Embodiments described herein relate to a semiconductor device and a method of manufacturing the same.
For example, a three-dimensional memory has a structure where plural insulators and plural interconnects are alternately stacked on a substrate. Such a stacked structure can be formed by alternately stacking the plural insulators and plural sacrificial films on the substrate and replacing the sacrificial films with the plural interconnects. For example, each interconnect contains a barrier metal layer such as a titanium nitride (TiN) layer and an interconnect material layer such as a tungsten (W) layer.
In the future, if the number of layers in the stacked structure becomes larger, it is required to reduce the vertical thickness of each interconnect (each sacrificial film) to suppress the increase of the vertical thickness of the three-dimensional memory. However, if the vertical thickness of each interconnect is reduced, the ratio of the barrier metal layer in each interconnect becomes higher, which increases the resistance of the interconnects.
Embodiments will now be explained with reference to the accompanying drawings.
In one embodiment, a semiconductor device includes a substrate, a semiconductor layer provided on the substrate, and plural insulators and plural interconnects alternately provided on a side face of the semiconductor layer. Each of the interconnects includes a first interconnect layer provided on the side face of the semiconductor layer, and having an upper face that is in contact with one of the insulators and a lower face that is in contact with one of the insulators. Each of the interconnects further includes a second interconnect layer provided on a side face of the first interconnect layer, and having an upper face that is in contact with one of the insulators and a lower face that is in contact with one of the insulators.
The semiconductor device in the present embodiment includes, as a three-dimensional memory, a stacked NAND flash memory.
The semiconductor device in the present embodiment includes a substrate 1 and an inter layer dielectric 2. The semiconductor device in the present embodiment further includes, for each memory element ME, a first memory insulator 3, a semiconductor layer 4, a second memory insulator 5, a charge storing layer 6, a third memory insulator 7, plural interconnects 8 and plural insulators 9. The second and third memory insulators 5 and 7 are examples of first and second insulators of the disclosure. The interconnects 8 are an example of plural interconnects of the disclosure. The insulators 9 are an example of plural insulators of the disclosure. The inter layer dielectric 2 in the vicinity of the lowermost interconnect 8 is also an example of the plural insulators of the disclosure. The semiconductor device in the present embodiment further includes an inter layer dielectric 10.
The structure of the semiconductor device in the present embodiment will be described below mainly with reference to
An example of the substrate 1 is a semiconductor substrate such as a silicon substrate.
The inter layer dielectric 2 is formed on the substrate 1. An example of the inter layer dielectric 2 is a silicon oxide film. The inter layer dielectric 2 may be a stacked film including plural insulators. The inter layer dielectric 2 may be directly formed on the substrate 1 or may be formed on the substrate 1 through another layer.
The first memory insulator 3 is formed on the inter layer dielectric 2 through the semiconductor layer 4. The first memory insulator 3 has a cylindrical shape extending in the Z direction. Therefore, as shown in
The semiconductor layer 4 is formed on the inter layer dielectric 2 and in contact with the side face and the lower face of the first memory insulator 3. The semiconductor layer 4 has a tubular shape extending in the Z direction around the first memory insulator 3, except for a portion in the vicinity of the lower face of the first memory insulator 3. Therefore, as shown in
The second memory insulator 5 is formed on the inter layer dielectric 2 and in contact with the side face of the semiconductor layer 4. The second memory insulator 5 has a tubular shape extending in the Z direction around the semiconductor layer 4. Therefore, as shown in
The charge storing layer 6 is formed on the inter layer dielectric 2 and in contact with the side face of the second memory insulator 5. The charge storing layer 6 has a tubular shape extending in the Z direction around the second memory insulator 5. Therefore, as shown in
The third memory insulator 7 is formed on the inter layer dielectric 2 and in contact with the side face of the charge storing layer 6. The third memory insulator 7 has a tubular shape extending in the Z direction around the charge storing layer 6. Therefore, as shown in
The interconnects 8 and the insulators 9 are alternately stacked on the inter layer dielectric 2 and in contact with the side face of the third memory insulator 7. As shown in
The barrier metal layer 8a of each interconnect 8 is formed on the side face of the third memory insulator 7, and has an upper face that is in contact with the insulator 9 provided above the barrier metal layer 8a, and a lower face that is in contact with the insulator 9 provided under the barrier metal layer 8a. The lower face of the barrier metal layer 8a of the lowermost interconnect 8 is in contact with the inter layer dielectric 2 provided under the barrier metal layer 8a, instead of the insulator 9 provided under the barrier metal layer 8a. Examples of the barrier metal layer 8a are a titanium nitride (TiN) layer, a tantalum nitride (TaN) layer, a tungsten nitride (WN) layer and the like.
The interconnect material layer 8b of each interconnect 8 is formed on the side face of the barrier metal layer 8a, and has an upper face that is in contact with the insulator 9 provided above the interconnect material layer 8b, and a lower face that is in contact with the insulator 9 provided under the interconnect material layer 8b. The lower face of the interconnect material layer 8b of the lowermost interconnect 8 is in contact with the inter layer dielectric 2 provided under the interconnect material layer 8b, instead of the insulator 9 provided under the interconnect material layer 8b. Examples of the interconnect material layer 8b are a nickel (Ni) layer, a cobalt (Co) layer, a tungsten (W) layer and the like.
Reference character Wa denotes the thickness of the barrier metal layer 8a in a radial direction from the central axis of each memory element ME. Reference character Wb denotes the thickness of the interconnect material layer 8b in the radial direction from the central axis of each memory element ME. This radial direction is an example of a first direction of the disclosure. In each interconnect 8 of the present embodiment, the thickness Wb of the interconnect material layer 8b in the radial direction is set larger than the thickness Wa of the barrier metal layer 8a in the radial direction (Wb>Wa).
Reference character T denotes the thickness of the barrier metal layer 8a and the interconnect material layer 8b in each interconnect 8 in the Z direction. The Z direction is an example of a second direction of the disclosure. As described above, the barrier metal layer 8a and the interconnect material layer 8b are both in contact with the insulator 9 provided above these layers 8a and 8b and the insulator 9 (or the inter layer dielectric 2) provided under these layers 8a and 8b. Therefore, in each interconnect 8 of the present embodiment, the thickness of the barrier metal layer 8a in the Z direction and the thickness of the interconnect material layer 8b in the Z direction are set at the same value T.
Here, the volume of the barrier metal layer 8a in each interconnect 8 is denoted by Va, and the volume of the interconnect material layer 8b in each interconnect 8 is denoted by Vb. In the present embodiment, the volume Vb is desirably set larger than the volume Va (Vb>Va), which makes the ratio of the interconnect material layer 8b in each interconnect 8 higher than the ratio of the barrier metal layer 8a in each interconnect 8.
The inter layer dielectric 10 is formed on the inter layer dielectric 2 around the memory elements ME. An example of the inter layer dielectric 10 is a silicon oxide film. The inter layer dielectric 10 may be a stacked film including plural insulators. The semiconductor device in the present embodiment may include a plug interconnect that penetrates the inter layer dielectric 10 and is electrically connected to a diffusion layer in the substrate 1 or to an interconnect in the inter layer dielectric 2.
A barrier metal layer 8a in the comparative example is formed on the side face of the third memory insulator 7. In the comparative example, the lower face of the insulator 9 provided above the barrier metal layer 8a and the upper face of the insulator 9 (or the inter layer dielectric 2) provided under the barrier metal layer 8a is covered with the barrier metal layer 8a. As a result, the interconnect material layer 8b in the comparative example is not in contact with the lower face of the insulator 9 provided above the interconnect material layer 8b and the upper face of the insulator 9 (or the inter layer dielectric 2) provided under the interconnect material layer 8b.
In the comparative example, if the Z directional thickness of each interconnect 8 is reduced, the ratio of the barrier metal layer 8a in each interconnect 8 becomes higher. The reason is that the reduced thickness of each interconnect 8 narrows down the gap between the barrier metal layer 8a on the lower face of the insulator 9 and the barrier metal layer 8a on the upper face of the insulator 9 (or the inter layer dielectric 2), which reduces a space for embedding the interconnect material layer 8b. As a result, the reduced film thickness of each interconnect 8 increases the resistance of the interconnects 8 in the comparative example.
In contrast, the barrier metal layer 8a and the interconnect material layer 8b in the present embodiment are both in contact with the lower face of the insulator 9 provided above these layers 8a and 8b, and the upper face of the insulator 9 (or the inter layer dielectric 2) provided under these layers 8a and 8b. Therefore, it is possible in the present embodiment to reduce the Z directional thickness of each interconnect 8 without increasing the ratio of the barrier metal layer 8a in each interconnect 8. The reason is that the volume Va of the barrier metal layer 8a can be reduced at almost the same rate as the reduction rate of the thickness of the interconnects 8. For example, if the thickness of the interconnects 8 is reduced by one-half with the thickness Wa of the barrier metal layer 8a and the thickness Wb of the interconnect material layer 8b unchanged, the volume Va of the barrier metal layer 8a is also reduced by almost one-half, and the volume Vb of the interconnect material layer 8b is thereby also reduced by almost one-half. As a result, the ratio of the barrier metal layer 8a in each interconnect 8 varies little even when the thickness of the interconnects 8 is reduced by one-half. Therefore, the present embodiment makes it possible to reduce the thickness of the interconnects 8 while preventing the resistance of the interconnects 8 from being increased.
Also, the thickness Wb of the interconnect material layer 8b is set larger than the thickness Wa of the barrier metal layer 8a in the present embodiment. In addition, the volume Vb of the interconnect material layer 8b is set larger than the volume Va of the barrier metal layer 8a in the present embodiment. Therefore, the present embodiment can make the ratio of the barrier metal layer 8a in each interconnect 8 be small and can therefore reduce the resistance of the interconnects 8.
First, an inter layer dielectric 2 is formed on a substrate 1 (not shown), and plural sacrificial films 11 and plural insulators 9 are alternately formed on the inter layer dielectric 2 (
Next, a memory hole MH is formed by lithography and etching to penetrate the sacrificial films 11 and the insulators 9 to reach the inter layer dielectric 2 (
Next, a third memory insulator 7, a charge storing layer 6, a second memory insulator 5, and a first layer 4a of a semiconductor layer 4 are sequentially formed on the whole surface of the substrate 1 (
Next, the third memory insulator 7, the charge storing layer 6, the second memory insulator 5 and the first layer 4a are removed from the bottom face S of the memory hole MH by lithography and etching (
Next, a second layer 4b of the semiconductor layer 4, and a first memory insulator 3 are sequentially formed on the whole surface of the substrate 1 (
Next, the surfaces of the first memory insulator 3 and the semiconductor layer 4 are planarized by chemical mechanical polishing (CMP) (
While
Next, an opening H1 is formed by lithography and etching to penetrate the sacrificial films 11 and the insulators 9 to reach the inter layer dielectric 2 (
Next, the sacrificial films 11 are removed by selective etching while the insulators 9 are left (
Next, the barrier metal layer 8a is formed on the whole surface of the substrate 1 (
Next, the barrier metal layer 8a is etched by wet etching (
Next, an interconnect material layer 8b is formed on the whole surface of the substrate 1 (
Next, the interconnect material layer 8b is etched by wet etching (
In this way, an interconnect 8 including the barrier metal layer 8a and the interconnect material layer 8b is formed in each concave portion H2. Thereafter, the inter layer dielectric 10 is formed in the opening H1. Furthermore, various inter layer dielectrics, interconnect layers, plug layers and the like are formed on the substrate 1. In this way, the semiconductor device in the present embodiment is manufactured.
In the process of
In the present embodiment, instead of forming the interconnect material layers 8b through the processes of the
In the comparative example, the processes of
In the comparative example, if the Z directional thickness of each interconnect 8 is reduced, the ratio of the barrier metal layer 8a in each interconnect 8 becomes higher, which increases the resistance of the interconnects 8. Furthermore, when the barrier metal layer 8a is formed in the concave portions H2, the opening areas of the concave portions H2 become smaller, which makes it difficult to embed the interconnect material layer 8b in the concave portions H2.
In contrast, the present embodiment makes it possible to reduce the Z directional thickness of each interconnect 8 without increasing the ratio of the barrier metal layer 8a in each interconnect 8. Therefore, the present embodiment makes it possible to reduce the Z directional thickness of each interconnect 8 while suppressing the increase of the resistance of the interconnects 8. Furthermore, since it is possible to form the barrier metal layers 8a in the concave portions H2 without reducing the opening areas of the concave portions H2, the present embodiment makes it possible to easily embed the interconnect material layers 8b in the concave portions H2.
As described above, the present embodiment makes it possible to suppress the increase of the resistance of the interconnects 8 owing to the reduction of the thickness of the interconnects 8.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel devices and methods described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the devices and methods described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
This application is based upon and claims the benefit of priority from the prior U.S. Provisional Patent Application No. 62/129,436 filed on Mar. 6, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62129436 | Mar 2015 | US |