Semiconductor device

Information

  • Patent Grant
  • 6670694
  • Patent Number
    6,670,694
  • Date Filed
    Monday, July 30, 2001
    24 years ago
  • Date Issued
    Tuesday, December 30, 2003
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Loke; Steven
    • Gebremariam; Samuel A
    Agents
    • Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P.
Abstract
A surface orientation other than a (100) surface orientation is exposed to the surface portion of a silicon substrate having the (100) surface orientation, for example. A silicon epitaxial growth layer is formed only on a region containing a channel forming region on the (100) surface orientation.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2001-165581, filed May 31, 2001, the entire contents of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to a semiconductor device and more particularly to a CMOS (Complementary Metal Oxide Semiconductor) device used in an LSI (Large Scale Integrated Circuit) of high performance and low power consumption, for example.




2. Description of the Related Art




For attaining the high performance of a CMOS device, the technique for forming a non-doped epitaxial silicon layer in the channel portion to form a field effect transistor (MOSFET) is already known (for example, K. Noda, T. Uchida, T. Tatsumi, T. Aoyama, K. Nakajima, H. Miyamoto, T. Hashimoto and I. Sasaki, “0.1 μm delta doped MOSFET using post low-energy implanting selective epitaxy,” in Symp. VLSI Tech. Dig., pp. 19-20, 1994. (refer to reference document [1]), or T. Ohguro, H. Naruse, H. Sugaya, S. Nakamura, N. Sugiyama, E. Morifuji, H. Kimijima, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata and H. Iwai, “Silicon epitaxy and its application to RF IC's”, Electrochemical society proceeding vol. 99-18, pp. 123-141, 1999. (refer to reference document [2])).




It is known that the transistor with the above structure enhances the driving power and has an excellent sub-threshold characteristic and is effective for lowering a gate leakage current which causes a problem in a fine MOSFET (for example, H. S. Momose, T. Ohguro, E. Morifuji, H. Sugaya, S. Nakamura, T. Yoshitomi, H. Kimijima, T. Morimoto, F. Matsuoka, Y. Katsumata, H. Ishiuchi and H. Iwai, “Improvement of direct-tunneling gate leakage current in ultra-thin gate oxide CMOS with TiN gate electrode using non-doped selective epitaxial Si channel technique”, in IEDM Tech. Dig. pp 819-822, December, 1999. (refer to reference document [3]).




FIG.


22


A and

FIG. 22B

show a method for manufacturing a transistor with the above structure by taking a conventional CMOS device as an example.




First, as shown in

FIG. 22A

, an element isolation region


102


is formed in the surface portion of a silicon substrate


101


having a normal (100) surface orientation so as to define element regions (N-type well region


103




a,


P-type well region


103




b


). After a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surfaces of the N-type well region


103




a


and P-type well region


103




b,


arsenic and boron which are impurities are doped. Thus, a PMOS channel impurity doped region


104




a


and NMOS channel impurity doped region


104




b


are formed as channel portions each having a desired threshold voltage.




Then, after the silicon sacrificing oxide film is removed, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


101


.




Next, silicon epitaxial growth layers (non-doped epitaxial silicon layers)


105




a,




105




b


are respectively formed with a film thickness of approx. 30 nm on the PMOS channel impurity doped region


104




a


and NMOS channel impurity doped region


104




b


by use of Si


2


H


4


Cl


2


gas, for example, at the temperature of 800° C. by the reduced pressure chemical vapor deposition (RP-CVD) method. By effecting the above process, a channel portion having an extremely steep impurity concentration gradient is realized.




After this, as shown in

FIG. 22B

, the gate oxidation process is effected by a furnace oxidation method. By effecting the above gate oxidation process, oxide films used for respectively forming gate insulating films


106




a,




106




b


with the preset film thickness are formed on the silicon epitaxial growth layers


105




a,




105




b.


For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 60 minutes, an oxide film with a film thickness of 5 nm can be formed. If the furnace oxidation method is used, the gate insulating films


106




a,




106




b


with desired film thickness can be formed by adequately selecting the temperature and time.




Then, after a polysilicon film is deposited on the oxide film to a film thickness of approx. 250 nm, the polysilicon film and oxide film are patterned by anisotropic etching. Thus, gate electrodes


107




a,




107




b


having desired gate length are respectively formed together with the gate oxide films


106




a,




106




b.






Next, after preset impurity is doped, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for 20 seconds, for example. By effecting the heat treatment, the impurities in the gate electrodes


107




a,




107




b


are activated and shallow source/drain regions


108




a,




108




b


are formed on the surface portion of the PMOS channel impurity doped region


104




a


and NMOS channel impurity doped region


104




b.






After this, gate side wall portions


109




a,




109




b


and deep source/drain regions


110




a,




110




b


are formed. Thus, a PMOS transistor (P-type MOSFET) and NMOS transistor (N-type MOSFET) respectively having the silicon epitaxial growth layers


105




a,




105




b


in the channel portions thereof are completed.




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


110




a,




110




b


and the gate electrodes


107




a,




107




b


by the known technique. After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections (not shown) via contact portions (not shown).




If the N-type MOSFET is formed on the substrate of the (100) surface orientation or if the P-type MOSFET is formed on the substrate of a surface orientation such as the (110) surface orientation other than the (100) surface orientation, it is known that excellent mobility can be attained.




From the above viewpoint, attempt was made to form a MOSFET having a silicon epitaxial growth layer in the channel portion on the substrate of a surface orientation other than the (100) surface orientation. As a result, as described before, it was proved that the reliability of the MOSFET having the silicon epitaxial growth layer in the channel portion was lower than the MOSFET formed on the substrate of the (100) surface orientation and the gate leakage current was increased in comparison with that of the latter MOSFET although it had a preferable structure for enhancing the driving power and attaining the excellent sub-threshold characteristic.




Further, a MOSFET having a channel/gate insulating film interface on the substrate of the (111) surface orientation has a problem that the interface state in the interface between the gate insulating film and the silicon substrate is high and a large number of fixed charges are present in the gate insulating film. That is, the reliability of the transistor is lower than that of a MOSFET having a channel/gate insulating film interface on the substrate of the (100) surface orientation. In practice, in the case of a MOSFET having a gate insulating film of 5 nm thickness, the interface state density of the MOSFET on the substrate of the (111) surface orientation was increased to 2.2 times that of the MOSFET on the substrate of the (100) surface orientation. Further, a variation in the threshold voltage and variations in the transconductance and current driving ability are approximately twice larger.




BRIEF SUMMARY OF THE INVENTION




A semiconductor device according to an embodiment of this invention including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a first field effect transistor which has an epitaxial growth layer in the channel forming region and in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a silicon surface orientation; and a second field effect transistor which has the channel forming region having no epitaxial growth layer and in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation.




Further, a semiconductor device according to an embodiment of this invention including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a first field effect transistor which has a first channel impurity profile and in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a (100) silicon surface orientation; and a second field effect transistor which has a second channel impurity profile and in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation; wherein the first channel impurity profile provides a lower concentration in the surface portion of the channel forming region which is formed in contact with the gate insulating film in comparison with the second channel impurity profile.




Further, a semiconductor device according to an embodiment of this invention including a field effect transistor which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprise a field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film includes a first region having an epitaxial growth layer and formed on the substrate of a (100) silicon surface orientation and a second region having no epitaxial growth layer and formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation.




Further, a semiconductor device according to an embodiment of this invention including a field effect transistor which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a first field effect transistor which has an epitaxial growth layer on the source/drain region and in which a surface portion of the source/drain region formed in contact with one of a silicide layer and a metal interconnection layer is formed on the substrate of a (100) silicon surface orientation; and a second field effect transistor which has the source/drain region having no epitaxial growth layer formed thereon and in which a surface portion of the source/drain region formed in contact with one of a silicide layer and a metal interconnection layer is formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation.




Further, a semiconductor device according to an embodiment of this invention including a field effect transistor which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a field effect transistor in which a surface portion of the source/drain region formed in contact with one of a silicide layer and a metal interconnection layer includes a first region having an epitaxial growth layer and formed on the substrate of a (100) silicon surface orientation and a second region having no epitaxial growth layer and formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation.




Further, a semiconductor device according to an embodiment of this invention including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a first field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a (100) silicon surface orientation; and a second field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation; wherein the film thickness of the gate insulating film of the second field effect transistor expressed in terms of an equivalent oxide thickness is smaller than the film thickness of the gate insulating film of the first field effect transistor expressed in terms of an equivalent oxide thickness.




Further, a semiconductor device according to an embodiment of this invention including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprises a first field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a (100) silicon surface orientation; and a second field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on the substrate of a silicon surface orientation other than the (100) silicon surface orientation; wherein the gate insulating film of the first field effect transistor is constructed as a stacked film of a first insulating film formed in contact with the channel forming region and a second insulating film formed of a material or composition different from the first insulating film, the gate insulating film of the second field effect transistor is constructed as a stacked film of a third insulating film formed in contact with the channel forming region and a fourth insulating film formed of a material or composition different from the third insulating film, and the film thickness of the third insulating film expressed in terms of an equivalent oxide thickness is smaller than the film thickness of the first insulating film expressed in terms of an equivalent oxide thickness.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.





FIG. 1A

to

FIG. 1D

are cross sectional views for illustrating the steps of a method for manufacturing a CMOS device according to a first embodiment of this invention;





FIG. 2A

to

FIG. 2D

are cross sectional views for illustrating the steps of a method for manufacturing a CMOS device according to a second embodiment of this invention;





FIG. 3A

to

FIG. 3D

are cross sectional views for illustrating the steps of a method for manufacturing a different structure of the CMOS device according to the second embodiment of this invention;





FIG. 4

is a perspective view for illustrating a method for manufacturing a still different structure of the CMOS device according to the second embodiment of this invention;





FIG. 5A

to

FIG. 5D

are cross sectional views for illustrating the steps of a method for manufacturing the CMOS device shown in

FIG. 4

;





FIG. 6A

to

FIG. 6D

are cross sectional views for illustrating the steps of a method for manufacturing a CMOS device according to a third embodiment of this invention;





FIG. 7A

to

FIG. 7C

are cross sectional views showing a first example of the structure, for illustrating the steps of a method for manufacturing a CMOS device according to a fourth embodiment of this invention;





FIG. 8A

to

FIG. 8C

are cross sectional views showing a second example of the structure, for illustrating the steps of a method for manufacturing the CMOS device according to the fourth embodiment of this invention;





FIG. 9A

to

FIG. 9C

are cross sectional views showing a third example of the structure, for illustrating the steps of a method for manufacturing the CMOS device according to the fourth embodiment of this invention;





FIG. 10

is a cross sectional view showing a fourth example of the structure, for illustrating a method for manufacturing the CMOS device according to the fourth embodiment of this invention;





FIG. 11A

to

FIG. 11C

are cross sectional views showing a first example of the structure, for illustrating the steps of a method for manufacturing a CMOS device according to a fifth embodiment of this invention;





FIG. 12A

to

FIG. 12C

are cross sectional views showing a second example of the structure, for illustrating the steps of a method for manufacturing the CMOS device according to the fifth embodiment of this invention;





FIG. 13A

to

FIG. 13C

are cross sectional views showing a third example of the structure, for illustrating the steps of a method for manufacturing the CMOS device according to the fifth embodiment of this invention;





FIG. 14

is a cross sectional view showing a fourth example of the structure, for illustrating a method for manufacturing the CMOS device according to the fifth embodiment of this invention;




FIG.


15


A and

FIG. 15B

are cross sectional views showing examples of gate insulating films of MOSFETs according to a sixth embodiment of this invention;





FIG. 16

is a characteristic diagram for illustrating a variation in the film thickness of an oxide film in the wafer surface according to this invention;





FIG. 17

is a characteristic diagram for illustrating variations in the transconductance and threshold voltage of a MOSFET in the wafer surface according to this invention;




FIG.


18


A and

FIG. 18B

are characteristic diagrams for illustrating the reliability of a MOS capacitor used as an example according to this invention;





FIG. 19A

to

FIG. 19C

are cross sectional views for illustrating the steps of a method for manufacturing the CMOS device according to this invention in which a MOSFET having a thick gate oxide film formed on a substrate of a (100) surface orientation and a MOSFET having a thin gate oxide film formed on the substrate of a (111) surface orientation are formed;





FIG. 20A and 20B

are characteristic diagrams for illustrating the relation between the surface orientation and a silicon oxide film in this invention;





FIG. 21A

to

FIG. 21D

are cross sectional views showing the manufacturing steps of a CMOS device according to this invention in which MOSFETs each having a gate insulating film formed of a stacked film are formed on a substrate of (100) and (111) surface orientations, for example; and




FIG.


22


A and

FIG. 22B

are cross sectional views showing the manufacturing steps of a CMOS device, for illustrating the prior art and a problem thereof.











DETAILED DESCRIPTION OF THE INVENTION




Before explaining the embodiments of this invention, the concept of this invention is first described.




In general, epitaxial growth on a silicon substrate of (100) surface orientation makes roughness on the silicon surface smaller than on the bulk surface. However, according to information newly acquired by the inventor of this application, epitaxial growth on a silicon substrate of surface orientation other than the (100) surface orientation increases roughness on the silicon surface.




Table 1 shows the results of the surface roughness of a silicon bulk (Bulk-Si) and silicon epitaxial growth layer (Epi-Si) evaluated by use of AFM (Atomic Force Microscope).















TABLE 1









Surface









orientation





Ra (nm)




RMS (nm)











(100)




Bulk-Si




0.11




0.14






(111)





0.11




0.13






(100)




Epi-Si




0.08




0.10






(111)





0.19




0.24














In this case, Ra (least square roughness) is a square root of the mean value of squares of deflections from the central surface to the surface on the quantitative surface and RMS (arithmetical means roughness) is a mean value of absolute values of deflections from the central surface to the surface on the quantitative surface.




A variation in the roughness of the silicon surface due to the epitaxial growth is extremely strongly influenced by the silicon growth rate in the respective surface orientations. It is predicted that the reason why the results shown in Table 1 are obtained is that the epitaxial growth rate in a direction of (100) surface orientation of silicon is higher than that in a direction of other surface orientations and the epitaxial growth rate in a direction of (111) surface orientation is lower than that in a direction of other surface orientations including the (100) surface orientation. Therefore, in the case of a MOSFET having a silicon epitaxial growth layer on the substrate of the (111) surface orientation other than the (100) surface orientation in the channel portion, the reliability and the characteristic such as a gate leakage current of the transistor are degraded in comparison with the MOSFET on the substrate of the (100) surface orientation since the interface roughness increases.




Further, when a MOSFET having a silicon epitaxial growth layer in the source/drain regions is formed on the substrate of a surface orientation other than the (100) surface orientation, the characteristic of the silicide/silicon interface is degraded and a junction current increases since the roughness of the silicon interface increases.




The above problem occurs not only in the transistor on the substrate of the (111) surface orientation, but the same problem occurs in a transistor on the substrate of a surface orientation such as (110), (113), (115) on which it is known that the growth rate of silicon is lower than on the (100) surface orientation (for example, refer to C. H. J. Van den Brekel, “Growth rate anisotropy and morphology of autoepitaxial silicon films from SiCl


4


, “J of Crystal Growth, pp. 259-266, 1974, (refer to reference document [4])) or a surface orientation such as (211), (311), (511), (811), (101), (011).




There will now be described embodiments of this invention made for solving the above problem with reference to the accompanying drawings.




First Embodiment





FIG. 1A

to

FIG. 1D

show a manufacturing method a CMOS device according to a first embodiment of this invention.




First, the surface portion of a silicon substrate


11


of (100) surface orientation X is processed by a known technique such as the silicon anisotropic etching technique to expose part of the surface portion having a surface orientation (in this example, (110) surface orientation Y) other than the (100) surface orientation X. Then, an element isolation region


12


is formed in the surface portion of the silicon substrate


11


to define element regions (N-type well region


13




a,


P-type well region


13




b


). In this case, the (110) surface orientation Y is formed on the surface portion of the N-type well region


13




a


which is a forming region of a second MOSFET (P-type MOSFET) having a second channel impurity profile (refer to FIG.


1


A).




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portions of the N-type well region


13




a


and P-type well region


13




b


and then arsenic and boron which are impurities for attaining desired threshold voltages are doped into the channel portions of the N-type well region


13




a


and P-type well region


13




b.






After this, part of the silicon sacrificing oxide film is removed so as to cover only the N-type well region


13




a


with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on the N-type well region


13




a


except the P-type well region


13




b


which is the forming region of the first MOSFET (N-type MOSFET) (refer to FIG.


1


B).




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


having a first channel impurity profile is formed with a film thickness of approx. 30 nm only on the main surface of the P-type well region


13




b


which is used as the channel portion of the N-type MOSFET, for example, by use of Si


2


H


4


Cl


2


gas, at the temperature of 800° C. by the RP-CVD method. By effecting the above process, a channel portion of the N-type MOSFET formed on the silicon substrate


11


of the (100) surface orientation X and having an extremely steep impurity concentration gradient is realized.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers the N-type well region


13




a


is removed.




Then, the gate oxidation process is effected by a rapid ramp heating (RTO) method. By effecting the gate oxidation process, oxide films used for respectively forming gate insulating films


16




a,




16




b


with the preset film thickness are formed on the N-type well region


13




a


and P-type well region


13




b.


For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating films


16




a,




16




b


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating films


16




a,




16




b


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, gate electrodes


17




a,




17




b


having desired gate length are respectively formed on the N-type well region 13a and P-type well region


13




b.






Then, after preset impurity is doped, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for 20 seconds, for example, in order to diffuse and activate the doped impurity. By effecting the heat treatment, shallow source/drain regions


18


are formed on the surface portion of the P-type well region


13




b.






After this, gate side wall portions


19


of the gate electrode


17




b


and source/drain regions


20




a,




20




b


which are deeper than the shallow source/drain regions


18


are formed. As a result, an NMOS transistor (N-type MOSFET) formed on the silicon substrate


11


of the (100) surface orientation X and having the silicon epitaxial growth layer


15


in the channel portion and a PMOS transistor (P-type MOSFET) formed on the silicon substrate


11


of the (110) surface orientation Y different from the (100) surface orientation X, having no silicon epitaxial growth layer


15


in the channel portion and having the channel portion formed of the N-type well region


13




a


are completed (refer to FIG.


1


D).




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


20




a,




20




b


and the gate electrodes


17




a,




17




b.


After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections via contact portions.




Thus, in a case where the characteristic of the MOSFET on the silicon substrate


11


of the (100) surface orientation X is further enhanced, MOSFETs with extremely high reliability, small leakage current and excellent noise characteristic can be formed on the same silicon substrate


11


without damaging the advantages of the MOSFETs formed on various surface orientations other than the (100) surface orientation X by using the epitaxial channel structure.




In this embodiment, a case wherein the channel portion of the N-type MOSFET is formed on the silicon substrate


11


of the (100) surface orientation X and the P-type MOSFET is formed on the surface orientation other than the (100) surface orientation x is explained. In this case, excellent mobility can be attained in both of the N-type MOSFET and P-type MOSFET and a CMOS device with high reliability, small leakage current and excellent noise characteristic can be formed.




Further, in a case where MOSFETs of the same conductivity type are formed on the silicon substrate of (100) surface orientation and the surface orientation different from the (100) surface orientation (for example, N-type MOSFETs are formed on both of the surface orientations or P-type MOSFETs are formed on both of the surface orientations), MOSFETs with high reliability, small leakage current and excellent noise characteristic can be formed in the same manner. In this case, a MOSFET having the same conductivity type as and different threshold voltage from a MOSFET formed on the silicon substrate of the surface orientation different from the (100) surface orientation and having no silicon epitaxial growth layer can be formed together with the latter MOSFET on the same silicon substrate by forming a silicon epitaxial growth layer of low concentration only in the channel portion of the MOSFET on the silicon substrate of the (100) surface orientation.




Second Embodiment





FIG. 2A

to

FIG. 2D

show a manufacturing method of a CMOS device according to a second embodiment of this invention. In this example, a case wherein only a surface orientation other than at least a (100) surface orientation, for example, only a (110) surface orientation on a silicon substrate is covered with an insulating film and a silicon epitaxial growth layer is formed on the entire region except the (110) surface orientation is explained.




First, the surface portion of a silicon substrate


11


of (100) surface orientation X is processed by a known technique such as the silicon anisotropic etching technique to expose part of the surface portion having a (110) surface orientation Y other than the (100) surface orientation X. Then, an element isolation region


12


is formed in the surface portion of the silicon substrate


11


to define element regions (N-type well region


13




a


, P-type well region


13




b


). In this case, the (110) surface orientation Y is formed on the surface portion of the N-type well region


13




a


which is a forming region of a second MOSFET (P-type MOSFET) having a second channel impurity profile (refer to FIG.


2


A).




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portions of the N-type well region


13




a


and P-type well region


13




b


and then arsenic and boron which are impurities for attaining desired threshold voltages are doped into the channel portions of the N-type well region


13




a


and P-type well region


13




b.






After this, part of the silicon sacrificing oxide film is removed so as to cover the channel forming region of the N-type well region


13




a


which lies on the (110) surface orientation Y with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on a portion of the (110) surface orientation Y except the P-type well region


13




b


which is the forming region of the first MOSFET (N-type MOSFET) and a portion of the (100) surface orientation X on the N-type well region


13




a


(refer to FIG.


2


B).




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


having a first channel impurity profile is formed with a film thickness of approx. 30 nm on the portion of (100) surface orientation X containing at least the main surface of the P-type well region


13




b


which is used as the channel portion of the N-type MOSFET, for example, by use of Si


2


H


4


Cl


2


gas at the temperature of 800° C. by the RP-CVD method (refer to FIG.


2


C). By effecting the above process, a channel portion of the N-type MOSFET formed on the silicon substrate of the (100) surface orientation X and having an extremely steep impurity concentration gradient is realized.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers the portion of (110) surface orientation Y is removed.




Then, the gate oxidation process is effected by the RTO method. By effecting the gate oxidation process, oxide films used for respectively forming gate insulating films


16




a


,


16




b


with the preset film thickness are formed on the N-type well region


13




a


and P-type well region


13




b


. For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating films


16




a


,


16




b


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating films


16




a


,


16




b


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, gate electrodes


17




a


,


17




b


having desired gate length are respectively formed on the N-type well region


13




a


and P-type well region


13




b.






Then, after preset impurity is doped, in order to diffuse and activate the doped impurity, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for approx. 20 seconds, for example. By effecting the heat treatment, shallow source/drain regions


18


are formed on the surface portion of the P-type well region


13




b.






After this, gate side wall portions


19


of the gate electrode


17




b


and source/drain regions


20




a


,


20




b


which are deeper than the shallow source/drain regions


18


are formed. As a result, an NMOS transistor (N-type MOSFET) formed on the silicon substrate


11


of the (100) surface orientation X and having the silicon epitaxial growth layer


15


in the channel portion and a PMOS transistor (P-type MOSFET) formed on the silicon substrate of the (110) surface orientation Y different from the (100) surface orientation X, having no silicon epitaxial growth layer


15


in the channel portion and having the channel portion formed of the N-type well region


13




a


are completed (refer to FIG.


2


D).




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


20




a,




20




b


and the gate electrodes


17




a


,


17




b


. After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections via contact portions.




Thus, in the case of the present embodiment in which the silicon epitaxial growth layer


15


is formed on the portion of (100) surface orientation X except the (110) surface orientation Y, the same effect as that obtained in the CMOS device of the first embodiment can be expected. In this case, since the silicon epitaxial growth layer


15


is formed only on the silicon substrate of the (100) surface orientation X and an increase in the roughness on the silicide/silicon interface is suppressed in the source/drain regions


20




a


of the MOSFET having the channel portion on the (110) surface orientation Y, an increase in the source/drain junction leak current can be prevented.




Further, in a case where the silicide film is not formed on the source/drain regions


20




a


,


20




b,


an increase in the roughness on the interconnection contact (metal interconnection layer)/silicon interface is suppressed in the source/drain regions


20




a


of the MOSFET having the channel portion on the (110) surface orientation Y, and therefore, an increase in the source/drain junction leak current can be prevented.




Further, as shown in

FIGS. 3A

to

FIG. 3D

, the same effect can be attained by covering a source/drain region


20




a




-1


on, for example, a (111) surface orientation Z other than the (100) surface orientation X with the cover insulating film


21


after the gate electrodes


17




a


,


17




b


are formed and selectively forming silicon epitaxial growth layers


15


on the source/drain regions


20




b


of a first MOSFET on the silicon substrate of the (100) surface orientation X and a source/drain region


20




a




-2


among the source/drain regions


20




a




-1


,


20




a




-2


of a second MOSFET having a channel portion on the (111) surface orientation Z which has an exposed surface portion of (100) surface orientation X (so-called elevate source/drain structure).




FIG.


4


and

FIG. 5A

to

FIG. 5D

show examples in which at least a (100) surface orientation X and a surface orientation other than the (100) surface orientation X, for example, a (110) surface orientation Y are exposed to the surface portion of the silicon substrate


11


and a silicon epitaxial growth layer


15


is formed on the entire region except the region of (110) surface orientation Y.

FIG. 4

is a perspective view of the silicon substrate


11


and

FIG. 5A

to

FIG. 5D

are cross sectional views showing the portions of (100) surface orientation X and (110) surface orientation Y.




First, the surface portion of the silicon substrate


11


of (100) surface orientation is processed by a known technique such as the silicon anisotropic etching technique to expose part of the surface portion having the (100) surface orientation X and (110) surface orientation Y other than the (100) surface orientation X. In this case, as shown in

FIG. 4

, for example, the (100) surface orientation X and (110) surface orientation Y both make an angle of 90° with respect to the silicon substrate


11


and an angle of 45° (or 135°) is made between the (100) surface orientation X and (110) surface orientation Y.




Then, as shown in

FIG. 5A

, an element isolation region


12


is formed in the surface portion of the silicon substrate


11


to define element regions (N-type well region


13




a


, P-type well region


13




b


). In this case, the (100) surface orientation X is formed on the surface portion of the P-type well region


13




b


which is a forming region of a first MOSFET (N-type MOSFET) having a first channel impurity profile. Further, the (110) surface orientation Y is formed on the surface portion of the N-type well region


13




a


which is a forming region of a second MOSFET (P-type MOSFET) having a second channel impurity profile




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portions of the N-type well region


13




a


and P-type well region


13




b


and then arsenic and boron which are impurities for attaining desired threshold voltages are doped into the channel portions of the N-type well region


13




a


and P-type well region


13




b.






After this, as shown in

FIG. 5B

, for example, part of the silicon sacrificing oxide film is removed so as to cover the channel forming region of the N-type well region


13




a


which lies on the (110) surface orientation with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on the (110) surface orientation Y.




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, as shown in

FIG. 5C

, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


having the first channel impurity profile is formed with a film thickness of approx. 30 nm on the silicon substrate of the (100) surface orientation X containing at least the main surface of the P-type well region


13




b


which is used as the channel portion of the N-type MOSFET, for example, by use of Si


2


H


4


Cl


2


gas at the temperature of 800° C. by the RP-CVD method. By effecting the above process, a channel portion of the N-type MOSFET formed on the silicon substrate on the (100) surface orientation X and having an extremely steep impurity concentration gradient is attained.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers the on the silicon substrate of the (110) surface orientation Y is removed.




Then, as shown in

FIG. 5D

, the gate oxidation process is effected by the RTO method. By effecting the gate oxidation process, oxide films used for respectively forming gate insulating films


16




a


,


16




b


with the preset film thickness are formed on the N-type well region


13




a


and P-type well region


13




b


. For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating films


16




a


,


16




b


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating films


16




a


,


16




b


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, gate electrodes


17




a


,


17




b


having desired gate length are respectively formed on the N-type well region


13




a


and P-type well region


13




b.






The present embodiment relates to the gate electrode


17




a


of the MOSFET on the silicon substrate


11


of the (110) surface orientation Y and the gate electrode


17




b


of the MOSFET on the silicon substrate


11


of the (100) surface orientation X and both of them constitute vertical MOSFET structures in which the gate length directions make 90° with respect to the substrate surface of the silicon substrate


11


of (100) surface orientation. Therefore, the gate electrodes


17




a


,


17




b


can be formed in the same process, the manufacturing process can be more simplified, consistency of the process is excellent and the process becomes suitable for miniaturization.




Then, after preset impurity is doped, in order to diffuse and activate the doped impurity, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for approx. 20 seconds, for example. By effecting the heat treatment, source/drain regions


20




a


,


20




b


are respectively formed on the surface portions of the N-type well region


13




a


and P-type well region


13




b


. As a result, an N-type MOSFET formed on the silicon substrate of the (100) surface orientation X and having the silicon epitaxial growth layer


15


in the channel portion and a P-type MOSFET formed on the silicon substrate of the (110) surface orientation Y different from the (100) surface orientation, having no silicon epitaxial growth layer


15


in the channel portion and having the channel portion formed of the N-type well region


13




a


are completed.




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


20




a,




20




b


and the gate electrodes


17




a


,


17




b.


After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections via contact portions.




A case wherein the silicon substrate


11


of (100) surface orientation is used is explained, but this is not limitative and a silicon substrate of (110) surface orientation can also be used. That is, the same effect can be attained by exposing the (100) surface orientation and (110) surface orientation to the surface portion of the silicon substrate of (110) surface orientation by silicon anisotropic etching, for example, and forming MOSFETs on the silicon substrate of the respective surface orientations.




In this embodiment, a case wherein the channel portion of the N-type MOSFET is formed on the silicon substrate of the (100) surface orientation X and the channel portion of the P-type MOSFET is formed on the silicon substrate of the surface orientation different from the (100) surface orientation is explained. In this case, excellent mobility can be attained in both of the N-type MOSFET and P-type MOSFET and a CMOS device with high reliability, small leakage current and excellent noise characteristic can be formed.




Further, in a case where MOSFETs of the same conductivity type are formed on the silicon substrate of the (100) surface orientation and the surface orientation different from the (100) surface orientation (for example, N-type MOSFETs are formed on the silicon substrate on both of the surface orientations or P-type MOSFETs are formed on the silicon substrate on both of the surface orientations), MOSFETs with high reliability, small leakage current and excellent noise characteristic can be formed in the same manner. In this case, a MOSFET having the same conductivity type as and different threshold voltage from a MOSFET formed on the silicon substrate of the surface orientation different from the (100) surface orientation and having no silicon epitaxial growth layer can be formed together with the latter MOSFET on the same silicon substrate by forming a silicon epitaxial growth layer of low concentration only in the channel portion of the MOSFET on the silicon substrate of the (100) surface orientation.




Third Embodiment





FIG. 6A

to

FIG. 6D

show a manufacturing method of a CMOS device according to a third embodiment of this invention. In this example, a case wherein a P-type MOSFET is formed on a substrate of a surface orientation other than at least a (100) surface orientation, for example, on a (111) surface orientation on a silicon substrate is formed is explained.




First, the surface portion of a silicon substrate


11


of (100) surface orientation X is processed by a known technique such as the chemical liquid phase etching technique to form a V-shaped groove in part of the surface portion thereof and expose a (111) surface orientation Z other than the (100) surface orientation X. Then, an element isolation region


12


is formed in the surface portion of the silicon substrate


11


to define element regions (N-type well region


13




a


, P-type well region


13




b


). In this case, the (111) surface orientation Z is formed on the surface portion of the N-type well region


13




a


which is a forming region of a second MOSFET (P-type MOSFET) having a second channel impurity profile (refer to FIG.


6


A).




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portions of the N-type well region


13




a


and P-type well region


13




b


and then arsenic and boron which are impurities for attaining desired threshold voltages are doped into the channel portions of the N-type well region


13




a


and P-type well region


13




b.






After this, part of the silicon sacrificing oxide film is removed so as to cover only the N-type well region


13




a


(or a portion of the N-type well region


13




a


which lies on at least the (111) surface orientation Z) with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on the N-type well region


13




a


(or a portion of the N-type well region


13




a


which lies on the (111) surface orientation Z except the (100) surface orientation X) except the P-type well region


13




b


which is the forming region of the first MOSFET (N-type MOSFET) (refer to FIG.


6


B).




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


having a first channel impurity profile is formed with a film thickness of approx. 30 nm on the (100) surface orientation X of the P-type well region


13




b


which is used at least as the channel portion of the N-type MOSFET, for example, by use of Si


2


H


4


Cl


2


gas at the temperature of 800° C. by the RP-CVD method (refer to FIG.


6


C). By effecting the above process, a channel portion of the N-type MOSFET formed on the silicon substrate of the (100) surface orientation x and having an extremely steep impurity concentration gradient is realized.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers at least the (111) surface orientation Z is removed.




Then, the gate oxidation process is effected by the RTO method. By effecting the gate oxidation process, oxide films used for respectively forming gate insulating films


16




a


,


16




b


with the preset film thickness are formed on the N-type well region


13




a


and P-type well region


13




b


. For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating films


16




a


,


16




b


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating films


16




a


,


16




b


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, gate electrodes


17




a


,


17




b


having desired gate length are respectively formed on the N-type well region


13




a


and P-type well region


13




b.






Then, after preset impurity is doped, in order to diffuse and activate the doped impurity, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for approx. 20 seconds, for example. By effecting the heat treatment, shallow source/drain regions


18


are formed on the surface portion of the P-type well region


13




b.






After this, gate side wall portions


19


of the gate electrode


17




b


and source/drain regions


20




a


,


20




b


which are deeper than the shallow source/drain regions


18


are formed. As a result, an NMOS transistor (N-type MOSFET) formed on the silicon substrate of the (100) surface orientation X and having the silicon epitaxial growth layer


15


in the channel portion and a PMOS transistor (P-type MOSFET) formed on the silicon substrate of the (111) surface orientation Z different from the (100) surface orientation, having no silicon epitaxial growth layer


15


in the channel portion and having the channel portion formed of the N-type well region


13




a


are completed (refer to FIG.


6


D).




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


20




a,




20




b


and the gate electrodes


17




a


,


17




b.


After lowering the resistance of each of the electrodes, the electrodes are connected to metal interconnections via contact portions.




Thus, also, in the case of the present embodiment in which the MOSFETs are formed on the silicon substrate of the (100) surface orientation X and the (111) surface orientation Z other than the (100) surface orientation X, the same effect as that obtained in the CMOS device of the first, second embodiments can be expected.




In this embodiment, a case wherein the channel portion of the N-type MOSFET is formed on the silicon substrate (100) surface orientation X and the channel portion of the P-type MOSFET is formed on the silicon substrate of the surface orientation different from the (100) surface orientation is explained. In this case, excellent mobility can be attained in both of the N-type MOSFET and P-type MOSFET and a CMOS device with high reliability, small leakage current and excellent noise characteristic can be formed.




Further, in a case where MOSFETs of the same conductivity type are formed on the substrate of the (100) surface orientation and the surface orientation different from the (100) surface orientation (for example, N-type MOSFETs are formed on the silicon substrate on the silicon substrate on both of the surface orientations or P-type MOSFETs are formed on the silicon substrate on the silicon substrate on both of the surface orientations), MOSFETs with high reliability, small leakage current and excellent noise characteristic can be formed in the same manner. In this case, a MOSFET having the same conductivity type as and different threshold voltage from a MOSFET formed on the silicon substrate of the surface orientation different from the (100) surface orientation and having no silicon epitaxial growth layer can be formed together with the latter MOSFET on the same silicon substrate by forming a silicon epitaxial growth layer of low concentration only in the channel portion of the MOSFET on the silicon substrate of the (100) surface orientation.




Fourth Embodiment





FIG. 7A

to

FIG. 7C

show a manufacturing method of a CMOS device according to a fourth embodiment of this invention. In this example, a case wherein the channel portion of a MOSFET is so formed as to have at least a (100) surface orientation and a surface orientation other than the (100) surface orientation, for example, a (110) surface orientation on a silicon substrate in the cross section in the channel width direction is explained.




First, as shown in

FIG. 7A

, the surface portion of a silicon substrate


11


of (100) surface orientation X is processed by a known technique such as the silicon anisotropic etching technique to expose part of the surface portion having a surface orientation such as a (110) surface orientation Y other than the (100) surface orientation. Then, an element isolation region


12


is formed in the surface portion of the silicon substrate


11


to define regions in which the channel portion of a transistor is formed. In this case, the (110) surface orientation Y is exposed in addition to the (100) surface orientation in the cross section in the channel width direction in order to enhance the current driving ability for each unit area.




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portion of the silicon substrate


11


and then boron or arsenic which is impurity for attaining desired threshold voltage is doped into the channel portion in the case of an N-type MOSFET or a P-type MOSFET, respectively.




After this, part of the silicon sacrificing oxide film is removed so as to cover only the portion of (110) surface orientation Y of the silicon substrate


11


with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on the portion of (110) surface orientation Y other than the (100) surface orientation X.




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, as shown in

FIG. 7B

, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


is formed with a film thickness of approx. 30 nm on the silicon substrate of the (100) surface orientation X, for example, by use of Si


2


H


4


Cl


2


gas, at the temperature of 800° C. by the RP-CVD method.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers on the silicon substrate of the (110) surface orientation Y is removed.




Then, as shown in

FIG. 7C

, the gate oxidation process is effected by the RTO method. By effecting the gate oxidation process, an oxide film used for forming a gate insulating film


16


with the preset film thickness is formed. For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating film


16


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating film


16


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, a gate electrode


17


having desired gate width is formed.




Then, after preset impurity is doped to form source/drain regions, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for 20 seconds, for example, so as to diffuse and activate the doped impurity.




Thus, a MOSFET having the silicon surface portion on the (100) surface orientation X which has the silicon epitaxial growth layer


15


and the silicon surface portion on the (110) surface orientation Y which has no silicon epitaxial growth layer


15


as the channel portion is completed.




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions and the gate electrode


17


. After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections via contact portions.




Thus, in the case of this embodiment in which the silicon surface portions not only on the (100) surface orientation X but also on the (110) surface orientation Y are formed to be contained in the channel portion of the transistor, a portion indicated by a range A becomes almost equal to the channel width in the cross section in the channel width direction. As a result, the channel width can be made larger than the gate width as viewed from above the wafer. Therefore, the driving power can be further enhanced and the structure is made suitable for miniaturization.




In the MOSFET according to the fourth embodiment, the channel portion of the transistor is formed to contain the silicon surface portion on the (110) surface orientation Y. However, this is not limitative and, for example, as shown in

FIG. 8A

to

FIG. 8C

, the channel portion (channel width A) of the transistor can be formed to contain the silicon surface portion on the (111) surface orientation Z in the cross section in the channel width direction.




Alternatively, for example, as shown in

FIG. 9A

to

FIG. 9C

, the channel portion (channel width A) of the transistor can be formed to contain a plurality of silicon surface portions such as the silicon surface portion on the (110) surface orientation Y and the silicon surface portion on the (111) surface orientation Z in addition to the silicon surface portion on the (100) surface orientation X in the cross section in the channel width direction.




Further, as shown in

FIG. 10

, the channel portion (channel width A) of the transistor can be formed to contain a plurality of portions of the silicon surface portions of, for example, (110) surface orientation Y other than the (100) surface orientation X in the cross section in the channel width direction.




In each case of the above embodiment, the MOSFET with high reliability, small leakage current and excellent noise characteristic can be formed.




Fifth Embodiment





FIG. 11A

to

FIG. 11C

show a manufacturing method of a CMOS device according to a fifth embodiment of this invention. In this example, a case wherein the channel portion of a MOSFET is so formed as to have at least a (100) surface orientation and a surface orientation other than the (100) surface orientation, for example, a (110) surface orientation on a silicon substrate in the cross section in the channel length direction is explained.




First, as shown in

FIG. 11A

, the surface portion of a silicon substrate


11


of (100) surface orientation X is processed by a known technique such as the silicon anisotropic etching technique to expose part of the surface portion having a surface orientation such as a (110) surface orientation Y other than the (100) surface orientation. Then, an element isolation region (not shown) is formed in the surface portion of the silicon substrate


11


. In this case, a silicon surface portion used for forming the channel portion of a transistor is formed to have the (100) surface orientation X and (110) surface orientation Y in the cross section in the channel length direction.




Next, a silicon sacrificing oxide film (not shown) with a film thickness of 12 nm is formed on the surface portion of the silicon substrate


11


and then boron or arsenic which is impurity for attaining desired threshold voltage is doped into the channel portion in the case of an N-type MOSFET or a P-type MOSFET, respectively.




After this, part of the silicon sacrificing oxide film is removed so as to cover only the portion of (110) surface orientation Y of the silicon substrate


11


with a cover insulating film


21


. That is, the silicon sacrificing oxide film is left behind only on the (110) surface orientation Y other than the (100) surface orientation X.




Then, a pre-heating process at 940° C. is effected as a pre-process for removing residual oxygen in the surface portion of the silicon substrate


11


.




Next, as shown in

FIG. 11B

, a silicon epitaxial growth layer (non-doped epitaxial silicon layer)


15


is formed with a film thickness of approx. 30 nm on the silicon substrate of the (100) surface orientation X, for example, by use of Si


2


H


4


Cl


2


gas, at the temperature of 800° C. by the RP-CVD method.




After this, the cover insulating film (silicon sacrificing oxide film)


21


which covers on the silicon substrate of the (110) surface orientation Y is removed.




Then, as shown in

FIG. 11C

, the gate oxidation process is effected by the RTO method. By effecting the gate oxidation process, an oxide film used for forming a gate insulating film


16


with the preset film thickness is formed. For example, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film with a film thickness of 1.5 nm can be formed. If the RTO method or furnace oxidation method is used, the gate insulating film


16


with desired film thickness can be formed by adequately selecting the temperature and time.




Next, after a polysilicon film is deposited on the gate insulating film


16


to a film thickness of approx. 250 nm, the polysilicon film is patterned by anisotropic etching. Thus, a gate electrode


17


having desired gate length is formed.




Then, after preset impurity is doped, the heat treatment is effected in a nitrogen atmosphere at the temperature of 1000° C. for 20 seconds, for example, so as to diffuse and activate the doped impurity and thus form source/drain regions


20


.




Thus, a MOSFET having the silicon surface portion on the (100) surface orientation X which has the silicon epitaxial growth layer


15


and the silicon surface portion on the (110) surface orientation Y which has no silicon epitaxial growth layer


15


as the channel portion thereof is completed.




Then, silicide layers (not shown) are formed on the surface portions of the source/drain regions


20


and the gate electrode


17


. After thus lowering the resistance of each of the electrode portions, the electrode portions are connected to metal interconnections via contact portions.




Thus, in the case of this embodiment in which the silicon surface portions on the (100) surface orientation X and the (110) surface orientation Y are formed to be contained in the channel portion of the transistor, a portion indicated by a range B becomes almost equal to the channel length in the cross section in the channel length direction.




In the MOSFET according to the fifth embodiment, the channel portion of the transistor is formed to contain the silicon surface portion on the (110) surface orientation Y. However, this is not limitative and, for example, as shown in

FIG. 12A

to

FIG. 12C

, the channel portion (channel length B) of the transistor can be formed to contain the silicon surface portion on the (111) surface orientation z in the cross section in the channel length direction.




Alternatively, for example, as shown in

FIG. 13A

to

FIG. 13C

, the channel portion (channel length B) of the transistor can be formed to contain a plurality of silicon surface portions such as the silicon surface portion on the (110) surface orientation Y and the silicon surface portion on the (111) surface orientation Z in the cross section in the channel length direction.




Further, as shown in

FIG. 14

, the channel portion (channel length B) of the transistor can be formed to contain a plurality of portions of the silicon surface portions, for example, on the (110) surface orientation Y other than the (100) surface orientation X in the cross section in the channel length direction.




In each case of the above embodiment, the MOSFET with high reliability, small leakage current and excellent noise characteristic can be formed.




In each of the first to fifth embodiments, a case wherein the (110) or (111) surface orientation is used as the surface orientation other than the (100) surface orientation is explained. However, the surface orientation is not limited to the above case and, for example, if (113), (115) surface orientations on which the silicon growth rate is known to be lower than on the (100) surface orientation or other surface orientations such as (211), (311), (511), (811), (101), (011) surface orientations are used, the above effect can be expected.




Further, in each of the above embodiments, the silicon substrate (wafer) of (100) surface orientation is used and a surface orientation other than the (100) surface orientation is intentionally formed on the surface portion thereof. However, the same operation can be effected in the same manner with respect to the silicon substrate of the surface orientation other than the (100) surface orientation, for example. That is, in the silicon substrate of the surface orientation other than the (100) surface orientation, the silicon substrate of (100) surface orientation is exposed by anisotropic etching or chemical etching and then a silicon epitaxial growth layer may be formed in the channel portion forming region of a transistor on the exposed surface.




Further, a method for forming the silicon epitaxial growth layer is not limited to the reduced pressure chemical vapor deposition method and, for example, the silicon epitaxial growth layer can be formed by use of a low pressure chemical vapor deposition (UHV-CVD) method. Further, gas used in this case is not limited to Si


2


H


4


Cl


2


, and Si


2


H


6


, SiHCl


4


, SiH


4


, or a mixture gas of the above gas and H


2


or HCL can be used.




Further, in each of the above embodiments, the silicon epitaxial growth layer was formed to the film thickness of 30 nm. The effect can be attained if a silicon epitaxial growth layer with at least a film thickness of 0.2 nm is used as the silicon epitaxial growth layer


15


, and if a silicon epitaxial growth layer of larger film thickness is used, the effect of making the surface flat and reducing the gate leakage current becomes more significant. However, in order to suitably control the switching characteristic of the transistor by use of the gate electrode, it is preferable to set the film thickness of the silicon epitaxial growth layer up to approx. 70 nm.




Further, in each of the first to fifth embodiments, a case wherein the epitaxial growth layer was mainly formed of silicon was explained. However, this is not limitative and the same effect can be expected even if a layer mainly formed of a mixture of silicon and germanium is used.




Sixth Embodiment




Further, it is preferable to form a gate insulating film thinner than the gate insulating film of a MOSFET having a channel/gate insulating film interface on a (100) surface orientation as the gate insulating film of a MOSFET having a channel/gate insulating film interface on a surface orientation other than the (100) surface orientation. Particularly, in a MOSFET formed on a (111) surface orientation, for example, it is preferable to set the film thickness expressed in terms of the equivalent oxide thickness to 2.5 nm or less or when the gate insulating film is formed with a stacked film structure, it is preferable to set the film thickness of an insulating film formed in contact with the silicon substrate to 2.5 nm or less.




Equivalent oxide thickness of the gate insulating film means a thickness of SiO


2


(oxide) whose capacitance is equal to the capacitance of the gate insulating film.




Now, the film thickness of the gate insulating films of MOSFETs according to a sixth embodiment is explained with reference to FIG.


15


A and FIG.


15


B.

FIG. 15A

shows an example of the gate insulating film with a single film structure and

FIG. 15B

shows an example of the gate insulating film with a stacked film structure.




In

FIG. 15A

, a gate insulating film


16




a


is formed with a thickness of not larger than 2.5 nm at least on a (111) surface orientation (N-well region


13




a


) of a silicon substrate


11


by the gate oxidation process by use of the RTO method.




As described before, if the gate oxidation process is effected in a condition of the temperature of 800° C. and the oxidizing time of 10 seconds by the RTO method, an oxide film (Pure oxide) with a film thickness of 1.5 nm can be formed as shown in Table 2 as will be described later. Thus, if the RTO method is used, the gate insulating film


16




a


with desired film thickness not larger than 2.5 nm can be formed on the substrate of the (111) surface orientation by adequately selecting the temperature and time.















TABLE 2













(100)




(111)
















av. (nm)




σ (%)




av. (nm)




σ (%)





















Pure




RTO




700° C.,




1.29




0.90




1.16




0.86






oxide





O


2


10%, 2S








800° C.,




1.36




0.98




1.32




0.85








O


2


50%, 1S








800° C.,




1.54




0.83




1.47




0.72








O


2


100%,








10S








800° C.,




1.81




0.86




1.74




0.81








O


2


100%,








30S








800° C.,




2.14




0.83




2.03




0.72








O


2


100%,








120S







Fur-




850° C., O


2






2.98




0.57




3.63




1.06







nace






Oxyni-




RTO




(800° C.,




2.22




0.38




2.14




0.38






tride





O


2


50%,








1s) +







Fur-




(800° C.,







nace




NO10%,








30 m)














As shown in

FIG. 15B

, a gate insulating film


16




a


is formed with a stacked film structure of a silicon oxide film (insulating film)


16




a




-1


and ferroelectric film


16




a




-2


, for example. In this case, as described above, the silicon oxide film


16




a




-1


is formed with the thickness of not larger than 2.5 nm at least on the (111) surface orientation (N-well region


13




a


) of a silicon substrate


11


by the gate oxidation process by use of the RTO method. Then, the ferroelectric film


16




a




-2


formed of Al


2


O


3


, for example, is stacked on the silicon oxide film


16




a




-1


to form the gate insulating film


16




a.






Thus, in the MOS transistor (MOSFET) formed on the silicon substrate of the (111) surface orientation other than the (100) surface orientation and having the film thickness of the gate insulating film adequately controlled, the state of the interface between the silicon substrate


11


and the gate insulating film


16




a


can be improved in comparison with a case wherein the gate insulating film is thick, and as a result, the transistor performance can be significantly enhanced.





FIG. 16

shows a variation in the film thickness of an oxide film in the wafer surface by use of, for example, an 8-inch wafer by taking the (100) surface orientation and (111) surface orientation as an example for comparison.




As is clearly seen from

FIG. 16

, the characteristic is better in the case of the (100) surface orientation when the film thickness Tox of the oxide film is larger than approx. 2.0 to 2.5 nm and the characteristic becomes better in the case of the (111) surface orientation when the film thickness Tox is smaller than approx. 2.0 to 2.5 nm. Particularly, in the case of the (111) surface orientation, it is understood that a variation a (Tox) in the film thickness in the wafer surface is enhanced if the film thickness Tox of the oxide film is smaller than 2.5 nm.





FIG. 17

shows variations in the transconductance Gm and threshold voltage Vth of an N-type MOSFET in the wafer surface by taking a transistor on an 8-inch wafer of (100) surface orientation and a transistor on an 8-inch wafer of (111) surface orientation as an example for comparison.




As is also clearly seen from

FIG. 17

, the characteristic is better in the case of the (100) surface orientation when the film thickness Tox of the oxide film is larger than approx. 2.0 to 2.5 nm and the characteristic becomes better in the case of the (111) surface orientation when the film thickness Tox is smaller than approx. 2.0 to 2.5 nm. Particularly, in the case of the 8-inch wafer of (111) surface orientation, it is understood that a variation in the transistor performance can be extremely suppressed in comparison with the case of large film thickness (5 nm) if the film thickness of the oxide film is smaller than 2.5 nm.





FIGS. 18A and 18B

illustrate the TDDB (Time Dependent Dielectric Breakdown) reliability of a MOS capacitor formed on an 8-inch wafer of (111) surface orientation, for example, in comparison with that of a MOS capacitor formed on a wafer of (100) surface orientation.

FIG. 18A

shows a variation of the film thickness of an oxide film in the wafer surface and

FIG. 18B

shows the dependency on the film thickness of an oxide film.




When the film thickness Tox of the oxide film becomes smaller than approx. 2.0 to 2.5 nm, it is understood that the TDDB reliability of the MOS capacitor on the wafer of (111) surface orientation can be extremely enhanced in comparison with that of the MOS capacitor on the wafer of (100) surface orientation if the oxidation process is effected under the same condition.




Likewise, in the case of the transistor on the wafer of (111) surface orientation, a transistor with higher reliability can be attained if the film thickness of the oxide film is made equal to or smaller than 2.0 nm.





FIG. 19A

to

FIG. 19C

show cases wherein a MOSFET having a thick gate oxide film


16




b


formed on a substrate of a (100) surface orientation X and a MOSFET having a thin gate oxide film


16




a


formed on the substrate of a (111) surface orientation Z are formed.




In this case, transistors with higher performance and higher reliability can be attained on the substrate of both of the (100) surface orientation X and (111) surface orientation Z.




The gate oxide films


16




a


,


16




b


on the (100) surface orientation X and (111) surface orientation Z can be formed to respectively have desired film thickness by effecting the oxidation step twice. Alternatively, as shown in Table 2 and

FIGS. 20A and 20B

, if the film thickness is smaller than approx. 2.2 nm, it is possible to simultaneously form an oxide film on the substrate of the (100) surface orientation X and an oxide film on the substrate of the (111) surface orientation z which is thinner than the former oxide film by effecting the oxidation step only once.




Incidentally,

FIG. 20A

shows the relation between the oxidation rate and the oxide film thickness of silicon oxide films formed on the substrate of the (100), (111) surface orientations and

FIG. 20B

shows the ratio of the oxide film thicknesses of silicon oxide films formed on the substrate of the (100), (111) surface orientations (in the same oxidation condition).





FIG. 21A

to

FIG. 21D

show a case wherein MOSFETs each having a gate insulating film


16


formed of stacked films


16




-1


,


16




a




-2


are respectively formed on a substrate of (100) and (111) surface orientations, for example.




In this case, the gate insulating film


16


is formed by laminating the ferroelectric film


16




-2


on the silicon oxide film


16




-1


, for example.




In the MOSFETs shown in FIG.


15


A and

FIG. 19A

to

FIG. 19C

, the gate insulating film


16




a


is not limited to the oxide film. For example, a silicon nitride film, silicon oxynitride film, or a stacked film thereof can be used and if the film is so formed as to have the film thickness of not larger than 2.5 nm, preferably, not larger than 2.0 nm expressed in terms of the equivalent oxide thickness, the same effect can be attained.




In the case of the silicon nitride film, since it has a dielectric constant which is approx. twice that of the silicon oxide film, the same effect can be attained by setting the film thickness thereof to 5 nm or less.




In the case of the silicon oxynitride film, it has a dielectric constant lying between those of the oxide film and the nitride film and corresponding to the concentration of nitrogen contained therein. Therefore, the upper limit of the film thickness becomes 2.5 nm to 5.0 nm according to the concentration of nitrogen contained therein and the same effect can be attained if the film thickness is smaller than the film thickness corresponding to the concentration of nitrogen contained therein. That is, the dielectric constant ∈


SiON


of the silicon oxynitride film can be estimated based on the composition ratio of nitrogen and oxygen in the insulating film by use of the following equation (1).









SiON


=(1


−X


)∈


SiO






2






+X





Si






3






N






4




  (1)






where x indicates the ratio of Si


3


N


4


to SiON in the silicon oxynitride film.




Since the dielectric constant ∈


SiO






2




of the silicon oxide film is approx. 3.9 and the dielectric constant ∈


Si






3






N






4




of the silicon nitride film is approx. 7.9, the dielectric constant ∈


SiON


of the silicon oxynitride film is derived by use of the following equation (2).









SiON


=3.9+4


x


, 0


<x


<1  (2)






Since the film thickness of the insulating film for attaining the effect of this invention is 2.5 nm or less when it is expressed in terms of the equivalent oxide thickness, the same effect can be attained by setting the film thickness of 2.5(3.9+4x)/3.9 nm or less according to the concentration of nitrogen contained therein in the case of a silicon oxynitride film.




Particularly, when the silicon oxynitride film is used, a variation in the film thickness becomes smaller than that in the oxide film (refer to Table 2). Therefore, a transistor with higher performance and higher reliability can be attained.




In the MOSFETS shown in FIG.


15


B and

FIG. 21A

to

FIG. 21D

, the gate insulating films


16




a


,


16


are not limited to the stacked structure of the silicon oxide film


16




-1


and ferroelectric film


16




- 2


. That is, instead of the silicon oxide film


16




-1


, a silicon nitride film, silicon oxynitride film or a stacked structure thereof can be used, for example, and the same effect as that described above can be attained if the film thickness expressed in terms of the equivalent oxide thickness is 2.5 nm or less, preferably, 2.0 nm or less.




Likewise, as the ferroelectric film


16




-2


, for example, a silicate film of HfO


2


—SiO


2


, ZrO


2


—SiO


2


, 2La


2


O


3


—SiO


2


, Gd


2


O


3


—SiO


2


or a film of Si


3


N


4


, Ta


2


O


5


, Sc


2


O


3


, Y


2


O


3


, Gd


2


O


3


, La


2


O


3


, ZrO


2


, LaAlO


3


, ZrTiO


4


, HfO


2


, SrZrO


3


, HfxSnyTizO, ZrxSnyTizO, TiO


2


, SrTiO


3


, SrBi


2


Ta


2


O


9


, BaxSrl—xTiO


3


, PZT having an insulating property can be used instead of Al


2


O


3


and the same effect can be expected in each case.




Particularly, in the case of the gate insulating film


16


of the stacked film structure, the upper level layer thereof is not limited to the single-layered film such as the ferroelectric film


16




-2


. For example, in order to improve the characteristic with respect to the gate electrode interface, enhance the reliability thereof and reduce the leakage current, the film can be formed by stacking films of two or more layers of different materials and, also in this case, the same effect can be expected.




In the sixth embodiment, a case wherein the (111) surface orientation is set as the surface orientation other than the (100) surface orientation is explained. However, this is not limitative and the same effect can be expected when the surface orientation of (110), (113), (115) or (211), (311), (511), (811), (101), (011) is used.




Particularly, if part of the channel portion of the P-type MOSFET which is formed in contact with the gate insulating film is formed on the substrate of the (110), (111) surface orientation, the channel mobility is enhanced. In the case of the N-type MOSFET, if part of the channel portion which is formed in contact with the gate insulating film is formed on the substrate of the (100) surface orientation, the channel mobility is enhanced. As a result, a CMOS device with high performance can be attained. At this time, a silicon epitaxial growth layer may be formed or may not be formed on that part of the channel portion of the N-type MOSFET which is formed in contact with the gate insulating film.




In this embodiment, a case wherein the channel portion of the N-type MOSFET is formed on the substrate of the (100) surface orientation and the channel portion of the P-type MOSFET is formed on the substrate of the surface orientation other than the (100) surface orientation is explained. In this case, the excellent mobility can be attained in each of the N-type MOSFET and P-type MOSFET and a CMOS device with high reliability, small leakage current and excellent noise characteristic can be formed.




Further, in a case where MOSFETs of the same conductivity type are formed on the substrate of the (100) surface orientation and the surface orientation different from the (100) surface orientation (for example, when N-type MOSFETs are formed on the substrate of both of the surface orientations or when P-type MOSFETs are formed on the substrate of both of the surface orientations), MOSFETs with high reliability, small leakage current and excellent noise characteristic can be formed in the same manner. In this case, since the film thickness of the gate insulating film of the MOSFET on the substrate of the (100) surface orientation and the film thickness of the gate insulating film of the MOSFET on the substrate of the surface orientation different from the (100) surface orientation are different from each other, MOSFETs of the same conductivity type having different threshold voltages and different driving powers can be formed.




According to the semiconductor device of this invention, the characteristic of the MOSFET formed on the silicon surface orientation other than the (100) silicon surface orientation can be improved. As a result, MOSFETs which have extremely high performance, high reliability, small leakage current and excellent noise characteristic can be formed on the same silicon substrate while the advantages of each transistor formed on various silicon surface orientations can be maintained.




Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.



Claims
  • 1. A semiconductor device including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprising:a first field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on a (100) silicon surface orientation; and a second field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on a (111) silicon surface orientation; wherein the film thickness of the gate insulating film of the second field effect transistor is smaller than the film thickness of the gate insulating film of the first field effect transistor.
  • 2. The semiconductor device according to claim 1, wherein the film thickness of the gate insulating film of the second field effect transistor is not larger than 2.0 nm.
  • 3. A semiconductor device including field effect transistors each of which has a gate electrode formed on a semiconductor substrate with a gate insulating film disposed therebetween, a semiconductor layer opposite to the gate electrode forming a channel forming region, and source and drain regions formed on both sides of the channel forming region, comprising:a first field effect transistor in which a surface portion of the channel forming region formed In contact with the gate insulating film is formed on a (100) silicon surface orientation; and a second field effect transistor in which a surface portion of the channel forming region formed in contact with the gate insulating film is formed on a (111) silicon surface orientation; wherein the gate insulating film of the first field effect transistor is constructed as a stacked film of a first insulating film formed in contact with the channel forming region and a second insulating film formed of a material or composition different from the first insulating film, the gate insulating film of the second field effect transistor is constructed as a stacked film of a third insulating film formed in contact with the channel forming region and a fourth insulating film formed of a material or composition different from the third insulating film, and the film thickness of the third insulating film is smaller than the film thickness of the first insulating film.
Priority Claims (1)
Number Date Country Kind
2001-165581 May 2001 JP
US Referenced Citations (7)
Number Name Date Kind
5534449 Dennison et al. Jul 1996 A
5691225 Abiko Nov 1997 A
5811336 Kasai Sep 1998 A
5905283 Kasai May 1999 A
5990516 Momose et al. Nov 1999 A
6075270 Okihara et al. Jun 2000 A
6114228 Gardner et al. Sep 2000 A
Foreign Referenced Citations (3)
Number Date Country
404256369 Sep 1992 JP
8-78533 Mar 1996 JP
8-213606 Aug 1996 JP
Non-Patent Literature Citations (5)
Entry
K. Noda et al., “0.1 um Delta-doped MOSFET Using Post Low-energy Implanting Selective Epitaxy”, 1994 Sumposium on VLSI Tech. Diq. Of Techn Papers, pp. 19-20, (1994).
H. S. Momose et al., “Improvement of direct-tunneling gate leak age current in ultra-thin gate oxide CMOS with TiN gate electrode using non-doped selective epitalial Si channel technique”, 1999 International Electron Device Meeting, pp. 819-822, (1999).
C.H.J. Van Den Brekel, “Growth Rate Anisotropy and orphology of Autoepitaxial Silicon Films From SiCI4”, Journal of Crystal Growth 23, pp. 259-266, (1974).
H. Momose, “Semiconductor Device”, U.S. patent application Ser. No. 09/163,434, filed Jun. 28, 2001.
T. Ohguro et al., “Silicon Epitaxy and Its Application to RF IC's”, Electrochemical Society Proceedings vol. 99-18, 1999, pp. 123-141.