The present invention relates to a semiconductor device using an oxide semiconductor and a method for manufacturing the semiconductor device.
A field-effect transistor (also referred to as an FET) is the most widely-used semiconductor element at present. A variety of materials are used for field-effect transistors according to their uses. In particular, semiconductor materials including silicon are frequently used.
The field-effect transistor using silicon has characteristics satisfying the needs with respect to a variety of uses. For example, single crystal silicon is used for an integrated circuit or the like which needs to be operated at a high speed, whereby the need with respect to the integrated circuit is satisfied. Further, amorphous silicon is used for an object which needs a large area, such as a display device, whereby the need with respect to the object can be satisfied.
As described above, silicon is highly versatile and can be used for various purposes. However, in recent years, semiconductor materials tend to be expected to have higher performance as well as versatility. For example, in terms of improving performance of a large-area display device, in order to realize high-speed operation of a switching element, a semiconductor material which facilitates increase of the area of a display device and has higher performance than amorphous silicon is needed.
Under such conditions, a technique relating to a field-effect transistor using an oxide semiconductor has attracted attention. For example, in Patent Document 1, a transparent thin film field-effect transistor using a homologous compound InMO3(ZnO)m (M is In, Fe, Ga, or Al, and m is an integer number of greater than or equal to 1 and less than 50) is disclosed.
In addition, in Patent Document 2, a field-effect transistor is disclosed in which an amorphous oxide semiconductor whose electron carrier concentration is less than 1018/cm3 and which contains In, Ga, and Zn is used. Note that in Patent Document 2, the ratio of In:Ga:Zn equals to 1:1:m (m<6) in the amorphous oxide semiconductor.
Further, in Patent Document 3, a field-effect transistor is disclosed in which an amorphous oxide semiconductor including a microcrystal is used for an active layer.
[Patent Document 1]
In Patent Document 3, a disclosure is given in which a composition in a crystal state is InGaO3(ZnO)m (m is an integer number of less than 6). Further, in Example 1 of Patent Document 3, a case of InGaO3(ZnO)4 is disclosed. However, in the real condition, adequate characteristics have not been obtained even when such oxide semiconductors are used.
In view of the foregoing problems, it is an object to provide an oxide semiconductor which is suitable for use in a semiconductor device. Alternatively, it is another object to provide a semiconductor device using the oxide semiconductor.
In the invention to be disclosed, a semiconductor device is manufactured such that crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0). Specifics are described below.
One embodiment of the invention to be disclosed is a semiconductor device including an In—Ga—Zn—O based oxide semiconductor layer used for a channel formation region of a transistor. In the semiconductor device, the In—Ga—Zn—O based oxide semiconductor layer has a structure in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0).
In the above, a Zn content (atomic %) in the In—Ga—Zn—O based oxide semiconductor layer is preferably less than an In content (atomic %) and less than a Ga content (atomic %). Further, the oxide semiconductor layer is preferably formed by a sputtering method using a target in which a Zn content (atomic %) is less than or equal to an In content (atomic %) and less than or equal to a Ga content (atomic %). Further, in the above, it is preferable that only crystal grains each having a structure represented by InGaO3(ZnO)m (m=1) be used. However, under the conditions where the proportion of the structure represented by InGaO3(ZnO)m (m=1) in crystal grains is 80 vol % or more, given characteristics can be obtained.
Another embodiment of the invention to be disclosed is a method for manufacturing a semiconductor device including the steps of: forming an In—Ga—Zn—O based oxide semiconductor layer having an amorphous structure over a substrate by a sputtering method; and subjecting the oxide semiconductor layer to heat treatment to form an oxide semiconductor layer including crystal grains represented by InGaO3(ZnO)m (m=1) in an amorphous structure represented by InGaO3(ZnO)m (m>0). In the method for manufacturing a semiconductor device, the oxide semiconductor layer including crystal grains is used for a channel formation region of a transistor.
In the above, the In—Ga—Zn—O based oxide semiconductor layer having an amorphous structure is preferably formed such that a Zn content (atomic %) is less than an In content (atomic %) and less than a Ga content (atomic %). Further, the In—Ga—Zn—O based oxide semiconductor layer having an amorphous structure is preferably formed by a sputtering method using a target in which a Zn content (atomic %) is less than or equal to an In content (atomic %) and less than or equal to a Ga content (atomic %). Furthermore, the heat treatment is preferably performed at 350° C. or more.
Note that in this specification, a semiconductor device means any device which can function by utilizing semiconductor characteristics; and a display device, a semiconductor circuit, and an electronic device are all included in the semiconductor devices.
Crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0), whereby the electrical characteristics of an oxide semiconductor can be improved. Further, by using the oxide semiconductor, an excellent semiconductor device can be provided.
Embodiments will be described in detail with reference to drawings. However, the present invention is not limited to the description of embodiments given below, and it will be obvious to those skilled in the art that various changes and modifications in modes and details thereof can be made without departing from the purpose of the present invention. Further, structures relating to different embodiments can be used in combination as appropriate. Note that the same portion or a portion having the same function is denoted by the same reference numeral in structures of the present invention described below, and the repetitive explanation thereof is omitted.
(Embodiment 1)
In this embodiment, a method for manufacturing an oxide semiconductor layer in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0) (the oxide semiconductor layer is referred to as an In—Ga—Zn—O based oxide semiconductor layer) is described with reference to drawings.
First, an In—Ga—Zn—O based non-single-crystal semiconductor layer 102 is formed over a formation surface (here, over a substrate 100) (see
Here, the non-single-crystal semiconductor layer 102 is formed under the following conditions: the composition of the oxide semiconductor target is set such that the ratio of In2O3:Ga2O3:ZnO equals to 1:1:1; the distance between the substrate 100 and the oxide semiconductor target is 170 mm; the pressure is 0.4 Pa; the DC power is 0.5 kW; the flow rate of an argon gas is 10 sccm; and the flow rate of an oxygen gas is 5 sccm.
Then, the composition of a sample manufactured by the above-described method is analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The composition of the non-single-crystal semiconductor layer 102 formed under the conditions where the flow rate of an argon gas is 10 sccm and the flow rate of an oxygen gas is 5 sccm is InGa0.94Zn0.40O3.31.
Further,
Next, the non-single-crystal semiconductor layer is subjected to heat treatment at a temperature of 350° C. to 800° C. (preferably, 500° C. to 750° C.) for about 10 minutes to 200 minutes, whereby an oxide semiconductor layer 106 including crystal grains 104 in an amorphous structure is obtained (see
After the heat treatment is performed, the structure of the oxide semiconductor layer 106 is analyzed. Specifically, the cross section of the sample is observed with respect to a scanning transmission electron microscope (STEM) image.
Note that as seen from the comparison between
Next, a minuter region of the sample is observed by a STEM.
In a HAADF-STEM image, a contrast proportional to the square of an atomic number is obtained; therefore, the brighter dot indicates the heavier atom. In
Next, the above crystal structure is considered with reference to
As described above, in an In—Ga—Zn—O based oxide semiconductor, In and Ga contribute to electrical conduction. Therefore, under the conditions where the proportion of In and Ga is low (that is, under the condition where m is large), the electrical characteristics get worse. Thus, by making the proportion of the structure of InGaO3(ZnO)m (m=1) high, the electrical characteristics can be maintained in a good state. In specific, the proportion of the crystal structure of InGaO3(ZnO)m (m=1) in the whole crystal structure is preferably 80 volume % or higher, more preferably 90 volume % or higher.
As one method for making the proportion of the crystal structure of InGaO3(ZnO)m (m=1) high, there is a method for forming the non-single-crystal semiconductor layer 102 with a low Zn content by using a target with a low Zn content. For example, a Zn content (atomic %) in the non-single-crystal semiconductor layer 102 may be lower than an In content (atomic %) and lower than a Ga content (atomic %) in the non-single-crystal semiconductor layer 102. A Zn content in the non-single-crystal semiconductor layer 102 is made low, whereby the crystal structure with good electrical characteristics can be obtained.
The electronic structure of an In—Ga—Zn—O based oxide semiconductor has not been sufficiently elucidated, and it is likely that the elucidation of the electronic structure leads to understanding of electrical characteristics of an oxide semiconductor. Thus, the result of calculating an In—Ga—Zn—O based oxide semiconductor by the first principle calculation and the consideration thereof are described below. Note that although the result given below is obtained by calculating the crystal structure, the result can be similarly adapted to an amorphous structure including crystal grains.
The calculation is performed using CASTEP. CASTEP is a first principle calculation program based on the density functional theory (DFT) and the plane wave pseudo-potential method. For exchange correlation functional, generalized-gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) are selected here. The cut-off energy is set to 500 eV, and the K-point grid of 3×3×1 is used.
In the case shown in
Considering the combination of the upper and the lower layers, the distributions of Ga atoms are classified into two patterns: a parallel distribution and a cross distribution. The parallel distribution refers to the distribution where Ga lines in the upper layer are in parallel to Ga lines in the lower layer, and the cross distribution refers to the distribution where Ga lines in the upper layer cross Ga lines in the lower layer. In the case of the parallel distribution, there are two possible combinations such as U1+L1 and U1+L4. In the case of the cross distribution, the distribution has a rotationally symmetrical relation; therefore, only one combination like U1+L2 is considered, for example. That is, there are three combinations in total in the case shown in
In the case shown in
The electronic structure of this structure (the structure having the lowest energy) is calculated in more detail.
Next, the existing probability of electron |Ψ|2 at the bottom of the conduction band is calculated from an orbital function Ψ at the bottom of the conduction band.
One of the features of InGaZnO4 is a wide margin of electrical conductivity. This seems to be due to the probability of formation of oxygen vacancies (defects) because the electrical conductivities widely vary depending on the amount of oxygen added in a process. Thus, in order to clarify this mechanism, the formation energy of oxygen vacancies is calculated.
The energy level of an oxygen vacancy defect which is calculated based on the density functional theory (DFT) is still being argued. For example, a band gap obtained by using a function such as local density approximation (LDA) or GGA tends to be smaller than an actual measurement value. Since the scaling method is still being discussed, the simple GGA function without the scaling method is used here. It is likely that, by using this, artificial phenomena are eliminated and the essence of phenomena can be grasped.
The formation energy of oxygen vacancies (EVO) is defined as follows:
EVO=E(AmOn-1)+E(O)−E(AmOn)
Here, EVO is a half of the energy of an oxygen molecule, and E(AmOn-1) represents the energy of AmOn-1 having oxygen vacancies where A represents an optional element.
EVO of InGaZnO4 varies depending on elements in the periphery of oxygen vacancies. Specifically, there are three possible structural models as follows. In Model 1, an oxygen vacancy is surrounded by one Zn atom and three In atoms. In Model 2, an oxygen vacancy is surrounded by one Ga atom and three In atoms. In Model 3, an oxygen vacancy is surrounded by two Zn atoms and two Ga atoms.
When InGaZnO4 is in an amorphous state, there are more possible structures in addition to the above three types of models, and the levels of EVO of the structures are slightly different from each other. As the proportion of Ga atoms in InGaZnO4 increases, the density of oxygen vacancies decreases. As the proportion of Ga atoms in InGaZnO4 decreases, the density of oxygen vacancies increases.
Thus, making the proportion of Ga atoms in the non-single-crystal semiconductor layer 102 high enables reduction of the density of oxygen vacancies. That is, an In—Ga—Zn—O based oxide semiconductor with good electrical characteristics can be obtained. Considering the existence of In contributing to electrical conduction, it is not preferable to reduce the proportion of In. Therefore, the proportion of Zn in the non-single-crystal semiconductor layer 102 is preferably made low. For example, the Zn content (atomic %) in the non-single-crystal semiconductor layer 102 may be lower than the In content (atomic %) and lower than the Ga content (atomic %). By making the Zn content in the non-single-crystal semiconductor layer 102 low in this manner, an oxide semiconductor layer with good electrical characteristics can be obtained.
According to this embodiment, a high-performance oxide semiconductor layer can be provided. This embodiment can be implemented in combination with any of other embodiments as appropriate.
(Embodiment 2)
In this embodiment, the result of promoting the consideration of an In—Ga—Zn—O based oxide semiconductor layer in Embodiment 1 is described with reference to drawings.
It is revealed in Embodiment 1 that two (Ga, Zn)O2 layers and one InO2 layer are included in a unit cell of a crystal structure of InGaZnO4. In response to this, the distribution of Ga atoms and Zn atoms is studied in more detail in this embodiment. In specific, some combinations of an upper layer and a lower layer are given as shown in
Although the distributions examined in this embodiment are only part of a number of distributions, the tendency of the distribution of Ga atoms and Zn atoms can be read from
This embodiment can be implemented in combination with any of other embodiments as appropriate.
(Embodiment 3)
In this embodiment, an example of a manufacturing process of a semiconductor device using an oxide semiconductor layer manufactured by the method described in Embodiment 1 or the like is described with reference to
First, a gate electrode 202 is formed over a substrate 200 having an insulating surface, and a gate insulating layer 204 is formed over the gate electrode 202; then, an oxide semiconductor layer 206 and an oxide semiconductor layer 207 are stacked (see
As the substrate 200 having an insulating surface, for example, a glass substrate having a visible light transmitting property, which is used for a liquid crystal display device or the like, can be used. The glass substrate is preferably an alkali-free glass substrate. As an alkali-free glass substrate, for example, a glass material such as aluminosilicate glass, aluminoborosilicate glass, or barium borosilicate glass is used. In addition, as the substrate 200 having an insulating surface, an insulating substrate which is formed using an insulator, such as a resin substrate, a ceramic substrate, a quartz substrate, or a sapphire substrate; a semiconductor substrate which is formed using a semiconductor material such as silicon and whose surface is covered with an insulating material; a conductive substrate which is formed using a conductor such as metal or stainless steel and whose surface is covered with an insulating material; or the like can also be used. From the viewpoint of increasing the area of a semiconductor device, specifically, a glass substrate is preferably used. Further, the substrate 200 having an insulating surface preferably has a given heat resistant property.
A conductive layer is formed over an entire surface of the substrate 200 and then the conductive layer is selectively etched using a resist mask formed by a photolithography method, whereby the gate electrode 202 can be formed. At this time, in order to improve the coverage of the gate electrode 202 with the gate insulating layer 204 formed later and preventing disconnection, the gate electrode 202 is preferably etched so that end portions thereof have a tapered shape. Note that the gate electrode 202 includes an electrode and a wiring, such as a gate wiring, formed using the conductive layer.
The gate electrode 202 is desirably formed using a low resistance conductive material such as aluminum (Al) or copper (Cu). Note that in the case where aluminum is used for the wiring and the electrode, aluminum has disadvantages such as low heat resistance and a tendency to be corroded when aluminum is used by itself; therefore, aluminum is preferably used in combination with a heat-resistant conductive material.
As the heat-resistant conductive material, an element selected from titanium (Ti), tantalum (Ta), tungsten (W), molybdenum (Mo), chromium (Cr), neodymium (Nd), and scandium (Sc), an alloy including any of the above elements as its component, an alloy including a combination of any of these elements, a nitride including any of the above elements as its component, or the like can be used. A film formed using such a heat-resistant conductive material and aluminum (or copper) are stacked, so that the wiring and the electrode can be formed.
The gate insulating layer 204 can be formed using a silicon oxide film, a silicon oxynitride film, a silicon nitride film, a silicon nitride oxide film, an aluminum oxide film, a tantalum oxide film, or the like. Alternatively, the gate insulating layer 204 may be formed using a stack of these films. The film can be formed to a thickness of 20 nm to 250 nm inclusive by a sputtering method or the like. For example, as the gate insulating layer 204, a silicon oxide film is formed to a thickness of 100 nm by a sputtering method. Note that the gate insulating layer 204 may serve as a gate insulating layer of a transistor, and the manufacturing method, the thickness, and the like of the gate insulating layer 204 are not construed as being limited to the range of the numeric values described above.
Note that before the oxide semiconductor layer 206 is formed over the gate insulating layer 204, a surface of the gate insulating layer 204 may be subjected to plasma treatment. Dust attaching to the surface of the gate insulating layer 204 can be removed by the plasma treatment.
An inert gas such as an argon (Ar) gas is introduced into a vacuum chamber, and a bias voltage is applied to a processing object (here, the substrate 200 over which the gate insulating layer 204 is formed) so that a plasma state is generated, whereby the above-described plasma treatment can be performed. In this case, electrons and cations of Ar are present in the plasma and the cations of Ar are accelerated in a cathode direction (toward the substrate 200 side). The accelerated cations of Ar collide with the surface of the gate insulating layer 204, whereby the surface of the gate insulating layer 204 is etched by sputtering so as to be reformed. In place of an argon gas, a helium gas may be used. Alternatively, the plasma treatment may be performed in an argon atmosphere to which oxygen, hydrogen, nitrogen, and/or the like is added. Further alternatively, the plasma treatment may be performed in an argon atmosphere to which chlorine (Cl2), carbon tetrafluoride (CF4), and/or the like is added. Such plasma treatment described above may also be referred to as “reverse sputtering”.
The oxide semiconductor layer 206 can be formed using an In—Ga—Zn—O based non-single-crystal semiconductor layer. For example, the oxide semiconductor layer 206 is formed by a sputtering method using an oxide semiconductor target including indium (In), gallium (Ga), and zinc (Zn) (In2O3:Ga2O3:ZnO=1:1:1). For the sputtering conditions, Embodiment 1 and the like can be referred to.
Note that a pulsed DC power source is preferably used in the sputtering because dust can be reduced and thickness can be uniformed. In addition, the above plasma treatment is performed and then the oxide semiconductor layer 206 is formed without being exposed to the air, so that dust or moisture can be prevented from attaching to the interface between the gate insulating layer 204 and the oxide semiconductor layer 206. The thickness of the oxide semiconductor layer 206 may be approximately 5 nm to 500 nm.
The oxide semiconductor layer 207 can be formed using an In—Ga—Zn—O based non-single-crystal semiconductor layer in a manner similar to the oxide semiconductor layer 206. For example, the oxide semiconductor layer 207 can be formed over the oxide semiconductor layer 206 by a sputtering method using an oxide semiconductor target including In, Ga, and Zn (In2O3:Ga2O3:ZnO=1:1:1). At this time, it is preferable that the oxide semiconductor layer 207 be successively formed without exposing the oxide semiconductor layer 206 to the air. For example, the following conditions may be employed for the sputtering: the temperature is 20° C. to 100° C.; the pressure is 0.1 Pa to 2.0 Pa; and the DC power source is 250 W to 3 kW (when the target with a size of 8-inch in diameter is used). Further, an argon gas may be introduced into the atmosphere.
The oxide semiconductor layer 206 and the oxide semiconductor layer 207 are preferably formed under the different film formation conditions. For example, in the film formation conditions of the oxide semiconductor layer 206, the flow rate ratio of an oxygen gas to an argon gas is made higher than that in the film formation conditions of the oxide semiconductor layer 207. Specifically, the oxide semiconductor layer 207 is formed in a noble gas (such as argon or helium) atmosphere (or an atmosphere containing oxygen at 10% or less and a noble gas at 90% or more), and the oxide semiconductor layer 206 is formed in an oxygen atmosphere or an atmosphere in which the flow rate of an oxygen gas is equal to or more than the flow rate of a noble gas). Accordingly, the oxide semiconductor layer 207 which is higher in electrical conductivity than the oxide semiconductor layer 206 can be formed.
As the above sputtering method for forming the oxide semiconductor layer 206 and the oxide semiconductor layer 207, an RF sputtering method in which a high frequency power source is used as a sputtering power source, a DC sputtering method, a pulsed DC sputtering method in which direct current bias is applied in pulses, or the like can be employed.
Alternatively, a multi-target sputtering apparatus which can be provided with a plurality of targets formed using different materials may be used. In a multi-target sputtering apparatus, a stack of different films can be formed in one chamber, or one film can be formed by sputtering using plural kinds of materials at the same time in one chamber. Alternatively, a method using a magnetron sputtering apparatus in which a magnetic field generating system is provided inside the chamber (a magnetron sputtering method), an ECR sputtering method in which plasma generated by using a microwave is used, or the like may be employed. Further alternatively, a reactive sputtering method in which a target substance and a sputtering gas component are chemically reacted with each other to form a compound thereof at the time of film formation, a bias sputtering method in which a voltage is applied also to the substrate at the time of film formation, or the like may be employed.
Note that in this embodiment, an example of the case where the oxide semiconductor layer 206 and the oxide semiconductor layer 207 are stacked is described; however, the invention to be disclosed is not limited thereto. For example, the structure without the oxide semiconductor layer 207 (the structure in which only the oxide semiconductor layer 206 is formed) may be used.
Next, a resist mask 208 is formed over the oxide semiconductor layer 207. Then, the oxide semiconductor layer 206 and the oxide semiconductor layer 207 are selectively etched using the resist mask 208, so that an island-shaped oxide semiconductor layer 210 and an island-shaped oxide semiconductor layer 211 are formed (see
As the above etching, wet etching is preferably employed. Here, the island-shaped oxide semiconductor layer 210 and the island-shaped oxide semiconductor layer 211 are formed by removing an unnecessary portion of the oxide semiconductor layer 206 and the oxide semiconductor layer 207 by wet etching with the use of ITO07N (manufactured by Kanto Chemical Co., Inc.) or a mixed solution of acetic acid, nitric acid, and phosphoric acid. Note that after the above etching, the resist mask 208 is removed. In addition, an etchant for the wet etching is not limited to the above solution as long as the oxide semiconductor layer 206 and the oxide semiconductor layer 207 can be etched using the etchant. Of course, dry etching may be used as the above etching.
Next, a conductive layer 212 is formed over the island-shaped oxide semiconductor layer 211 (see
The conductive layer 212 can be formed by a sputtering method, a vacuum evaporation method, or the like, using a metal including an element selected from aluminum (Al), copper (Cu), titanium (Ti), tantalum (Ta), tungsten (W), molybdenum (Mo), chromium (Cr), neodymium (Nd), and scandium (Sc), an alloy including any of the above elements as its component, an alloy including a combination of any of these elements, or a nitride including any of the above elements as its component. Note that in this embodiment, heat treatment (e.g., heat treatment at 350° C. to 800° C. (preferably, 500° C. to 750° C.)) is performed after formation of the conductive layer 212; therefore, the conductive layer 212 preferably has a given heat resistant property.
For example, the conductive layer 212 can be formed with a single-layer structure of a titanium film. Alternatively, the conductive layer 212 is formed with a stacked-layer structure. For example, the conductive layer 212 can be formed with a stacked-layer structure of an aluminum film and a titanium film. Further alternatively, a three-layer structure of a titanium film, an aluminum film including a neodymium (Al—Nd) film, and a titanium film may be employed. Further alternatively, the conductive layer 212 may be formed with a single-layer structure of an aluminum film including silicon.
Next, a resist mask 214a, a resist mask 214b, and a resist mask 214c are formed over the conductive layer 212, and the conductive layer 212 is selectively etched so that a conductive layer 216a, a conductive layer 216b, and a conductive layer 218 are formed. In addition, the island-shaped oxide semiconductor layer 211 is etched so that a semiconductor region 215a with high conductivity and a semiconductor region 215b with high conductivity are formed. Further, part of the island-shaped oxide semiconductor layer 210 (the part near a surface thereof) is removed (channel-etched) (see
A recessed portion 220 formed by removing the part of the island-shaped oxide semiconductor layer 210 and part of the island-shaped oxide semiconductor layer 211 corresponds to a region which is between the conductive layer 216a and the conductive layer 216b and also between the semiconductor region 215a with high conductivity and the semiconductor region 215b with high conductivity. Therefore, the conductive layer 216a functions as one of a source electrode and a drain electrode of the transistor, while the conductive layer 216b functions as the other of the source electrode and the drain electrode. As illustrated in
As the above etching, dry etching is preferably employed. By employing dry etching, a wiring structure or the like can be miniaturized as compared to the case of using wet etching. In addition, by employing dry etching, etching is performed with high controllability; therefore, the removal of the part of the island-shaped oxide semiconductor layer 210 (the formation of the recessed portion 220) can be performed with high controllability. As the gas which can be used for the dry etching, a chlorine-based gas such as chlorine (Cl2), boron chloride (BCl3), silicon chloride (SiCl4), or carbon tetrachloride (CCl4); a fluorine-based gas such as carbon tetrafluoride (CF4), sulfur fluoride (SF6), nitrogen fluoride (NF3), or trifluoromethane (CHF3); hydrogen bromide (HBr); oxygen (O2); any of these gases to which a noble gas such as helium (He), or argon (Ar) is added; or the like can be used. Of course, wet etching may be used as the above etching.
In addition, as a material for the conductive layer 212, a material whose etching rate is higher than that of the island-shaped oxide semiconductor layer 210 or the island-shaped oxide semiconductor layer 211 is preferably used. This is because when the conductive layer 212, the island-shaped oxide semiconductor layer 210, and the island-shaped oxide semiconductor layer 211 are etched at one time, the etching rates of the island-shaped oxide semiconductor layer 210 and the island-shaped oxide semiconductor layer 211 are made smaller than that of the conductive layer 212, so that the island-shaped oxide semiconductor layer 210 can be prevented from being etched excessively.
Note that the resist mask 214a, the resist mask 214b, and the resist mask 214c are removed after the above etching.
After that, heat treatment is performed at a given temperature (for example, 350° C. to 800° C. (preferably 500° C. to 750° C.)). Note that in the case where a glass substrate is used as the substrate 200 having an insulating surface, it is necessary to perform heat treatment at a temperature lower than or equal to the strain point of the glass substrate. The heat treatment may be performed in an air atmosphere or a nitrogen atmosphere. By the heat treatment, crystal grains of an oxide semiconductor are grown in the island-shaped oxide semiconductor layer 210. Thus, an oxide semiconductor layer including crystal grains represented by InGaO3(ZnO)m (m=1) in an amorphous structure represented by InGaO3(ZnO)m (m>0) (an In—Ga—Zn—O based semiconductor layer) can be obtained.
An oxide semiconductor with an amorphous structure easily becomes an oxide semiconductor with a crystal structure due to heat or the like. Therefore, in the case where the proportion of the amorphous structure is high, a transistor tends to reduce its reliability. From the viewpoint of increasing the reliability, the heat treatment is performed so that the proportion of the amorphous structure is 90 volume % or less (preferably 80 volume % or less, more preferably 60 volume % or less).
Although heat treatment time can be changed in relation with heat treatment temperature as appropriate, for example, the heat treatment time can be approximately 0.5 hour to 2 hours at a temperature of 700° C. Further, since a temperature suitable for the heat treatment depends on the composition of an intended oxide semiconductor, there is no particular limitation on the heat treatment temperature as long as a desired oxide semiconductor layer can be obtained.
Note that, for the above heat treatment, a diffusion furnace, a heating furnace such as a resistance heating furnace, a rapid thermal annealing (RTA) apparatus, a microwave heating apparatus, or the like can be used. The irradiation with light having a wavelength which is absorbed by an oxide semiconductor (an electromagnetic wave) may be performed instead of the heat treatment. That is, the structure including crystal grains in an amorphous structure may be realized by irradiation with light (an electromagnetic wave). In this case, a laser capable of oscillating light having a short wavelength, an ultraviolet lamp, or the like may be used as a light source.
As described above, an oxide semiconductor layer including crystal grains represented by InGaO3(ZnO)m (m=1) in an amorphous structure represented by InGaO3(ZnO)m (m>0) is used for a channel formation region of a transistor, whereby a high-performance semiconductor device can be provided.
Here, in order to realize an oxide semiconductor layer with good electrical characteristics, a Zn content (atomic %) in an oxide semiconductor is preferably set lower than an In content (atomic %) and lower than a Ga content (atomic %), for example. With such a composition, an oxide semiconductor layer with good electrical characteristics can be obtained.
Note that an oxide semiconductor layer with a Zn content (atomic %) lower than an In content (atomic %) and lower than a Ga content (atomic %) as described above can be formed by a sputtering method using a target with a composition close to an intended composition. In this case, considering
Here, in this embodiment, an example of the case where the heat treatment is performed after the island-shaped semiconductor layer 210 is formed is given. However, there is no particular limitation on the timing of performing the heat treatment as long as the heat treatment is performed after the island-shaped semiconductor layer 206 is formed. Further, the heat treatment is not needed if a structure including a plurality of crystal grains in an amorphous structure (a structure in which a plurality of crystal grains are dispersed in an amorphous structure) is obtained at the stage of film formation.
Note that the recessed portion 220 of the exposed part of the island-shaped oxide semiconductor layer 210 may be subjected to oxygen radical treatment. By performing the oxygen radical treatment, the thin film transistor in which the island-shaped oxide semiconductor layer 210 is a channel formation region can be easily normally off. Further, by performing radical treatment, damage to the island-shaped oxide semiconductor layer 210 due to etching can be repaired. The radical treatment is preferably performed under an O2 atmosphere; an N2O atmosphere; an N2, He, or Ar atmosphere including oxygen; or the like. In addition, radical treatment may be performed under an atmosphere in which Cl2 and/or CF4 is added to the above atmosphere. Note that radical treatment is preferably performed without application of a bias voltage on the substrate 200 side.
Next, a protective insulating layer 222 is formed so as to cover the thin film transistor 250 including the gate electrode 202, the island-shaped oxide semiconductor layer 210, the semiconductor region 215a with high conductivity, the semiconductor region 215b with high conductivity, the conductive layer 216a, the conductive layer 216b, and the like (see
After that, various kinds of electrodes and wirings are formed. Thus, the semiconductor device is completed.
According to this embodiment, a high-performance semiconductor device can be provided. Note that this embodiment can be implemented in combination with any of other embodiments as appropriate.
This application is based on Japanese Patent Application serial no. 2008-296901 filed with Japan Patent Office on Nov. 20, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2008-296901 | Nov 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
5847410 | Nakajima | Dec 1998 | A |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6586346 | Yamazaki et al. | Jul 2003 | B1 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
6960812 | Yamazaki et al. | Nov 2005 | B2 |
7049190 | Takeda et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7211825 | Shih et al. | May 2007 | B2 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7301211 | Yamazaki et al. | Nov 2007 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7601984 | Sano et al. | Oct 2009 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7683370 | Kugimiya et al. | Mar 2010 | B2 |
7696513 | Hayashi et al. | Apr 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7767505 | Son | Aug 2010 | B2 |
7804091 | Takechi et al. | Sep 2010 | B2 |
7829444 | Yabuta et al. | Nov 2010 | B2 |
7851792 | Aiba et al. | Dec 2010 | B2 |
7855379 | Hayashi et al. | Dec 2010 | B2 |
7884360 | Takechi et al. | Feb 2011 | B2 |
7910490 | Akimoto et al. | Mar 2011 | B2 |
7910920 | Park et al. | Mar 2011 | B2 |
7932521 | Akimoto et al. | Apr 2011 | B2 |
7968884 | Yamazaki et al. | Jun 2011 | B2 |
8013331 | Wakita | Sep 2011 | B2 |
8063421 | Kang et al. | Nov 2011 | B2 |
8088652 | Hayashi et al. | Jan 2012 | B2 |
8153031 | Yano et al. | Apr 2012 | B2 |
8154017 | Yabuta et al. | Apr 2012 | B2 |
8232552 | Yano et al. | Jul 2012 | B2 |
8274077 | Akimoto et al. | Sep 2012 | B2 |
8319218 | Yamazaki et al. | Nov 2012 | B2 |
8415198 | Itagaki et al. | Apr 2013 | B2 |
8420442 | Takechi et al. | Apr 2013 | B2 |
8436349 | Sano et al. | May 2013 | B2 |
8466463 | Akimoto et al. | Jun 2013 | B2 |
8502222 | Yabuta et al. | Aug 2013 | B2 |
8614442 | Park et al. | Dec 2013 | B2 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager, III et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040127038 | Carcia | Jul 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050090078 | Ishihara | Apr 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228898 | Wajda et al. | Oct 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070072439 | Akimoto et al. | Mar 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080067508 | Endo et al. | Mar 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080203387 | Kang et al. | Aug 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20080308796 | Akimoto et al. | Dec 2008 | A1 |
20080308797 | Akimoto et al. | Dec 2008 | A1 |
20080308804 | Akimoto et al. | Dec 2008 | A1 |
20080308805 | Akimoto et al. | Dec 2008 | A1 |
20080308806 | Akimoto et al. | Dec 2008 | A1 |
20080318367 | Shimomura | Dec 2008 | A1 |
20090008639 | Akimoto et al. | Jan 2009 | A1 |
20090032096 | Tanaka | Feb 2009 | A1 |
20090065771 | Iwasaki et al. | Mar 2009 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090072233 | Hayashi et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090179199 | Sano et al. | Jul 2009 | A1 |
20090272970 | Aiba et al. | Nov 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20090305461 | Akimoto et al. | Dec 2009 | A1 |
20090325341 | Itagaki et al. | Dec 2009 | A1 |
20100025678 | Yamazaki et al. | Feb 2010 | A1 |
20100065844 | Tokunaga | Mar 2010 | A1 |
20100072470 | Yamazaki et al. | Mar 2010 | A1 |
20100092800 | Itagaki et al. | Apr 2010 | A1 |
20100109002 | Itagaki et al. | May 2010 | A1 |
20100117999 | Matsunaga et al. | May 2010 | A1 |
20100136743 | Akimoto et al. | Jun 2010 | A1 |
20100140612 | Omura et al. | Jun 2010 | A1 |
20110104851 | Akimoto et al. | May 2011 | A1 |
20110117697 | Akimoto et al. | May 2011 | A1 |
20110121290 | Akimoto et al. | May 2011 | A1 |
20110254004 | Yamazaki et al. | Oct 2011 | A1 |
20130126344 | Chau et al. | May 2013 | A1 |
20130277672 | Sano et al. | Oct 2013 | A1 |
20150318405 | Hayashi et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
001610080 | Apr 2005 | CN |
001941299 | Apr 2007 | CN |
101057339 | Oct 2007 | CN |
1737044 | Dec 2006 | EP |
1770788 | Apr 2007 | EP |
1995787 | Nov 2008 | EP |
1998373 | Dec 2008 | EP |
1998374 | Dec 2008 | EP |
1998375 | Dec 2008 | EP |
2226847 | Sep 2010 | EP |
2453480 | May 2012 | EP |
2453481 | May 2012 | EP |
2455975 | May 2012 | EP |
60-198861 | Oct 1985 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
03-231472 | Oct 1991 | JP |
05-251705 | Sep 1993 | JP |
07-235219 | Sep 1995 | JP |
08-264794 | Oct 1996 | JP |
11-505377 | May 1999 | JP |
2000-026119 | Jan 2000 | JP |
2000-044236 | Feb 2000 | JP |
2000-150900 | May 2000 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
2005-129666 | May 2005 | JP |
2006-165529 | Jun 2006 | JP |
2007-073559 | Mar 2007 | JP |
2007-096055 | Apr 2007 | JP |
2007-115735 | May 2007 | JP |
2007-115902 | May 2007 | JP |
2007-123861 | May 2007 | JP |
2007-150158 | Jun 2007 | JP |
2007-158307 | Jun 2007 | JP |
2007-173489 | Jul 2007 | JP |
2007-250983 | Sep 2007 | JP |
2007-250984 | Sep 2007 | JP |
2007-311404 | Nov 2007 | JP |
2008-042088 | Feb 2008 | JP |
2008-053356 | Mar 2008 | JP |
2008-171989 | Jul 2008 | JP |
2008-205469 | Sep 2008 | JP |
2008-219008 | Sep 2008 | JP |
2008-235871 | Oct 2008 | JP |
2008-243928 | Oct 2008 | JP |
2008-276212 | Nov 2008 | JP |
2008-277326 | Nov 2008 | JP |
2007148601 | Nov 2009 | JP |
2008-0052428 | Jun 2008 | KR |
200717651 | May 2007 | TW |
200822372 | May 2008 | TW |
WO-2004114391 | Dec 2004 | WO |
WO-2005088726 | Sep 2005 | WO |
WO-2006051993 | May 2006 | WO |
WO-2006107417 | Oct 2006 | WO |
WO-2007055256 | May 2007 | WO |
WO-2007119321 | Oct 2007 | WO |
WO-2007119386 | Oct 2007 | WO |
WO-2008023553 | Feb 2008 | WO |
WO-2008105347 | Sep 2008 | WO |
WO-2008126884 | Oct 2008 | WO |
WO-2008133220 | Nov 2008 | WO |
WO-2008139654 | Nov 2008 | WO |
WO 2008149873 | Dec 2008 | WO |
Entry |
---|
Chinese Office Action (Application No. 201410612094.8) dated Oct. 27, 2016. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrated Fabricated by TFT Transfer Technology”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using CG-Silicon Technology”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amporphous Oxide Semiconductors”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Takahashi.M et al., “Theoretical Analysis of IgZo Transparent Amorphous Oxide Semiconductor”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistors”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Nakamura.M et al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350°C”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315. |
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDS”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MOO3 as a Charge-Generation Layer”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ”, IDW '02 : Proceedings of the 9TH International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array”, SID Digest '08 : SID International Symposium Digest of Technicals Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299. |
Ohara.H et al., “Amorphous In—Ga—Zn-Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase””, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Cho.D et al., “21.2:Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-plane”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Amorphous In—Ga—Zn-Oxide TFTS”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTS and Their Application for Large Size AMOLED”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by Peald Grown ZnO TFT”, IMID '07 Digest, 2007, pp. 1249-1252. |
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn-Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn—Oxide TFT”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTS) for AMLCDS”, J. Soc. Inf. Display (Journal of the Society for Information Display), 2007, vol. 15, No. 1, pp. 17-22. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn-Oxide TFT”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn-Oxide TFTS With a Novel Passivation Layer”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Miyasaka.M, “Suftla Flexible Microelectronics on Their Way to Business”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Asaoka.Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED ”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68. |
Kimizuka.N et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3-A2O3-BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu,or Zn] at Temperates Over 1000°C”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219. |
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTS”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630. |
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3-In2O3-ZnO) TFT”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A et al., “Native Point Defects in ZnO”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22. |
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3. |
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 1277-1280. |
Janotti.A et al., “Oxygen Vacancies in ZnO”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas”, 214th ECS Meeting, 2008, No. 2317, ECS. |
Clark.S et al., “First Principles Methods Using Castep”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties”, J. Vac. Sci. Technol. B (Jouranl of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Yabuta.H et al., “High-Mobility Thin-Film Transistor With Amorphous InGaZnO4 Channel Fabricated by Room Temperature RF-Magnetron Sputtering”, Appl. Phys. Lett. (Applied Physics Letters) , 2006, vol. 89, pp. 112123-1-112123-3. |
Kim.D et al., “Thickness Dependence of Gate Dielectric and Active Semiconductor on InGaZnO4 TFT Fabricated on Plastic Substrates”, Electrochemical and Solid-State Letters, 2008, vol. 11, No. 12, pp. H317-H319. |
Chinese Office Action (Application No. 200910226491.0) dated May 27, 2013. |
Taiwanese Office Action (Application No. 098138245) dated Dec. 3, 2014. |
Number | Date | Country | |
---|---|---|---|
20160111282 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14140044 | Dec 2013 | US |
Child | 14972964 | US | |
Parent | 13677504 | Nov 2012 | US |
Child | 14140044 | US | |
Parent | 12618944 | Nov 2009 | US |
Child | 13677504 | US |