The present application claims priority from Japanese Patent Application No. 2020-186941 filed on Nov. 10, 2020, the content of which is hereby incorporated by reference into this application.
The present invention relates to a semiconductor device, for example, a semiconductor device having a plurality of non-volatile memory cells.
In recent years, development of artificial intelligence has been remarkable, and various devices equipped with artificial intelligence have begun to spread. There are many methods known for artificial intelligence called machine learning, and one of them is a method using a neural network. The neural network is a network which represents, by a mathematical model of artificial neurons, nerve cells (neurons) and a neural circuit network composed of their connections in the human brain.
For example, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2018-195285) discloses that a non-volatile memory cell such as ReRAM (resistive random access memory) is used as a device for realizing a neural network circuit
Further, Patent Document 2 (Japanese Unexamined Patent Application Publication No. 2006-100531) discloses a flash memory or EEPROM (Electrically Erasable and Programmable Read Only Memory) as an example of a non-volatile memory cell, and discloses a MONOS (Metal Oxide Nitride Oxide Semiconductor) type memory cell.
In neurons, information is transmitted by using electrical signals as a means of transmission. At that time, ease of information transmission changes depending on a bond strength (strength of connection) of a synapse to be a bonding portion of the information transmission.
When a memory cell array like Patent Document 2, in which MONOS type memory cells are arranged in an array, is used to attempt to construct a neural network circuit, each memory cell needs to be weighted in order to configure synapses having bond strengths different in strength. For doing so, a bitwise write operation and erase operation are required.
As shown in
Accordingly, the erase operation is simultaneously performed to the plurality of memory cells MC connected to the same control gate electrode CG and memory gate electrode MG, and is performed as a so-called word line batch erase. That is, since the bitwise erase operation cannot be performed, each memory cell MC cannot be weighted.
A main purpose of the present application is to realize the synapses in the neural network circuit by using the plurality non-volatile memory cells MC. Other problems and novel features will be apparent from descriptions of the present specification and the accompanying drawings.
According to one embodiment, a semiconductor device has a memory cell array in which a plurality of non-volatile memory cells are arranged in an array. Each of the plurality of non-volatile memory cells has a first gate dielectric film, a second gate dielectric film having a charge storage layer, a first gate electrode, a second gate electrode, a drain region, and a source region. Here, the plurality of first gate electrodes and the plurality of second gate electrodes each extend in a first direction in a plan view and are adjacent to each other in a second direction intersecting with the first direction in a plan view. Each of the plurality of drain regions is electrically connected to a bit line extending in the first direction, and each of the plurality of source regions is electrically connected to a source line extending in the second direction.
According to one embodiment, the synapses in the neural network circuit can be realized by using the plurality of non-volatile memory cells.
Hereinafter, an embodiment will be described in detail with reference to the drawings. Incidentally, through all the drawings for explaining the embodiment, members having the same function are denoted by the same reference numerals, and a repetitive description thereof will be omitted. Further, in the following embodiment, the description of the same or similar parts will not be repeated in principle except when being particularly necessary.
In addition, a X direction, a Y direction, and a Z direction described in the present application intersect with each other, and are orthogonal to each other. In the present application, the Z direction will be described as a vertical direction, a height direction, or a thickness direction of a certain structure. Further, the expression “plan view” used in the present application means that a surface configured in the X direction and the Y direction is viewed from the Z direction.
A concept of a neural network will be described below with reference to
As shown in
In order to observe an image of
When the “input x” is inputted as data to the input layer from the image, a product of the “input x” and the “weight w” is calculated as the “output y” in the output layer. As types of “input x” and “weight w” are many, their products are added and the predetermined “output y” becomes more detailed information.
In addition, in the intermediate layer, a product of a previous stage (for example, the product of the “input x” and the “weight w” from the input layer) is further multiplied by the “weight w”, thereby being weighted. As the number of intermediate layers increases, weighting is performed each time, so that the “output y” becomes more detailed information.
For example, when the image is a monkey, an “output y1” is related to information on mammals, an “output y2” is related to information on a face's shape, an “output y3” is related to information on a hand's shape, and so on, so that the respective pieces of information are related to the image and can get closer to a correct answer.
In addition, the correct answer of the image is converted into data as a “correct answer t” in advance. An “error C” can be obtained by using a difference between the “output y” and the “correct answer t”, and it can be said that as a value of the “error C” becomes small, the accurate image data can be obtained. Therefore, as the respective types of “input x” and “weight w” become many and the types of “output y” become many the more accurate image data can be obtained.
For example, when a neural network circuit C1 described below is used, it is possible to cause the “input x” to correspond to a signal of a control gate electrode CG, cause the “weight w” to correspond to a threshold voltage Vth of the non-volatile memory cell MC, and cause the “output y” to correspond to a value of a current flowing through the non-volatile memory cell MC (a value of a current flowing between a drain region and a source region).
The neural network circuit C1 is an area in which an EEPROM capable of electrically rewriting stored information is formed as a semiconductor element.
The ROM circuit C2 is a circuit, which does not write the stored information and only reads the stored information. In the ROM circuit C2, an EEPROM having substantially the same structure as that in the neural network circuit C1 can be applied as a semiconductor element.
The logic circuit C3 is an area in which a low withstand voltage transistor driven at a low voltage of about 1.5 V, having a low withstand voltage, and operating quickly is formed as a semiconductor element. For example, a CPU (Central Processing Unit) is configured by the semiconductor element of the logic circuit C3.
The RAM circuit C4 is, for example, an SRAM (Static RAM), and is an area in which a low withstand voltage transistor having a structure substantially similar to that of the logic circuit C3 is formed as a semiconductor element.
The neural network circuit C1 includes, for example, a memory cell array MCA, a word line driver C5, an input/output unit C6, a bit line selector C7, and an arithmetic circuit C8.
The word line driver C5 supplies, to the word line diver C5, a voltage supplied from outside the neural network circuit via the input/output unit C6.
The word line driver C5 is provided with a booster circuit or the like, and the booster circuit generates a voltage required for a write operation, an erase operation, or a read operation. In each operation, an appropriate voltage among the generated voltages is supplied to a plurality of control gate electrodes CG, a plurality of memory gate electrodes MG, and a plurality of source lines SL.
The bit line selector C7 includes a sense amplifier, and can read stored information of the selected non-volatile memory cell MC via the bit line BL. Further, the bit line selector C7 can select the non-volatile memory cell MC to be written or erased of the stored information via the bit line BL. The arithmetic circuit C8 can perform calculation of the stored information.
The non-volatile memory cell MC in the first embodiment is EEPROM and is a MONOS type memory cell. A memory cell array MCA is configured by arranging a plurality of non-volatile memory cells MC in an array.
As shown in
Incidentally, in the first embodiment, a transistor having the gate dielectric film GI1 and the control gate electrode CG may be referred to as a selection transistor, and a transistor having the gate dielectric film GI2 and the memory gate electrode MG may be referred to as a memory transistor.
A semiconductor substrate SUB is made of, for example, p-type silicon. A p-type well region PW is formed on the semiconductor substrate SUB.
The gate dielectric film GI1 made of, for example, silicon oxide is formed on the semiconductor substrate SUB. The control gate electrode CG made of, for example, polycrystalline silicon is formed on the gate dielectric film GI1.
Further, the gate dielectric film GI2 is formed on the semiconductor substrate SUB and on a side surface of the control gate electrode CG. The memory gate electrode MG made of, for example, polycrystalline silicon and processed into a sidewall shape is formed on the gate dielectric film GI1. The control gate electrode CG and the memory gate electrode MG are adjacent to each other in an X direction via the gate dielectric film GI2.
The gate dielectric film GI2 is composed of, for example, a laminated film, and the laminated film is composed of a silicon oxide film, a charge storage layer, and a silicon oxide film. The charge storage layer is a film provided for storing data of the memory cell MC, is a dielectric film having a trap level capable of retaining (holding) charges, and is made of for example, silicon nitride.
A sidewall spacer SW made of a dielectric film such as a silicon nitride film is formed on each side surface of the control gate electrode CG and the memory gate electrode MG. An n-type extension region EXD and an n-type diffusion region MD are formed in the semiconductor substrate SUE on a side of the control gate electrode CG, and an n-type extension region EXS and an n-type diffusion region MS are formed in the semiconductor substrate SUB on a side of the memory gate electrode MG. Each of the diffusion region MD and the diffusion region MS has a higher impurity concentration than each of the extension region EXD and the extension region EXS.
An interlayer dielectric film IL0 made of, for example, silicon oxide is formed on the semiconductor substrate SUB so as to cover such a non-volatile memory cell MC. A plurality of contact holes are formed in the interlayer dielectric film IL0, and a plurality of plugs are formed in the interlayer dielectric film IL0 by embedding, for example, a conductive film mainly composed of tungsten inside the contact holes. Among such a plurality of plugs, a plug PGD is electrically connected to the diffusion region MD, and a plug PCS is electrically connected to the diffusion region MS.
As shown in
The memory cell array MCA includes a plurality of non-volatile memory cells MC, but the plurality of control gate electrodes CG and the plurality of memory gate electrodes MG each extend in a Y direction. Then, in the conventional technique of
Consequently, in the first embodiment, the write operation and the erase operation can be performed in units of bit. Each threshold voltage Vth of the plurality of non-volatile memory cells MC (plurality of memory transistors) can be changed depending on a charge amount stored in the charge storage layer. Therefore, the write operation and the erase operation for changing the threshold voltages Vth of the plurality of non-volatile memory cells MC are individually performed to the plurality of non-volatile memory cells MC.
The respective voltage values of the write operation, the erase operation, and the read operation to the non-volatile memory cell MC are almost the same as those shown in
The respective voltages shown in
Incidentally, the voltage value is an example, is not limited to these, and can be variously changed as needed. Further, in the first embodiment, an injection of electrons into the charge storage layer in the gate dielectric film GF2 is defined as “write”, and an injection of holes (positive holes) into the charge storage layer in the gate dielectric film GF2 is defined as “erase”.
The write operation can use a wri method called an SSI (Source Side Injection) method in which writing is performed by a hot electron injection. That is, the write operation is performed by accelerating electrons from the drain region (diffusion region MD, extension region EXD) toward the source region (diffusion region MS, extension region EXS) and injecting the accelerated electrons into a charge storage layer CSL. The injected electrons are trapped at a trap level (s) in the charge storage layer and, as a result, the threshold voltage Vth of the non-volatile memory cell MC (memory transistor) rises. That is, the non-volatile memory cell MC becomes a write state.
The erase operation can use an erasing method called a BTBT (Band-To-Band Tunneling) method in which erasing is performed by a hot hole injection. That in the source region, holes are generated by a BTBT phenomenon, and are injected into the charge storage layer by acceleration due to an electric field. Consequently, the threshold voltage Vth of the non-volatile memory cell MC (memory transistor) decreases. That is, the non-volatile memory cell MC becomes an erase state.
In the read operation, the voltage Vmg is set to a value between the threshold voltag Vth of the memory transistor in the write state and a threshold voltage of the memory transistor in the erase state. Therefore, by reading a value of a current flowing between the drain region and the source region, it is possible to determine whether the non-volatile memory cell MC is in the write state or the erase state.
As described above, in the first embodiment, the values shown in
Since the respective threshold voltages Vth of the plurality of non-volatile memory cells MC are different as shown by States 1 to 9, the values of the currents flowing between the drain region and the source region in the read operations of the plurality of non-volatile memory cells MC are different for each of the plurality of non--volatile memory cells MC. That is, the threshold voltages Vth of the plurality of non-volatile memory cells MC are set to multiple stages, and the values of the respective currents flowing through the plurality of non-volatile memory cells MC are also set to multiple stages.
According to the first embodiment, the “input x”, the “weight w” and the “output y” described in
First, in the plurality of non-volatile memory cells MC, since each extension direction of the source line SL and the bit line BL is designed to be different from those in the conventional technique, the write operation and the erase operation can be performed in units of bit.
Therefore, as shown in States 1 to 9 of
Consequently, as shown in
In this way, using the plurality of non-volatile memory cells MC in the first embodiment makes it possible to realize the synapse in the neural network circuit C1.
Further, in the first embodiment, as the non-volatile memory cell MC, the MONOS type memory cell in which the dielectric film having the trap level serves as the charge storage layer has been applied. The MONOS type memory cell has fewer defective bits and can maintain longer rewrite endurance than other memory cells such as resistance change memory (ReRAM), magnetoresistive memory (MRAM) and ferroelectric memory (FeRAM). Therefore, the semiconductor device according to the first embodiment can ensure reliability for a long period of time.
In addition, as shown in
As described above, although the present invention has been specifically explained based on the above-described embodiment, the present invention is not limited to the above-described embodiment. and can be variously modified without departing from the gist thereof.
Number | Date | Country | Kind |
---|---|---|---|
2020-186941 | Nov 2020 | JP | national |