Semiconductor device having cam that stores address signals

Information

  • Patent Grant
  • 11521669
  • Patent Number
    11,521,669
  • Date Filed
    Tuesday, April 6, 2021
    3 years ago
  • Date Issued
    Tuesday, December 6, 2022
    a year ago
Abstract
An apparatus may include multiple address registers each storing an address signal and multiple counter circuits each storing a count value corresponding to an associated one of the address registers. The apparatus may include a first circuit cyclically selecting one of the address registers in response to a first signal, a second circuit selecting one of the address registers based on the count value of each of the counter circuits, and a third circuit activating a second signal when the first and second circuits select the same one of the address registers.
Description
BACKGROUND

In a semiconductor device such as a DRAM (Dynamic Random Access Memory), concentration of access on the same word line may cause deterioration of information retention characteristics of memory cells connected to an adjacent word line. Therefore, in some cases, a refresh operation of the memory cells is performed in addition to a normal refresh operation to prevent information of the memory cells connected to the adjacent word line from being lost. This additional refresh operation is called “row hammer refreshing operation”.


The row hammer refresh operation is performed on word lines adjacent to word lines at which accesses are concentrated. In order to realize this operation, addresses of a plurality of word lines at which accesses are concentrated are stored in an address storing circuit and one of the addresses is read from the address storing circuit at a time of the row hammer refresh operation. However, when the row hammer refresh operation is to be performed, which one of the addresses stored in the address storing circuit is to be read is the issue to be handled.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a semiconductor device according to an embodiment of the present disclosure.



FIG. 2 is a block diagram for explaining a configuration of a refresh control circuit.



FIG. 3 is a schematic diagram for explaining a relation between an address of a word line at which accesses are concentrated and addresses of word lines on which a row hammer refresh operation is to be performed.



FIG. 4 is a block diagram for explaining a configuration of a row hammer address storing circuit.



FIG. 5 is a block diagram for explaining a configuration of a control circuit.



FIG. 6 is a timing chart for explaining an operation of the control circuit.



FIGS. 7A and 7B are timing charts respectively showing an example where a plurality of refresh operations are performed in response to one refresh command.



FIG. 8 is an example of a circuit diagram of an LFSR circuit.





DETAILED DESCRIPTION

Various embodiments of the present invention will be explained below in detail with reference to the accompanying drawings. The following detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. Other embodiments may be utilized, and structural, logical and electrical changes may be made without departing from the scope of the present invention. The various embodiments disclosed herein are not necessary mutually exclusive, as some disclosed embodiments can be combined with one or more other disclosed embodiments to form new embodiments.



FIG. 1 is a block diagram of a semiconductor device 10 according to an embodiment of the present disclosure. The semiconductor device 10 may be a DDR4 SDRAM incorporated in a single semiconductor chip, for example. The semiconductor device 10 may be mounted on an external substrate, for example, a memory module substrate or a mother board. As shown in FIG. 1, the semiconductor device 10 includes a memory cell array 11. The memory cell array 11 includes a plurality of word lines WL, a plurality of bit lines BL, and a plurality of memory cells MC arranged at intersections of the word lines WL and the bit lines BL. Selection of a word line WL is performed by a row address control circuit 12, and selection of a bit line BL is performed by a column decoder 13. A sense amplifier 14 is connected to a corresponding bit line BL and a pair of local I/O lines LIOT/B. The pair of local I/O lines LIOT/B is connected to a pair of main I/O lines MIOT/B via a transfer gate 15 functioning as a switch. The memory cell array 11 is divided into (m+1) memory banks including memory banks BANK0 to BANKm.


A plurality of external terminals included in the semiconductor device 10 include command address terminals 21, clock terminals 22, data terminals 23, and power-supply terminals 24 and 25. The data terminals 23 are connected to an I/O circuit 16.


A command address signal CA is supplied to the command address terminals 21. One of the command address signals CA supplied to the command address terminals 21, which relates to an address, is transferred to an address decoder 32 via a command address input circuit 31. Another one that relates to a command is transferred to a command control circuit 33 via the command address input circuit 31. The address decoder 32 decodes an address signal and generates a row address XADD and a column address YADD. The row address XADD is supplied to the row address control circuit 12, and the column address YADD is supplied to the column decoder 13. Further, a command address signal CA that functions as a clock enable signal CKE is supplied to an internal clock generator 35.


Complementary external clock signals CK and /CK are supplied to the clock terminals 22. The complementary external clock signals CK and /CK are input to a clock input circuit 34. The clock input circuit 34 generates an internal clock signal ICLK based on the complementary external clock signals CK and /CK. The internal clock signal ICLK is supplied to at least the command control circuit 33 and the internal clock generator 35. The internal clock generator 35 is activated by the clock enable signal CKE, for example, and generates an internal clock signal LCLK based on the internal clock signal ICLK. The internal clock signal LCLK is supplied to the I/O circuit 16. The internal clock signal LCLK is used as a timing signal that defines a timing at which read data DQ is output from the data terminal 23 at the time of a read operation. In a write operation, write data is input to the data terminal 23 from outside. In the write operation, a data mask signal DM may be input to the data terminal 23 from outside.


Power-supply potentials VDD and VSS are supplied to the power-supply terminals 24. These power-supply potentials VDD and VSS are supplied to a voltage generator 36. The voltage generator 36 generates various internal potentials VPP, VOD, VARY, and VPERI, for example, based on the power-supply potentials VDD and VSS. The internal potential VPP is used mainly in the row address control circuit 12. The internal potentials VOD and VARY are used mainly in the sense amplifier 14 included in the memory cell array 11. The internal potential VPERI is used in many other circuit blocks.


Power-supply potentials VDDQ and VSSQ are supplied to the I/O circuit 16 from the power-supply terminals 25. Although the power-supply potentials VDDQ and VSSQ may be the same potentials as the power-supply potentials VDD and VSS supplied to the power supply terminals 24, respectively, the dedicated power-supply potentials VDDQ and VSSQ are assigned to the I/O circuit 16 in order to prevent propagation of power-supply noise generated in the I/O circuit 16 to another circuit block.


The command control circuit 33 activates an active signal ACT when an active command is issued, and activates a refresh signal AREF when a refresh command is issued. The active signal ACT and the refresh signal AREF are both supplied to the row address control circuit 12. The row address control circuit 12 includes a refresh control circuit 40. The refresh control circuit 40 controls a refresh operation for the memory cell array 11 based on the row address XADD, the active signal ACT, and the refresh signal AREF. The refresh control circuit 40 will be described in detail later.


When a read command is issued from outside, following the active command, the command control circuit 33 activates a column selection signal CYE. The column selection signal CYE is supplied to the column decoder 13. In response to this signal, read data is read out from the memory cell array 11. The read data read from the memory cell array 11 is transferred to the I/O circuit 16 via a read-write amplifier 17 and an FIFO circuit 18, and is output to outside via the data terminals 23.



FIG. 2 is a block diagram for explaining a configuration of the refresh control circuit 40.


As shown in FIG. 2, the refresh control circuit 40 includes a refresh counter 41, an ARM sample generator 42, a sampling circuit 43, a row hammer address storing circuit 44, an address convertor 45, and a refresh address selector 46. The refresh counter 41 generates a normal refresh address NRADD. The normal refresh address NRADD is incremented or decremented in response to an internal refresh signal IREF. The internal refresh signal IREF can be a signal activated plural times on the basis of the refresh signal AREF. The sampling circuit 43 samples the row address XADD at a timing when a sampling signal SMP generated by the ARM sample generator 42 is activated, and supplies the sampled row address XADD to the row hammer address storing circuit 44. The ARM sample generator 42 may activate the sampling signal SMP at a timing when the active signal ACT is activated for a predetermined number of times. Accordingly, an address VADD of a word line WL at which accesses are concentrated is supplied to the row hammer address storing circuit 44. As described later, the row hammer address storing circuit 44 stores a plurality of row addresses VADD. The row addresses VADD stored in the row hammer address storing circuit 44 are supplied to the address convertor 45. The address convertor 45 converts the row addresses VADD to generate row hammer refresh addresses +1ADD, −1ADD, +2ADD, and −2ADD.


The row hammer refresh addresses +1ADD and −1ADD are addresses of word lines WL adjacent to the word line WL having the row address VADD assigned thereto on the both sides. The row hammer refresh addresses +2ADD and −2ADD are addresses of word lines WL two lines away from the word line WL having the row address VADD assigned thereto on the both sides. For example, when word lines WL1 to WL5 are arranged in this order as shown in FIG. 3 and accesses are concentrated at the word line WL3, the row address VADD corresponds to the word line WL3, the row hammer refresh addresses −1ADD and +1ADD correspond to the word lines WL2 and WL4, respectively, and the row hammer refresh addresses −2ADD and +2ADD correspond to the word lines WL1 and WL5, respectively. In the word lines WL4, WL2, WL5, and WL1 to which the row hammer refresh addresses +1ADD, −1ADD, +2ADD, and −2ADD are respectively assigned, there is a possibility that the information storing performance of associated memory cells MC is decreased because accesses are concentrated at the word line WL3 adjacent thereto or two lines away therefrom. The normal refresh address NRADD and the row hammer refresh addresses +1ADD, −1ADD, +2ADD, and −2ADD are supplied to the refresh address selector 46.


The refresh control circuit 40 further includes a counter circuit 47, a comparing circuit 48, and a refresh state circuit 49. The counter circuit 47 increments or decrements a count value CV in response to the internal refresh signal IREF. The comparing circuit 48 receives the count value CV and activates a refresh state signal RHR State each time the count value CV reaches a predetermined value. The predetermined value can be changed with a mode signal MODE. Therefore, it suffices to set the predetermined value to a small value with the mode signal MODE when the frequency of the row hammer refresh operations is to be increased, and set the predetermined value to a large value with the mode signal MODE when the frequency of the row hammer refresh operations is to be decreased. The refresh counter 41 may temporarily stop an update operation of the normal refresh address NRADD when the refresh stale signal RHR State is activated.


The refresh state signal RHR State is supplied to the refresh state circuit 49. The refresh state circuit 49 generates refresh selection signals NR, RHR1, and RHR2 on the basis of the internal refresh signal IREF and the refresh state signal RHR State.


The refresh state circuit 49 activates the refresh selection signal NR when the refresh state signal RHR State is in an inactive state. The refresh selection signal NR is a signal activated when the normal refresh operation is to be performed. In a case where the refresh selection signal NR is activated, the refresh address selector 46 selects the normal refresh address NRADD output from the refresh counter 41 and outputs the normal refresh address NRADD as a refresh address REFADD. When the refresh state signal RHR State is in an active state, the refresh state circuit 49 activates the refresh selection signal RHR1 or RHR2. The refresh selection signal RHR1 is a signal activated when the row hammer refresh operation is to be performed on the word lines WL2 and WL4 adjacent to the word line WL3 at which accesses are concentrated. In a case where the refresh selection signal RHR1 is activated, the refresh address selector 46 selects the row hammer refresh addresses +1ADD and −1ADD output from the address convertor 45 and outputs the row hammer refresh addresses +1ADD and −1ADD as the refresh addresses REFADD. The refresh selection signal RHR1 is supplied also to the row hammer address storing circuit 44. The refresh selection signal RHR2 is a signal activated when the row hammer refresh operation is to be performed on the word lines WL1 and WL5 two lines away from the word lines WL3 at which accesses are concentrated. In a case where the refresh selection signal RHR2 is activated, the refresh address selector 46 selects the row hammer refresh addresses +2ADD and −2ADD output from the address convertor 45 and outputs the row hammer refresh addresses +2ADD and −2ADD as the refresh addresses REFADD.



FIG. 4 is a block diagram for explaining a configuration of the row hammer address storing circuit 44.


As shown in FIG. 4, the row hammer address storing circuit 44 includes a plurality of address registers 50 to 57, a plurality of counter circuits 60 to 67, a comparing circuit 70, and a control circuit 80. While eight address registers 50 to 57 are illustrated in an example shown in FIG. 4, the number of address registers included in the row hammer address storing circuit 44 is not limited thereto. The row addresses XADD sampled by the sampling circuit 43 are stored in the address registers 50 to 57, respectively. The counter circuits 60 to 67 correspond to the address registers 50 to 57, respectively.


The comparing circuit 70 compares the input row address XADD with each of the row addresses XADD stored in the address registers 50 to 57. When the input row address XADD matches with any of the row addresses XADD stored in the address registers 50 to 57, the comparing circuit 70 activates a corresponding one of hit signals HIT0 to HIT7. When any of the hit signals HIT0 to HIT7 is activated, the control circuit 80 increments the count value of a corresponding one of the counter circuits 60 to 67. Therefore, the count values of the counter circuits 60 to 67 indicate the numbers of times when the row addresses XADD stored in the address registers 50 to 57 are sampled by the sampling circuit 43, respectively. The control circuit 80 includes a minimum pointer 81 that indicates one of the counter circuits 60 to 67 having a smallest count value, and a maximum pointer 82 that indicates one of the counter circuits 60 to 67 having a greatest count value.


On the other hand, when none of the hit signals HIT0 to HIT7 is activated, that is, when the input row address XADD does not match with any of the row addresses XADD respectively stored in the address registers 50 to 57, the control circuit 80 resets one of the counter circuits 60 to 67 indicated by the minimum pointer 81 to an initial value and supplies a point number MIN to the address registers 50 to 57. Accordingly, the input row address XADD is overwritten in one of the address registers 50 to 57 indicated by the point value MIN. In this way, when the input row address XADD does not match with any of the row addresses XADD respectively stored in the address registers 50 to 57, the value of one of the address registers 50 to 57 storing the row address XADD that is least frequently accessed is overwritten.


One of the row addresses XADD stored in the address registers 50 to 57 is output as the row address VADD in response to the refresh selection signal RHR1. The control circuit 80 further includes a sequential counter 83. When the refresh selection signal RHR1 is activated, either a point value MAX indicated by the maximum pointer 82 or a point value SEQ indicated by the sequential counter 83 is selected. One of the address registers 50 to 57 is selected by a selected point value SEL and the row address XADD stored in the selected one of the address registers 50 to 57 is output as the row address VADD. The value of one of the counter circuits 60 to 67 corresponding to the selected point value SEL is reset to an initial value.


As shown in FIG. 5, the control circuit 80 further includes a selection signal generator 84, a multiplexer 85, and a comparing circuit 86. The selection signal generator 84 generates a selection signal M/S having a value inverted each time the refresh selection signal RHR1 is activated twice. The selection signal M/S is supplied to the multiplexer 85. The multiplexer 85 selects the point value MAX output from the maximum pointer 82 when the selection signal M/S has one logical level (a low level, for example), and selects the point value SEQ output from the sequential counter 83 when the selection signal M/S has the other logical level (a high level, for example). The point value MAX or SEQ selected by the multiplexer 85 is output as the point value SEL. The point value SEL is used to select one of the address registers 50 to 57.


The point value MAX and the point value SEQ are compared with each other by the comparing circuit 86. When the point value MAX and the point value SEQ match with each other, the comparing circuit 86 activates a skip signal SKIP. The sequential counter 83 performs a count-up operation in response to the skip signal SKIP and the selection signal M/S.



FIG. 6 is a timing chart for explaining an operation of the control circuit 80.


In the example shown in FIG. 6, the refresh selection signal RHR1 is activated twice at each of times t1 to t17. When the refresh selection signal RHR1 is activated twice, the selection signal M/S is inverted. Therefore, the multiplexer 85 alternately selects the point value MAX and the point value SEQ. In the example shown in FIG. 6, the point value MAX is selected when the selection signal M/S is at a low level and the point value SEQ is selected when the selection signal M/S is at a high level. Accordingly, the point value SEQ is selected at the times t1, t3, t5, t7, t9, t11, t13, t15, and t17, and the point value MAX is selected at the times t2, t4, t6, t8, t10, t12, t14, and t16. The point value SEQ is incremented in response to a falling edge of the selection signal M/S. The point value SEQ is, for example, a 3-bit signal and is incremented from 0 to 7 and then returns to 0. The point value MAX is also, for example, a 3-bit signal and indicates the address of one of the counter circuits 60 to 67 currently having a greatest count value.


When the point value MAX and the point value SEQ match with each other, the comparing circuit 86 activates the skip signal SKIP. In the example shown in FIG. 6, the point value MAX and the point value SEQ both indicate a value “4” at the time t6. Because a count signal UP is activated in response thereto, the point value SEQ indicated by the sequential counter 83 is immediately incremented to “5”. As a result, the point value SEL generated when the refresh selection signal RHR1 is activated next time indicates a value “5” and “4”, which is the value of the point value SEL generated in response to the previous point value MAX, is not repeatedly output. Similarly, the point value MAX and the point value SEQ both indicate a value “0” at the time t12. The count signal UP is activated in response thereto and accordingly the point value SEQ indicated by the sequential counter 83 is immediately incremented to “1”. As a result, the point value SEL generated when the refresh selection signal RHR1 is activated next time indicates a value “1” and “0”, which is the value of the point value SEL generated in response to the previous point value MAX, is not repeatedly output. In this way, according to the present embodiment, the value of the point value SEL generated in response to the previous point value MAX and the value of the point value SEL generated in response to the current point value SEQ do not match with each other. Therefore, any unnecessary row hammer refresh operation can be avoided.


Meanwhile, even when the point value MAX and the point value SEQ match with each other, the point value SEQ of the sequential counter 83 is not skipped if the point value MAX is selected next. For example, although the point value MAX and the point value SEQ both indicate a value “2” at the time t15, the count signal UP is not activated because the selection signal M/S is at a high level at this timing. That is, the point value SEQ is kept at the value “2” and any unnecessary skip operation is not performed.


As explained above, in the present embodiment, the point value SEQ is skipped when the point value MAX and the point value SEQ match with each other. Therefore, the value of the point value SEL generated in response to the previous point value MAX and the value of the point value SEL generated in response to the current point value SEQ do not match with each other and any unnecessary row hammer refresh operation can be avoided.


In the present embodiment, the refresh operation may be performed plural times in the semiconductor device 10 in response to one refresh command issued from outside. In FIGS. 7A and 7B, examples where the refresh operation is performed five times each time the refresh signal AREF is activated once are shown. In the example shown in FIG. 7A, the refresh signal AREF is activated at each of times t20 to t24 and the internal refresh signal IREF is activated five times in a row each time the refresh signal AREF is activated. Because the refresh state signal RHR State is in an inactive state at the time t20, the refresh selection signal NR is activated synchronously with the internal refresh signal IREF. In this case, the refresh operation is performed sequentially on five normal refresh addresses NRADD in response to the refresh signal AREF. At the time t21, the refresh state signal RHR State is an active state. In the example shown in FIG. 7A, the refresh selection signal RHR1 is also activated synchronously with the internal refresh signal IREF during a period when the refresh state signal RHR State is activated. In the example shown in FIG. 7A, the refresh operation is performed on 12 row hammer refresh addresses +1ADD, −1ADD in one row hammer refresh operation. In this case, the refresh operation cannot be performed on 12 addresses in response to one refresh signal AREF. Therefore, the refresh state signal RHR State is kept in the active state until the row hammer refresh operation to the 12 addresses is completed. That is, five row hammer refresh operations are performed in response to each of the refresh signals AREF activated at the time t21 and the time t22, and two row hammer refresh operations are performed in response to the refresh signal AREF activated at the time t23.


In the example shown in FIG. 7A, first and second row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value MAX. Third and fourth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value SEQ. Fifth and sixth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value MAX. Seventh and eighth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value SEQ. Ninth and tenth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value MAX. Eleventh and twelfth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value SEQ. In this way, each time the refresh selection signal RHR1 is activated twice, the row hammer refresh operation corresponding to the point value MAX and the row hammer refresh operation corresponding to the point value SEQ are alternately performed.


In the example shown in FIG. 7B, the refresh signal AREF is activated at each of times t30 to t34. At the time t30, because the refresh state signal RHR State signal is in an inactive state, the refresh selection signal NR is activated. In this case, the refresh operation is performed sequentially on five normal refresh addresses NRADD synchronously with the internal refresh signal IREF. At the time t31, the refresh state signal RHR State switches to an active state. In the example shown in FIG. 7B, during a period when the refresh state signal RHR State is activated, the refresh selection signal RHR1 or RHR2 is activated. In the example shown in FIG. 7B, the refresh operation is performed on 12 row hammer refresh addresses +1ADD, −1ADD and the refresh operation is performed to four row hammer refresh addresses +2ADD, −2ADD in one row hammer refresh operation. In this case, because the refresh operation cannot be performed on 16 addresses in response to one refresh signal AREF, the refresh state signal RHR State is kept in the active state until the row hammer refresh operation to the 16 addresses is completed. That is, five row hammer refresh operations are performed in response to each of the refresh signals AREF activated at the time t31, the time t32, and the time t33 and one row hammer refresh operation is performed in response to the refresh signal AREF activated at the time t34. In response to the refresh signal AREF activated at the time t31, the refresh operation is performed on two row hammer refresh addresses +1ADD, −1ADD and the refresh operation is performed on three row hammer refresh addresses +2ADD, −2ADD. In response to the refresh signal AREF activated at the time t32, the refresh operation is performed on four row hammer refresh addresses +1ADD, −1ADD and the refresh operation is performed on one row hammer refresh address +2ADD, −2ADD.


In the example shown in FIG. 7B, first to fourth row hammer refresh operations are respectively performed on +2ADD, −2ADD, +1ADD, and −1ADD of the row address VADD indicated by the point value MAX. Fifth to eighth row hammer refresh operations are respectively performed on +2ADD, −2ADD, +1ADD and −1ADD of the row address VADD indicated by the point value SEQ. Ninth and tenth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value MAX. Eleventh and twelfth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value SEQ. Thirteenth and fourteenth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value MAX. Fifteenth and sixteenth row hammer refresh operations are respectively performed on +1ADD and −1ADD of the row address VADD indicated by the point value SEQ.


The sequential counter 83 does not need to be a counter circuit that simply increments the point value SEQ, and can be a linear feedback shift register (LFSR) circuit that generates a pseudorandom number.



FIG. 8 is an example of a circuit diagram of an LFSR circuit 90. In the example shown in FIG. 8, the LFSR circuit 90 includes a shift register constituted by three flip-flop circuits 91 to 93, and an EXOR circuit 94. The flip-flop circuits 91 to 93 are cascade-connected and respective output bits B1 to B3 constitute the point value SEQ being a pseudorandom number. The bit B2 and the bit B3 are input to the EXOR circuit 94 and an output thereof is fed back to the flip-flop circuit 91 at the first stage. The count signal UP is supplied in common to clock nodes of the flip-flop circuits 91 to 93. A reset signal RESET is supplied in common to reset or set nodes of the flip-flop circuits 91 to 93. Accordingly, when the reset signal RESET is activated, the value of the point value SEQ is initialized to 4. When the count value UP is activated, the value of the point value SEQ is sequentially updated.


Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, other modifications which are within the scope of this invention will be readily apparent to those of skill in the art based on this disclosure. It is also contemplated that various combination or sub-combination of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of at least some of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. An apparatus comprising: a plurality of address registers each configured to store an address signal;first and second circuits configured to alternately select one of the address registers; anda third circuit comprising a comparing circuit configured to prevent the first circuit from selecting a first address register included in the address registers when the second circuit selects the first address register immediately before and allow the second circuit to select the first address register when the first circuit selects the first address register immediately before.
  • 2. The apparatus of claim 1, wherein the first circuit cyclically selects one of the address registers.
  • 3. The apparatus of claim 2, wherein the third circuit causes the first circuit to skip the first address register when the second circuit selects the first address register immediately before.
  • 4. The apparatus of claim 1, wherein the second circuit selects one of the address registers based on count values assigned to the address registers.
  • 5. The apparatus of claim 1, further comprising an address convertor that generates a refresh address based on the address signal stored in a selected one of the address registers by the first or second circuit.
  • 6. The apparatus of claim 1, further comprising a fourth circuit configured to provide an address signal of an address register selected by the first circuit or provide an address signal of an address register selected by the second circuit.
  • 7. A method comprising: storing a plurality of address signals in a corresponding a plurality of address registers;alternately selecting one of the plurality of address registers with a first circuit and a second circuit;preventing the first circuit from selecting a first address register of the plurality of address registers when the second circuit selects the first address register immediately before; andallowing, with the third circuit, the second circuit to select the first address register when the first circuit selects the first address register immediately before.
  • 8. The method of claim 7, wherein selecting one of the plurality of address registers with the first circuit comprises cyclically selecting one of the address registers of the plurality of registers.
  • 9. The method of claim 8, wherein preventing the first circuit from selecting the first address register comprises causing, with the third circuit, the first circuit to skip the first address register.
  • 10. The method of claim 7, wherein selecting one of the plurality of address registers with the second circuit comprises selecting one of the address registers based on count values assigned to the plurality of address registers.
  • 11. The method of claim 10, wherein the one of the plurality of address registers selected by the second count value has a highest count value of the count values assigned to the plurality of registers.
  • 12. The method of claim 7, further comprising generating, with an address convertor, a refresh address based on the address signal stored in a selected one of the address registers by the first or second circuit.
  • 13. The method of claim 12, further comprising providing, with a fourth circuit, the address signal of the address register selected by the first circuit or the second circuit to the address convertor.
  • 14. The method of claim 13, wherein the fourth circuit provides the address signal of the address register selected by the first circuit or the second circuit based on a state of a control signal.
  • 15. An apparatus comprising: an address storing circuit comprising: a plurality of address registers each configured to store an address signal;first and second circuits configured to alternately select one of the address registers; anda third circuit comprising a comparing circuit configured to prevent the first circuit from selecting a first address register included in the address registers when the second circuit selects the first address register immediately before and allow the second circuit to select the first address register when the first circuit selects the first address register immediately before;an address convertor configured to generate a refresh address based on the address signal stored in a selected one of the address registers by the first or second circuit; anda refresh address selector configured to provide the refresh address generated by the address convertor or a normal refresh address to refresh a row of memory array.
  • 16. The apparatus of claim 15, further comprising a refresh state circuit configured to provide a signal to the refresh address generator to control whether the refresh address or the normal refresh address is provided.
  • 17. The apparatus of claim 15, wherein the address convertor further generates a plurality of refresh addresses based on the address signal.
  • 18. The apparatus of claim 15, wherein the first circuit cyclically selects one of the address registers and wherein the second circuit selects one of the address registers based on count values assigned to the address registers.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application is a divisional of U.S. patent application Ser. No. 16/358,587 filed Mar. 19, 2019 and issued as U.S. Pat. No. 11,043,254 on Jun. 22, 2021. The aforementioned application, and issued patent, is incorporated herein by reference, in its entirety, for any purpose.

US Referenced Citations (433)
Number Name Date Kind
3633175 Harper Jan 1972 A
5291198 Dingwall et al. Mar 1994 A
5299159 Balistreri et al. Mar 1994 A
5422850 Sukegawa Jun 1995 A
5638317 Tran Jun 1997 A
5699297 Yamazaki et al. Dec 1997 A
5768196 Bloker et al. Jun 1998 A
5933377 Hidaka Aug 1999 A
5943283 Wong et al. Aug 1999 A
5970507 Kato et al. Oct 1999 A
5999471 Choi Dec 1999 A
6002629 Kim et al. Dec 1999 A
6011734 Pappert Jan 2000 A
6061290 Shirley May 2000 A
6212118 Fujita Apr 2001 B1
6310806 Higashi et al. Oct 2001 B1
6317381 Gans et al. Nov 2001 B1
6373738 Towler et al. Apr 2002 B1
6392952 Chen et al. May 2002 B1
6424582 Ooishi Jul 2002 B1
6434064 Nagai Aug 2002 B2
6452868 Fister Sep 2002 B1
6480931 Buti et al. Nov 2002 B1
6515928 Sato et al. Feb 2003 B2
6567340 Nataraj et al. May 2003 B1
6950364 Kim Sep 2005 B2
7027343 Sinha et al. Apr 2006 B2
7057960 Fiscus et al. Jun 2006 B1
7082070 Hong Jul 2006 B2
7187607 Koshikawa et al. Mar 2007 B2
7203113 Takahashi et al. Apr 2007 B2
7203115 Eto et al. Apr 2007 B2
7209402 Shinozaki et al. Apr 2007 B2
7215588 Lee May 2007 B2
7283380 Srinivasan et al. Oct 2007 B1
7304875 Lien et al. Dec 2007 B1
7319602 Srinivasan et al. Jan 2008 B1
7444577 Best et al. Oct 2008 B2
7551502 Dono et al. Jun 2009 B2
7565479 Best et al. Jul 2009 B2
7830742 Hari Nov 2010 B2
8174921 Kim et al. May 2012 B2
8400805 Yoko Mar 2013 B2
8451677 Okahiro et al. May 2013 B2
8625360 Iwamoto et al. Jan 2014 B2
8676725 Lin et al. Mar 2014 B1
8681578 Narui Mar 2014 B2
8756368 Best et al. Jun 2014 B2
8811100 Ku Aug 2014 B2
8862973 Zimmerman et al. Oct 2014 B2
8938573 Greenfield et al. Jan 2015 B2
9032141 Bains et al. May 2015 B2
9047978 Bell et al. Jun 2015 B2
9058900 Kang Jun 2015 B2
9087554 Park Jul 2015 B1
9087602 Youn et al. Jul 2015 B2
9117544 Bains et al. Aug 2015 B2
9123447 Lee et al. Sep 2015 B2
9153294 Kang Oct 2015 B2
9190137 Kim et al. Nov 2015 B2
9190139 Jung et al. Nov 2015 B2
9251885 Greenfield et al. Feb 2016 B2
9286964 Halbert et al. Mar 2016 B2
9299457 Chun et al. Mar 2016 B2
9311985 Lee et al. Apr 2016 B2
9324398 Jones et al. Apr 2016 B2
9384821 Bains et al. Jul 2016 B2
9390782 Best et al. Jul 2016 B2
9412432 Narui et al. Aug 2016 B2
9424907 Fujishiro Aug 2016 B2
9484079 Lee Nov 2016 B2
9514850 Kim Dec 2016 B2
9570143 Lim et al. Feb 2017 B2
9646672 Kim et al. May 2017 B1
9672889 Lee et al. Jun 2017 B2
9685240 Park Jun 2017 B1
9691466 Kim Jun 2017 B1
9697913 Mariani et al. Jul 2017 B1
9734887 Tavva Aug 2017 B1
9741409 Jones et al. Aug 2017 B2
9741447 Akamatsu Aug 2017 B2
9747971 Bains et al. Aug 2017 B2
9761297 Tomishima Sep 2017 B1
9786351 Lee et al. Oct 2017 B2
9799391 Wei Oct 2017 B1
9805782 Liou Oct 2017 B1
9805783 Ito et al. Oct 2017 B2
9818469 Kim et al. Nov 2017 B1
9847118 Won Dec 2017 B1
9865326 Bains et al. Jan 2018 B2
9865328 Desimone et al. Jan 2018 B1
9922694 Akamatsu Mar 2018 B2
9934143 Bains et al. Apr 2018 B2
9953696 Kim Apr 2018 B2
10032501 Ito et al. Jul 2018 B2
10083737 Bains et al. Sep 2018 B2
10090038 Shin Oct 2018 B2
10134461 Bell et al. Nov 2018 B2
10147472 Jones et al. Dec 2018 B2
10153031 Akamatsu Dec 2018 B2
10170174 Ito et al. Jan 2019 B1
10176860 Mylavarapu Jan 2019 B1
10210925 Bains et al. Feb 2019 B2
10297305 Moon et al. May 2019 B1
10339994 Ito et al. Jul 2019 B2
10381327 Ramachandra et al. Aug 2019 B2
10387276 Ryu et al. Aug 2019 B2
10446216 Oh et al. Oct 2019 B2
10490251 Wolff Nov 2019 B2
10600462 Augustine et al. Mar 2020 B2
10600491 Chou et al. Mar 2020 B2
10607686 Akamatsu Mar 2020 B2
10629286 Lee et al. Apr 2020 B2
10679710 Hirashima et al. Jun 2020 B2
10705900 Jin Jul 2020 B2
10770127 Shore et al. Sep 2020 B2
10811066 Jones et al. Oct 2020 B2
10832792 Penney et al. Nov 2020 B1
10861519 Jones et al. Dec 2020 B2
10867660 Akamatsu Dec 2020 B2
10930335 Beil et al. Feb 2021 B2
10943636 Wu et al. Mar 2021 B1
10950289 Ito et al. Mar 2021 B2
10964378 Ayyapureddi et al. Mar 2021 B2
11011215 Parry et al. May 2021 B1
11043254 Enomoto et al. Jun 2021 B2
11139015 Brown et al. Oct 2021 B2
11152050 Morohashi et al. Oct 2021 B2
11158364 Penney et al. Oct 2021 B2
11158373 Penney et al. Oct 2021 B2
11200942 Jenkinson et al. Dec 2021 B2
11222682 Enomoto et al. Jan 2022 B1
11257535 Shore et al. Feb 2022 B2
11264096 Schreck et al. Mar 2022 B2
11322192 Morohashi et al. May 2022 B2
11361808 Bell et al. Jun 2022 B2
11386946 Ayyapureddi et al. Jul 2022 B2
20010008498 Ooishi Jul 2001 A1
20020007476 Kishino Jan 2002 A1
20020078311 Matsuzaki et al. Jun 2002 A1
20020080677 Watanabe et al. Jun 2002 A1
20020181301 Takahashi et al. Dec 2002 A1
20030063512 Takahashi et al. Apr 2003 A1
20030067825 Shimano et al. Apr 2003 A1
20030090400 Barker May 2003 A1
20030123301 Jang et al. Jul 2003 A1
20030193829 Morgan et al. Oct 2003 A1
20030231540 Lazar et al. Dec 2003 A1
20040004856 Sakimura et al. Jan 2004 A1
20040008544 Shinozaki et al. Jan 2004 A1
20040022093 Lee Feb 2004 A1
20040052142 Ikehashi et al. Mar 2004 A1
20040114446 Takahashi et al. Jun 2004 A1
20040130959 Kawaguchi Jul 2004 A1
20040174757 Garverick et al. Sep 2004 A1
20040184323 Mori et al. Sep 2004 A1
20040213035 Cavaleri et al. Oct 2004 A1
20040218431 Chung et al. Nov 2004 A1
20050041502 Perner Feb 2005 A1
20050105315 Shin et al. May 2005 A1
20050243629 Lee Nov 2005 A1
20050265104 Remakius et al. Dec 2005 A1
20060083099 Bae et al. Apr 2006 A1
20060087903 Riho et al. Apr 2006 A1
20060176744 Stave Aug 2006 A1
20060262616 Chen Nov 2006 A1
20070008799 Dono et al. Jan 2007 A1
20070014174 Ohsawa Jan 2007 A1
20070028068 Golding et al. Feb 2007 A1
20070030746 Best et al. Feb 2007 A1
20070033339 Best et al. Feb 2007 A1
20070133330 Ohsawa Jun 2007 A1
20070230264 Eto Oct 2007 A1
20070237016 Miyamoto et al. Oct 2007 A1
20070297252 Singh Dec 2007 A1
20080028260 Oyagi et al. Jan 2008 A1
20080031068 Yoo et al. Feb 2008 A1
20080062742 Wang Mar 2008 A1
20080126893 Harrand et al. May 2008 A1
20080130394 Dono et al. Jun 2008 A1
20080181048 Han Jul 2008 A1
20080224742 Pomichter Sep 2008 A1
20080253212 Iida et al. Oct 2008 A1
20080266990 Loeffler Oct 2008 A1
20080288720 Atwal et al. Nov 2008 A1
20080301362 Cavanna et al. Dec 2008 A1
20080313494 Hummler et al. Dec 2008 A1
20080316845 Wang et al. Dec 2008 A1
20090021999 Tanimura et al. Jan 2009 A1
20090059641 Jeddeloh Mar 2009 A1
20090077571 Gara et al. Mar 2009 A1
20090161457 Wakimoto Jun 2009 A1
20090168571 Pyo et al. Jul 2009 A1
20090185440 Lee Jul 2009 A1
20090201752 Riho et al. Aug 2009 A1
20090213675 Shino Aug 2009 A1
20090251971 Futatsuyama Oct 2009 A1
20090296510 Lee et al. Dec 2009 A1
20100005217 Jeddeloh Jan 2010 A1
20100005376 Laberge et al. Jan 2010 A1
20100054011 Kim Mar 2010 A1
20100074042 Fukuda et al. Mar 2010 A1
20100080074 Ohmaru et al. Apr 2010 A1
20100110809 Kobayashi et al. May 2010 A1
20100110810 Kobayashi May 2010 A1
20100131812 Mohammad May 2010 A1
20100157693 Iwai et al. Jun 2010 A1
20100182863 Fukiage Jul 2010 A1
20100329069 Ito et al. Dec 2010 A1
20110026290 Noda et al. Feb 2011 A1
20110051530 Kushida Mar 2011 A1
20110055495 Remaklus, Jr. et al. Mar 2011 A1
20110069572 Lee et al. Mar 2011 A1
20110122987 Neyer May 2011 A1
20110216614 Hosoe Sep 2011 A1
20110225355 Kajigaya Sep 2011 A1
20110286271 Chen Nov 2011 A1
20110310648 Iwamoto et al. Dec 2011 A1
20110317462 Gyllenhammer et al. Dec 2011 A1
20120014199 Narui Jan 2012 A1
20120059984 Kang et al. Mar 2012 A1
20120151131 Kilmer et al. Jun 2012 A1
20120213021 Riho et al. Aug 2012 A1
20120254472 Ware et al. Oct 2012 A1
20130003467 Klein Jan 2013 A1
20130003477 Park et al. Jan 2013 A1
20130057173 Yao et al. Mar 2013 A1
20130107623 Kavalipurapu et al. May 2013 A1
20130173971 Zimmerman Jul 2013 A1
20130254475 Perego et al. Sep 2013 A1
20130279284 Jeong Oct 2013 A1
20130304982 Jung et al. Nov 2013 A1
20140006703 Bains et al. Jan 2014 A1
20140006704 Greenfield et al. Jan 2014 A1
20140013169 Kobla et al. Jan 2014 A1
20140013185 Kobla et al. Jan 2014 A1
20140050004 Mochida Feb 2014 A1
20140078841 Chopra Mar 2014 A1
20140078842 Oh et al. Mar 2014 A1
20140078845 Song Mar 2014 A1
20140089576 Bains et al. Mar 2014 A1
20140095780 Bains et al. Apr 2014 A1
20140095786 Moon et al. Apr 2014 A1
20140119091 You et al. May 2014 A1
20140136763 Li et al. May 2014 A1
20140143473 Kim et al. May 2014 A1
20140177370 Halbert et al. Jun 2014 A1
20140177376 Song Jun 2014 A1
20140189215 Kang et al. Jul 2014 A1
20140189228 Greenfield et al. Jul 2014 A1
20140219043 Jones et al. Aug 2014 A1
20140237307 Kobla et al. Aug 2014 A1
20140241099 Seo et al. Aug 2014 A1
20140254298 Dally Sep 2014 A1
20140269021 Yang et al. Sep 2014 A1
20140281206 Crawford et al. Sep 2014 A1
20140281207 Mandava et al. Sep 2014 A1
20140292375 Angelini et al. Oct 2014 A1
20140293725 Best et al. Oct 2014 A1
20140317344 Kim Oct 2014 A1
20140355332 Youn et al. Dec 2014 A1
20140369109 Lee et al. Dec 2014 A1
20140379978 Kim et al. Dec 2014 A1
20150049567 Chi Feb 2015 A1
20150055420 Bell et al. Feb 2015 A1
20150078112 Huang Mar 2015 A1
20150089326 Joo et al. Mar 2015 A1
20150155027 Abe et al. Jun 2015 A1
20150162067 Kim et al. Jun 2015 A1
20150170728 Jung et al. Jun 2015 A1
20150199126 Jayasena et al. Jul 2015 A1
20150206572 Lim et al. Jul 2015 A1
20150213872 Mazumder et al. Jul 2015 A1
20150213877 Darel Jul 2015 A1
20150228341 Watanabe et al. Aug 2015 A1
20150243339 Bell et al. Aug 2015 A1
20150255140 Song Sep 2015 A1
20150262652 Igarashi Sep 2015 A1
20150279441 Greenberg et al. Oct 2015 A1
20150279442 Hwang Oct 2015 A1
20150294711 Gaither Oct 2015 A1
20150340077 Akamatsu Nov 2015 A1
20150356048 King Dec 2015 A1
20160019940 Jang et al. Jan 2016 A1
20160027498 Ware et al. Jan 2016 A1
20160027531 Jones et al. Jan 2016 A1
20160027532 Kim Jan 2016 A1
20160042782 Narui et al. Feb 2016 A1
20160078845 Lin et al. Mar 2016 A1
20160078911 Fujiwara Mar 2016 A1
20160078918 Hyun et al. Mar 2016 A1
20160086649 Hong et al. Mar 2016 A1
20160086651 Kim Mar 2016 A1
20160093402 Kitagawa et al. Mar 2016 A1
20160099043 Tu Apr 2016 A1
20160111140 Joo et al. Apr 2016 A1
20160125931 Doo et al. May 2016 A1
20160133314 Hwang et al. May 2016 A1
20160140243 Adams et al. May 2016 A1
20160163372 Lee et al. Jun 2016 A1
20160172056 Huh Jun 2016 A1
20160180917 Chishti et al. Jun 2016 A1
20160180921 Jeong Jun 2016 A1
20160196863 Shin et al. Jul 2016 A1
20160202926 Benedict Jul 2016 A1
20160211008 Benedict et al. Jul 2016 A1
20160225433 Bains et al. Aug 2016 A1
20160225461 Tuers et al. Aug 2016 A1
20160336060 Shin Nov 2016 A1
20160343423 Shido Nov 2016 A1
20170011792 Oh et al. Jan 2017 A1
20170076779 Bains et al. Mar 2017 A1
20170092350 Halbert et al. Mar 2017 A1
20170117030 Fisch et al. Apr 2017 A1
20170133085 Kim et al. May 2017 A1
20170139641 Cha et al. May 2017 A1
20170140807 Sun et al. May 2017 A1
20170140811 Joo May 2017 A1
20170148504 Saifuddin et al. May 2017 A1
20170177246 Miller et al. Jun 2017 A1
20170186481 Oh et al. Jun 2017 A1
20170213586 Kang et al. Jul 2017 A1
20170221546 Loh et al. Aug 2017 A1
20170263305 Cho Sep 2017 A1
20170287547 Ito et al. Oct 2017 A1
20170323675 Jones et al. Nov 2017 A1
20170352399 Yokoyama et al. Dec 2017 A1
20170371742 Shim et al. Dec 2017 A1
20170372767 Kang et al. Dec 2017 A1
20180005690 Morgan et al. Jan 2018 A1
20180025770 Ito et al. Jan 2018 A1
20180025772 Lee et al. Jan 2018 A1
20180060194 Ryu et al. Mar 2018 A1
20180061483 Morgan Mar 2018 A1
20180082737 Lee Mar 2018 A1
20180084314 Koyama Mar 2018 A1
20180090199 Kim et al. Mar 2018 A1
20180096719 Tomishima et al. Apr 2018 A1
20180102776 Chandrasekar et al. Apr 2018 A1
20180107417 Shechter et al. Apr 2018 A1
20180114561 Fisch et al. Apr 2018 A1
20180114565 Lee Apr 2018 A1
20180158504 Akamatsu Jun 2018 A1
20180182445 Lee et al. Jun 2018 A1
20180203621 Ahn et al. Jul 2018 A1
20180218767 Woiff Aug 2018 A1
20180261268 Hyun et al. Sep 2018 A1
20180294028 Lee et al. Oct 2018 A1
20180308539 Ito et al. Oct 2018 A1
20180341553 Koudele et al. Nov 2018 A1
20180366182 Hyun et al. Dec 2018 A1
20190013059 Akamatsu Jan 2019 A1
20190043558 Suh et al. Feb 2019 A1
20190051344 Bell et al. Feb 2019 A1
20190066759 Nale Feb 2019 A1
20190066762 Koya et al. Feb 2019 A1
20190088315 Saenz et al. Mar 2019 A1
20190088316 Inuzuka et al. Mar 2019 A1
20190096492 Cai et al. Mar 2019 A1
20190103147 Jones et al. Apr 2019 A1
20190130961 Bell et al. May 2019 A1
20190139599 Ito et al. May 2019 A1
20190147941 Qin et al. May 2019 A1
20190147964 Yun et al. May 2019 A1
20190161341 Howe May 2019 A1
20190172518 Chen et al. Jun 2019 A1
20190196730 Imran Jun 2019 A1
20190198078 Hoang et al. Jun 2019 A1
20190198090 Lee Jun 2019 A1
20190198099 Mirichigni et al. Jun 2019 A1
20190205253 Roberts Jul 2019 A1
20190207736 Ben-tovim et al. Jul 2019 A1
20190228810 Jones et al. Jul 2019 A1
20190228813 Nale et al. Jul 2019 A1
20190228815 Morohashi et al. Jul 2019 A1
20190237132 Morohashi Aug 2019 A1
20190243703 Cha et al. Aug 2019 A1
20190252020 Rios et al. Aug 2019 A1
20190267077 Ito et al. Aug 2019 A1
20190279706 Kim Sep 2019 A1
20190333573 Shin et al. Oct 2019 A1
20190348100 Smith et al. Nov 2019 A1
20190348102 Smith et al. Nov 2019 A1
20190348103 Jeong et al. Nov 2019 A1
20190348107 Shin et al. Nov 2019 A1
20190349545 Koh et al. Nov 2019 A1
20190362774 Kuramori et al. Nov 2019 A1
20190371391 Cha et al. Dec 2019 A1
20190385661 Koo et al. Dec 2019 A1
20190385667 Morohashi et al. Dec 2019 A1
20190386557 Wang et al. Dec 2019 A1
20200005857 Ito et al. Jan 2020 A1
20200075106 Tokutomi et al. Mar 2020 A1
20200082873 Wolff Mar 2020 A1
20200090760 Purahmad et al. Mar 2020 A1
20200135263 Brown et al. Apr 2020 A1
20200194050 Akamatsu Jun 2020 A1
20200194056 Sakurai et al. Jun 2020 A1
20200201380 Murali et al. Jun 2020 A1
20200202921 Morohashi et al. Jun 2020 A1
20200211626 Hiscock et al. Jul 2020 A1
20200211633 Okuma Jul 2020 A1
20200211636 Hiscock et al. Jul 2020 A1
20200251158 Shore et al. Aug 2020 A1
20200294576 Brown et al. Sep 2020 A1
20200302994 Enomoto et al. Sep 2020 A1
20200321049 Meier et al. Oct 2020 A1
20200349995 Shore et al. Nov 2020 A1
20200365208 Schreck et al. Nov 2020 A1
20200381040 Penney et al. Dec 2020 A1
20200395072 Penney et al. Dec 2020 A1
20210005229 Hiscock et al. Jan 2021 A1
20210005240 Brown et al. Jan 2021 A1
20210020223 Ayyapureddi et al. Jan 2021 A1
20210020262 Penney et al. Jan 2021 A1
20210026732 Park et al. Jan 2021 A1
20210057012 Ayyapureddi et al. Feb 2021 A1
20210057013 Jenkinson et al. Feb 2021 A1
20210057021 Wu et al. Feb 2021 A1
20210065755 Kim et al. Mar 2021 A1
20210065764 Cheng et al. Mar 2021 A1
20210142852 Schreck et al. May 2021 A1
20210158851 Ayyapureddi et al. May 2021 A1
20210158860 Wu et al. May 2021 A1
20210158861 Jeong et al. May 2021 A1
20210201984 Khasawneh et al. Jul 2021 A1
20210241810 Hollis et al. Aug 2021 A1
20210265504 Ishizu et al. Aug 2021 A1
20210343324 Brown et al. Nov 2021 A1
20210350844 Morohashi et al. Nov 2021 A1
20210398592 Penney et al. Dec 2021 A1
20210407583 Penney et al. Dec 2021 A1
20220165347 Pan May 2022 A1
Foreign Referenced Citations (30)
Number Date Country
1195173 Oct 1998 CN
101038785 Sep 2007 CN
101067972 Nov 2007 CN
101331554 Dec 2008 CN
101458658 Jun 2009 CN
101622607 Jan 2010 CN
102113058 Jun 2011 CN
102483952 May 2012 CN
104350546 Feb 2015 CN
106710621 May 2017 CN
107871516 Apr 2018 CN
H0773682 Mar 1995 JP
2005-216429 Aug 2005 JP
2011-258259 Dec 2011 JP
4911510 Jan 2012 JP
2013-004158 Jan 2013 JP
20150002112 Jan 2015 KR
20150002783 Jan 2015 KR
20170058022 May 2017 KR
1020130064940 Jun 2018 KR
1020180085184 Jul 2018 KR
20190048049 May 2019 KR
201412.0477 Aug 2014 WO
2015030991 Mar 2015 WO
2017171927 Oct 2017 WO
2019222960 Nov 2019 WO
2020010010 Jan 2020 WO
2020191222 Sep 2020 WO
2021003085 Jan 2021 WO
2022108808 May 2022 WO
Non-Patent Literature Citations (83)
Entry
US 11,264,075 B2, 03/2022, Bell et al. (withdrawn)
U.S. Appl. No. 17/444,925 titled “Apparatuses and Methods for Countering Memory Attacks” filed Aug. 12, 2021.
U.S. Appl. No. 17/456,849 titled “Apparatuses, Systems, and Methods for Main Sketch and Slim Sketch Circuitfor Row Address Tracking” filed Nov. 29, 2021.
U.S. Appl. No. 17/470,883 titled “Apparatuses and Methods for Tracking Victim Rows” filed Sep. 9, 2021.
U.S. Appl. No. 17/565,119 titled “Apparatuses and Methods for Row Hammer Counter Mat” filed Dec. 29, 2021.
U.S. Appl. No. 17/565,187 titled “Apparatuses and Methods for Row Hammer Counter Mat” filed Dec. 29, 2021.
Application No. PCT/US20/23689, titled “Semiconductor Device Having Cam That Stores Address Signals”, dated Mar. 19, 2020, pp. all.
U.S. Appl. No. 15/884,192 entitled ‘Semiconductor Device Performing Row Hammer Refresh Operation’ filed Jan. 30, 2018, pp. all.
U.S. Appl. No. 16/797,658, titles “Apparatuses and Methods for Controlling Refresh Operations”, filed Feb. 21, 2020, pp. all.
U.S. Appl. No. 16/818,981 titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Mar. 13, 2020, pp. all.
U.S. Appl. No. 16/824,460, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, dated Mar. 19, 2020, pp. all.
U.S. Appl. No. 16/783,063, titled “Apparatus and Methods for Triggering Row Hammer Address Sampling”, filed Jul. 2, 2018, pp. all.
U.S. Appl. No. 16/783,063, titled “Apparatus and Methods for Triggering Row Hammer Address Sampling”, dated Feb. 5, 2020, pp. all.
U.S. Appl. No. 16/805,197, titled “Apparatuses and Methods for Calculating Row Hammer Refresh Addresses in a Semiconductor Device”, dated Feb. 28, 2020, pp. ail.
U.S. Appl. No. 16/232,837, titled “Apparatuses and Methods for Distributed Targeted Refresh Operations”, filed Dec. 26, 2018, pp. all.
U.S. Appl. No. 16/818,989, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, dated Mar. 13, 2020, pp. all.
U.S. Appl. No. 16/268,818, titled “Apparatuses and Methods for Managing Row Access Counts”, filed Feb. 6, 2019, pp. all.
U.S. Appl. No. 16/286,187 titled “Apparatus and Methods for Memory Mat Refresh Sequencing” filed Feb. 26, 2019, pp. all.
U.S. Appl. No. 16/084,119, titled “Apparatuses and Methods for Pure-Time, Self Adopt Sampling for Row Hammer Refresh Sampling”, filed Sep. 11, 2018, pp. all.
U.S. Appl. No. 16/886,284 titled “Apparatuses and Methods for Access Based Refresh Timing” filed May 28, 2020, pp. all.
U.S. Appl. No. 16/886,284, titled “Apparatuses and Methods for Access Based Refresh Timing”, dated May 28, 2020, pp. all.
U.S. Appl. No. 16/358,587, titled “Semiconductor Device Having Cam That Stores Address Signals”, dated Mar. 19, 2019, pp. all.
U.S. Appl. No. 16/936,297 titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Apr. 4, 2019; pp. all.
U.S. Appl. No. 16/936,297 titled “Apparatuses and Methods for Managing Row Access Counts” filed Jul. 22, 2020, pp. all.
U.S. Appl. No. 16/428,625 titled “Apparatuses, Systems, and Methods for a Content Addressable Memory Cell” filed May 14, 2019, pp. all.
U.S. Appl. No. 16/428,625 titled “Apparatuses and Methods for Tracking Victim Rows” filed May 31, 2019, pp. all.
U.S. Appl. No. 16/513,400 titled “Apparatuses and Methods for Tracking Row Accesses” filed Jul. 16, 2019, pp. all.
U.S. Appl. No. 16/548,027 titled “Apparatuses, Systems, and Methods for Analog Row Access Rate Determination” filed Aug. 22, 2019, pp. all.
U.S. Appl. No. 16/549,942 titled “Apparatuses and Methods for Lossy Row Access Counting” filed Aug. 23, 2019, pp. all.
U.S. Appl. No. 16/549,411 titled “Apparatuses and Methods for Analog Row Access Tracking” filed Aug. 20, 2019, pp. all.
U.S. Appl. No. 16/549,411 titled “Apparatuses and Methods for Dynamic Refresh Allocation” filed Aug. 23, 2019, pp. all.
International Application No. PCT/US19/40169 titled “Apparatus and Methods for Triggering Row Hammer Address Sampling” filed Jul. 1, 2019, pp. all.
International Application No. PCT/US19/64028, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, dated Dec. 2, 2019, pp. all.
International Application No. PCT/US20/26689, titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations”, dated Apr. 3, 2020, pp. all.
International Application No. PCT/US20/40077, titled “Apparatuses and Methods for Monitoring Word Line Accesses”, dated Jun. 29, 2020, pp. all.
International Search Report/Written Opinion dated Jul. 8, 2020 for PCT Application No. PCT/US2020/023689, 12 pgs.
U.S. Appl. No. 16/788,657, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, dated Feb. 12, 2020, pp. all.
U.S. Appl. No. 16/425,525 entitled ‘Apparatuses and Methods for Detecting a Row Hammer Attack With a Bandpass Filter’ filed Jan. 26, 2018, pp. all.
U.S. Appl. No. 16/425,525 titled “Apparatuses And Methods For Tracking All Row Accesses” filed May 29, 2019, pp. all.
U.S. Appl. No. 16/427,140 titled “Apparatuses And Methods For Priority Targeted Refresh Operations” filed May 30, 2019, pp. all.
U.S. Appl. No. 16/427,140 titled “Apparatuses And Methods For Tracking Row Access Counts Between Multiple Register Stacks” filed May 30, 2019, pp. all.
U.S. Appl. No. 16/437,811 titled “Apparatuses, Systems, And Methods For Determining Extremum Numerical Values” filed Jun. 11, 2019, pp. all.
U.S. Appl. No. 16/655,110 titled “Apparatuses and Methods for Controlling Targeted Refresh Rates” filed Aug. 12, 2019, pp. all.
U.S. Appl. No. 16/655,110 titled “Apparatuses and Methods for Dynamic Targeted Refresh Steals” filed Oct. 16, 2019, pp. all.
U.S. Appl. No. 17/168,036 titled “Apparatuses, Systems, and Methods for a Content Addressable Memory Cell” filed Jan. 21, 2021, pp. all.
U.S. Appl. No. 17/168,036 titled “Apparatuses and Methods for Analog Row Access Tracking” filed Feb. 4, 2021, pp. all.
U.S. Appl. No. 15/789,897 titled “Apparatuses, Systems, and Methods for Analog Row Access Rate Determination” filed Feb. 8, 2021, pp. all.
U.S. Appl. No. 15/789,897, entitled “Apparatus and Methods for Refreshing Memory”, filed Oct. 20, 2017; pp. all.
U.S. Appl. No. 15/796,340, entitled: “Apparatus and Methods for Refreshing Memory” filed Oct. 27, 2017; pp. all.
U.S. Appl. No. 16/012,679, titled “Apparatuses and Methods for Multiple Row Hammer Refresh Address Sequences”, filed Jun. 19, 2018, pp. all.
U.S. Appl. No. 16/020,863, titled “Semiconductor Device”, filed Jun. 27, 2018, pp. all.
U.S. Appl. No. 16/160,801 titled “Apparatuses and Methods for Controlling Refresh Operations” filed Aug. 24, 2018, pp. all.
U.S. Appl. No. 16/160,801, titled “Apparatuses and Methods for Selective Row Refreshes” filed Oct. 15, 2018, pp. all.
U.S. Appl. No. 16/208,217, titled “Apparatuses and Methods for Access Based Refresh Timing”, filed Oct. 31, 2018, pp. all.
U.S. Appl. No. 16/208,217, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Dec. 3, 2018, pp. all.
U.S. Appl. No. 16/230,300, titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Dec. 21, 2018, pp. all.
U.S. Appl. No. 16/237,291 titled “Apparatuses and Methods for Selective Row Refreshes”, filed Dec. 21, 2018, pp. all.
U.S. Appl. No. 16/237,291, titled “Apparatus and Methods for Refreshing Memory”, filed Dec. 31, 2018, pp. all.
U.S. Appl. No. 16/374,623, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Mar. 1, 2019, pp. all.
U.S. Appl. No. 16/374,623, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Apr. 3, 2019, pp. all.
U.S. Appl. No. 16/427,330 title “Semiconductor Device” filed May 14, 2019, pp. all.
U.S. Appl. No. 16/427,330 titled “Apparatuses and Methods for Storing Mctim Row Data” filed May 30, 2019, pp. all.
U.S. Appl. No. 16/431,641 titled “Apparatuses and Methods for Controlling Steal Rates” filed Jun. 4, 2019, pp. all.
U.S. Appl. No. 16/682,606, titled “Apparatuses And Methods For Distributing Row Hammer Refresh Events Across A Memory Device”, filed Nov. 13, 2019, pp. all.
U.S. Appl. No. 17/102,266, titled “Apparatuses and Methods for Tracking Word Line Accesses”, dated Nov. 23, 2020, pp. all.
U.S. Appl. No. 15/876,566 entitled ‘Apparatuses and Methods for Calculating Row Hammer Refresh Addresses in a Semiconductor Device’ filed Jan. 22, 2018, pp. all.
International Application No. PCT/US20/32684, titled “Apparatuses, Systems, and Methods for a Content Addressable Memory Cell”, dated May 13, 2020, pp. all.
U.S. Appl. No. 15/656,084, titled “Apparatuses And Methods For Targeted Refreshing Of Memory”, filed Jul. 21, 2017, pp. all.
U.S. Appl. No. 16/459,520 titled “Apparatuses and Methods for Monitoring Word Line Accesses”, filed Jul. 1, 2019, pp. all.
PCT Application No. PCT/US18/55821 “Apparatus and Methods for Refreshing Memory” filed Oct. 15, 2018, pp. all.
U.S. Appl. No. 15/715,846, entitled “Semiconductor Device”, filed Sep. 26, 2017, pp. all.
U.S. Appl. No. 15/888,993, entitled “Apparatuses and Methods for Controlling Refresh Operations”, filed Feb. 5, 2018, pp. all.
U.S. Appl. No. 16/190,627 titled “Apparatuses and Methods for Targeted Refreshing of Memory” filed Nov. 14, 2018, pp. all.
U.S. Appl. No. 15/281,818, entitled: “Semiconductor Device” filed Sep. 30, 2016, pp. all.
Kim, et al., “Flipping Bits in MemoryWithout Accessing Them: An Experimental Study of DRAM Disturbance Errors”, IEEE, Jun. 2014, 12 pgs.
Stout, Thomas et al., “Voltage Source Based Voltage-to-Time Converter”, IEEE, downloaded Jul. 2020, p. All.
U.S. Appl. No. 17/007,069 titled “Apparatuses and Methods for Providing Refresh Addresses” filed Aug. 31, 2020, pp. all.
U.S. Appl. No. 17/375,817 titled “Apparatuses and Methods for Monitoring Word Line Accesses” filed Jul. 14, 2021, pp. all.
U.S. Appl. No. 17/443,056 titled “Apparatuses and Methods for Multiple Row Hammer Refresh Address Sequences” filed Jul. 20, 2021, pp. all.
U.S. Appl. No. 17/060,403 titled “Apparatuses and Methods for Adjusting Victim Data” filed Oct. 1, 2020, pp. all.
U.S. Appl. No. 17/153,555 titled “Apparatuses and Methods for Dynamically Allocated Aggressor Detection” filed Jan. 20, 2021, pp. all.
U.S. Appl. No. 17/201,941 titled “Apparatuses and Methods for Sketch Circuits for Refresh Binning” filed Mar. 15, 2021, pp. all.
U.S. Appl. No. 16/459,507 titled “Apparatuses and Methods for Adjusting Victim Data”, filed Jul. 1, 2019, pp. all.
Related Publications (1)
Number Date Country
20210225432 A1 Jul 2021 US
Divisions (1)
Number Date Country
Parent 16358587 Mar 2019 US
Child 17301533 US