for driving the display device 20 including the source lines for receiving the driving signals corresponding to the brightness level represented by the display data and the display cells PC emitting the light at the brightness corresponding to the driving signals based on the power supply voltage VDD may be any source driver as long as the following gradation voltage generation portion, driving portion, and fluctuating voltage superposition portion are included.
The gradation voltage generation portion (133) generates the first representative gradation voltage to the kth (k is an integer greater than 2) representative gradation voltage (for example, U0, U1, U7 . . . U255) in accordance with gamma characteristics, and generates the first gradation voltage to the Nth (N is an integer greater than k) gradation voltage (for example VR0 to VR255) based on the first representative gradation voltage to the kth representative gradation voltage.
The driving portion (132, 134, and 135) selects one gradation voltage corresponding to the display data from the first gradation voltage to the Nth gradation voltage and applies a signal showing the selected one gradation voltage as a driving signal to the source line.
The fluctuating voltage superposition portion (H0) generates, when a voltage fluctuation is generated in the power supply voltage (VDD), a voltage fluctuation corresponding to the voltage fluctuation in at least one (for example U0) of the first representative gradation voltage to the kth representative gradation voltage.
Number | Date | Country | Kind |
---|---|---|---|
2018-202120 | Oct 2018 | JP | national |