This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2020-043815, filed on Mar. 13, 2020; the entire contents of which are incorporated herein by reference.
Embodiments relate to a semiconductor device.
It is desirable for a semiconductor device for power control to have characteristics of a low on-resistance and a small switching loss. For example, in an IGBT (Insulated gate Bipolar Transistor), the on-resistance can be reduced by increasing the density of holes injected from a p-type collector layer into an n-type base layer. However, as the hole density increases in the n-type base layer, it takes long time to eject the holes from the n-type base layer, resulting in an increase of the turn-off loss.
The IGBT comprising two control electrodes that are controlled independently is used to improve such a trade-off relation and reduce both the on-resistance and the turn-off loss. For example, the holes are partly pre-ejected from the n-type base layer by controlling the potential of one of the two control electrodes before turning off the IGBT, thus, reducing the hole density in the n-type base layer. Thereby, the ejection time of holes can be shortened while turning off the IGBT, and the switching loss can be reduced. However, some constraints must be eliminated in a circuit design to achieve such a gate control.
According to one embodiment, a semiconductor device includes a semiconductor part having first and second trenches at a front side; a first electrode provided at a backside of the semiconductor part; a second electrode provided at the front side of the semiconductor part; a first control electrode provided between the semiconductor part and the second electrode, the first control electrode provided in the first trench, the first control electrode being electrically insulated from the semiconductor part by a first insulating film and electrically insulated from the second electrode by a second insulating film; and a second control electrode provided between the semiconductor part and the second electrode, the second control electrode provided in the second trench, the second control electrode being electrically insulated from the semiconductor part by a third insulating film and electrically insulated from the second electrode by a fourth insulating film, the second control electrode being electrically isolated from the first control electrode. The semiconductor part includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a third semiconductor layer of the first conductivity type, a fourth semiconductor layer of the second conductivity type, a fifth semiconductor layer of the second conductivity type, and a sixth semiconductor layer of the second conductivity type. The first and second control electrodes extend into the first semiconductor layer. The second semiconductor layer is provided between the first semiconductor layer and the second electrode. The second semiconductor layer faces the first control electrode via the first insulating film and faces the second control electrode via the third insulating film. The third semiconductor layer is selectively provided between the second semiconductor layer and the second electrode. The third semiconductor layer contacts the first insulating film and is electrically connected to the second electrode. The fourth semiconductor layer is selectively provided between the second semiconductor layer and the second electrode. The fourth semiconductor layer contacts the third insulating film and is electrically connected to the second electrode. The fifth semiconductor layer is provided between the first semiconductor layer and the first electrode. The fifth semiconductor layer is electrically connected to the first electrode. The sixth semiconductor layer is provided between the first semiconductor layer and the second control electrode. The sixth semiconductor layer extends along the third insulating film.
Embodiments will now be described with reference to the drawings. The same portions inside the drawings are marked with the same numerals; a detailed description is omitted as appropriate; and the different portions are described. The drawings are schematic or conceptual; and the relationships between the thicknesses and widths of portions, the proportions of sizes between portions, etc., are not necessarily the same as the actual values thereof. The dimensions and/or the proportions may be illustrated differently between the drawings, even in the case where the same portion is illustrated.
There are cases where the dispositions of the components are described using the directions of XYZ axes shown in the drawings. The X-axis, the Y-axis, and the Z-axis are orthogonal to each other. Hereinbelow, the directions of the X-axis, the Y-axis, and the Z-axis are described as an X-direction, a Y-direction, and a Z-direction. Also, there are cases where the Z-direction is described as upward and the direction opposite to the Z-direction is described as downward.
As shown in
The first control electrode 40 and the second control electrode 50 are disposed between the semiconductor part 10 and the emitter electrode 30 respectively inside gate trenches GT1 and GT2 provided in the semiconductor part 10. The first control electrode 40 and the second control electrode 50 are separated from each other.
The first control electrode 40 is electrically insulated from the semiconductor part 10 by an insulating film 43. Also, the first control electrode 40 is electrically insulated from the emitter electrode 30 by an insulating film 45.
The second control electrode 50 is electrically insulated from the semiconductor part 10 by an insulating film 53. Also, the second control electrode 50 is electrically insulated from the emitter electrode 30 by an insulating film 55.
The semiconductor part 10 includes a first semiconductor layer (hereinbelow, an n-type base layer 11), a second semiconductor layer (hereinbelow, a p-type base layer 13), a third semiconductor layer (hereinbelow, an n-type emitter layer 15), a fourth semiconductor layer (hereinbelow, a p-type contact layer 17), a fifth semiconductor layer (a p-type collector layer 21), an n-type buffer layer 23, and a sixth semiconductor layer (hereinbelow, a p-type charge-ejecting layer 25).
The n-type base layer 11 extends between the collector electrode 20 and the emitter electrode 30. The n-type base layer 11 extends in the entire semiconductor part 10. The first control electrode 40 and the second control electrode 50 extend in a direction (a −Z direction) from the emitter electrode 30 toward the collector electrode 20 and extend into the n-type base layer 11.
The p-type base layer 13 is provided between the n-type base layer 11 and the emitter electrode 30. The p-type base layer 13 faces the first control electrode 40 via the insulating film 43. Also, the p-type base layer 13 faces the second control electrode 50 via the insulating film 53.
The n-type emitter layer 15 is selectively provided between the p-type base layer 13 and the emitter electrode 30. The n-type emitter layer 15 contacts the insulating film 43. The n-type emitter layer 15 is electrically connected to the emitter electrode 30. The n-type emitter layer 15 includes an n-type impurity with a higher concentration than the n-type impurity concentration of the n-type base layer 11.
The p-type contact layer 17 is selectively provided between the p-type base layer 13 and the emitter electrode 30. For example, the p-type contact layer 17 contacts the insulating film 53. The p-type contact layer 17 is electrically connected to the emitter electrode 30. The p-type contact layer 17 includes a p-type impurity with a higher concentration than the p-type impurity concentration of the p-type base layer 13.
The p-type collector layer 21 is provided between the n-type base layer 11 and the collector electrode 20. The p-type collector layer 21 is electrically connected to the collector electrode 20.
The n-type buffer layer 23 is provided between the n-type base layer 11 and the p-type collector layer 21. The n-type buffer layer 23 includes an n-type impurity with a higher concentration than the n-type impurity concentration of the n-type base layer 11.
The p-type charge-ejecting layer 25 is provided between the n-type base layer 11 and the second control electrode 50. The p-type charge-ejecting layer 25 extends along the insulating film 53. For example, the p-type charge-ejecting layer 25 covers the entire portion of the second control electrode 50 that extends into the n-type base layer 11. For example, the p-type charge-ejecting layer 25 includes a p-type impurity with substantially the same concentration as the p-type impurity concentration in the p-type base layer 13 or with a lower concentration than the p-type impurity concentration in the p-type base layer 13.
A method for manufacturing the semiconductor device 1 according to the first embodiment will now be described with reference to
As shown in
As shown in
For example, the insulating film 101 is formed to cover the front surface of the semiconductor wafer 100 and fill the spaces inside the gate trenches GT1 and GT2. Subsequently, the insulating film 101 is selectively removed so that a portion of the insulating film 101 remains in the space inside the gate trench GT1.
As shown in
For example, the p-type diffusion layer 103 is formed by diffusing a p-type impurity such as boron (B) into the semiconductor wafer 100. For example, the p-type diffusion layer 103 is formed using vapor phase diffusion.
As shown in
As shown in
For example, a polysilicon layer is formed at the front side of the semiconductor wafer 100 to fill the spaces SP1 and SP2 of the gate trenches GT1 and GT2. The polysilicon layer is formed using CVD, and then, is provided with conductivity by diffusing an n-type impurity such as phosphorus (P). The first control electrode 40 and the second control electrode 50 are formed by removing the polysilicon film so that portions thereof remain in the spaces SP1 and SP2.
The insulating film 105 includes a portion which is the insulating film 43 positioned between the first control electrode 40 and the semiconductor wafer 100. The insulating film 105 includes another portion which is the insulating film 53 positioned between the second control electrode 50 and the semiconductor wafer 100.
As shown in
For example, the p-type base layer 13 is formed by ion-implanting a p-type impurity such as boron (B) into the front side of the semiconductor wafer 100. Then, the implanted p-type impurity is activated and diffused by heat treatment. The p-type base layer 13 is formed to have a prescribed depth from the front surface of the semiconductor wafer 100.
For example, the n-type emitter layer 15 is formed by ion-implanting an n-type impurity such as phosphorus (P) into the front side of the semiconductor wafer 100 and by activating the implanted n-type impurity. The n-type emitter layer 15 is formed so that the depth from the front surface of the semiconductor wafer 100 is shallower than the depth of the p-type base layer 13. The n-type emitter layer 15 includes an n-type impurity with a higher concentration than the concentration of the p-type impurity in the p-type base layer 13.
For example, the p-type contact layer 17 is formed by selectively ion-implanting a p-type impurity such as boron (B) into the front side of the semiconductor wafer 100 and by activating the implanted p-type impurity. The p-type contact layer 17 is formed so that the depth from the front surface of the semiconductor wafer 100 is shallower than the depth of the p-type base layer 13. For example, the p-type contact layer 17 includes a p-type impurity with a higher concentration than the concentration of the n-type impurity of the n-type emitter layer 15. For example, the p-type contact layer 17 is formed so that the p-type contact layer 17 contacts the insulating film 53, and the n-type emitter layer 15 remains at a position contacting the insulating film 43.
As shown in
As shown in
Continuing, the semiconductor wafer 100 is thinned to a prescribed wafer thickness by polishing or etching the backside of the semiconductor wafer 100. The n-type buffer layer 23 and the p-type collector layer 21 are formed at the backside of the semiconductor wafer 100 (referring to
As shown in
The first terminal GP1 and the second terminal GP2 are electrically isolated from each other. The first terminal GP1 and the second terminal GP2 are electrically insulated from the semiconductor part 10 and the emitter electrode 30. For example, the first gate voltage VG1 is applied from a gate control circuit 60 to the first control electrode 40 via the first terminal GP1. For example, the second gate voltage VG2 is applied from the gate control circuit 60 to the second control electrode 50 via the second terminal GP2. A collector voltage VCE is applied between the collector electrode 20 and the emitter electrode 30.
As shown in
The second gate voltage VG2 shown in
In the control method described above, the first voltage is not limited to 0 V, but may be positive voltages lower than the threshold voltages of the first control electrode 40 and the second control electrode 50.
At turn-on shown in
As shown in
An n-type inversion layer NIV2 is induced at the interface between the p-type base layer 13 and the insulating film 53 by the potential of the second control electrode 50. The p-type charge-ejecting layer 25 is inverted to the n-type by electrons concentrating around the second control electrode 50. For example, the second gate voltage VG2 of positive 15 V applied between the second control electrode 50 and the emitter electrode 30 is higher than the threshold voltage that induces the n-type inversion layer NIV2 at the interface between the p-type base layer 13 and the insulating film 53.
Because the p-type contact layer 17 is interposed between the n-type inversion layer NIV2 and the emitter electrode 30, electrons are not injected from the emitter electrode 30 to the n-type base layer 11 via the n-type inversion layer NIV2.
Also, because the p-type charge-ejecting layer 25 is inverted to the n-type, a depletion layer spreads inside the n-type base layer 11 positioned between the first control electrode 40 and the second control electrode 50; and the ejection path of the holes from the n-type base layer 11 to the p-type base layer 13 becomes narrow. Therefore, the ejection of the holes from the n-type base layer 11 to the emitter electrode 30 via the p-type base layer 13 is suppressed. As a result, the densities of the electrons and the holes inside the n-type base layer 11 increase, and the on-resistance of the semiconductor device 1 can be reduced.
In the state directly before the turn-off shown in
As shown in
On the other hand, the n-type inversion layer NIV2 that had been induced at the interface between the p-type base layer 13 and the insulating film 53 disappears, and the p-type charge-ejecting layer 25 returns to the p-type. Thereby, the depletion layer of the n-type base layer 11 disappears, and the holes in the n-type base layer 11 are ejected to the emitter electrode 30 via the p-type base layer 13 and the p-type contact layer 17.
The ejection of the holes from the n-type base layer 11 is promoted by the additional movement of the holes from the n-type base layer 11 to the p-type base layer 13 via the p-type charge-ejecting layer 25. Thereby, the densities of the electrons and the holes decrease in the n-type base layer 11. When turning off the semiconductor device 1 (at the time t3), the time for ejecting the holes and the electrons from the n-type base layer 11 can be shortened.
Even when the p-type charge-ejecting layer 25 is not provided in the semiconductor device 1, for example, such a switching control can be performed by applying negative 15 V to the second control electrode 50. In other words, it is also possible to promote the ejection of the holes from the n-type base layer 11 by inducing the p-type inversion layer between the n-type base layer 11 and the insulating film 53 while maintaining the second gate voltage VG2 at negative 15 V in the period at and after the time t2 (referring to
In the semiconductor device 1 according to the embodiment, the drop amount of the second gate voltage VG2 can be reduced by providing the p-type charge-ejecting layer 25, and thus, such constraints can be relaxed in the circuit design. In other words, it is possible to simplify the configuration of the gate control circuit 60 (referring to
When the p-type charge-ejecting layer 25 exists while turning on the semiconductor device 1 (the period from the time t1 to the time t2), the ejection of the holes from the n-type base layer 11 to the p-type base layer 13 is promoted. Therefore, the density of the electrons and holes inside the n-type base layer 11 decreases, and the on-resistance increases.
In the gate control circuit 60 according to the embodiment, for example, the second gate voltage VG2 that is applied to the second control electrode 50 is set to a positive voltage at the same level as the first gate voltage VG1 applied to the first control electrode 40 at turn-on. Thereby, the p-type charge-ejecting layer 25 is inverted to the n-type, and the ejection path of the holes via the p-type charge-ejecting layer 25 disappears. As a result, the density of the holes and the electrons can be increased in the n-type base layer 11, and the on-resistance can be reduced.
To perform such a control, the p-type charge-ejecting layer 25 has preferably the layer thickness in the direction from the insulating film 53 toward the n-type base layer 11 such that the entire p-type charge-ejecting layer 25 can be inverted to the n-type with the electrons that are concentrated at the vicinity of the insulating film 53 by the potential of the second control electrode 50.
As shown in
The n-type barrier layer 27 includes an n-type impurity with a higher concentration than the concentration of the n-type impurity in the n-type base layer 11. Also, the n-type barrier layer 27 includes an n-type impurity with a lower concentration than the concentration of the n-type impurity in the n-type emitter layer 15.
By providing the n-type barrier layer 27, the potential barrier to the holes is increased between the n-type base layer 11 and the p-type base layer 13, and the movement of the holes from the n-type base layer 11 to the p-type base layer 13 is suppressed. Thereby, the densities of the electrons and the holes in the n-type base layer 11 increase at turn-on, and the on-resistance can be reduced.
The p-type charge-ejecting layer 25 extends between the n-type barrier layer 27 and the insulating film 53, and is linked to the p-type base layer 13. For example, the p-type charge-ejecting layer 25 includes a p-type impurity with a higher concentration than the concentration of the n-type impurity in the n-type barrier layer 27.
In the example shown in
For example, also in the switching control of the semiconductor device 2, the first gate voltage VG1 shown in
As shown in
In the example, the n-type barrier layer 27 is provided between the p-type base layer 13 and the p-type charge-ejecting layer 25, and the p-type charge-ejecting layer 25 is not linked to the p-type base layer 13. For example, the n-type impurity in the second region 27b of the n-type barrier layer 27 is compensated by the p-type impurity of the p-type diffusion layer 103 (referring to
As shown in
The n-type inversion layer NIV2 is induced at the interface between the p-type base layer 13 and the insulating film 53 by the potential of the second control electrode 50. Also, the p-type charge-ejecting layer 25 is inverted to the n-type with electrons concentrated around the second control electrode 50.
Because the p-type contact layer 17 is interposed between the n-type inversion layer NIV2 and the emitter electrode 30, electrons are not injected from the emitter electrode 30 to the n-type base layer 11 via the n-type inversion layer NIV2.
Also, because the p-type charge-ejecting layer 25 is inverted to the n-type, a depletion layer spreads inside the n-type base layer 11 positioned between the first control electrode 40 and the second control electrode 50, and thus, the ejection path of the holes from the n-type base layer 11 to the p-type base layer 13 becomes narrow. The ejection of holes from the n-type base layer 11 to the emitter electrode 30 via the p-type base layer 13 is suppressed thereby. As a result, the densities of the electrons and the holes increase in the n-type base layer 11, and the on-resistance is reduced.
As shown in
At the interface between the p-type base layer 13 and the insulating film 53, the n-type inversion layer NIV2 disappears, and the p-type charge-ejecting layer 25 returns to the p-type. Also, a p-type inversion layer PIV1 is induced at the interface between the n-type barrier layer 27 and the insulating film 53. In other words, since the electron density in the second region 27b of the n-type barrier layer 27 is reduced, the p-type inversion layer PIV1 can be induced by reducing the potential of the second control electrode 50, for example, from positive 15 V to negative 5 V.
The p-type inversion layer PIV1 electrically connects the p-type base layer 13 and the p-type charge-ejecting layer 25 and promotes the movement of the holes from the n-type base layer 11 to the p-type base layer 13. Thereby, the densities of the electrons and the holes in the n-type base layer 11 can be reduced beforehand, and the switching loss can be reduced in the turn-off period.
Also, in the example, the drop amount of the second gate voltage VG2 can be reduced. Accordingly, it is possible to relax the constraints of the gate control circuit 60 (referring to
As shown in
Also, in the semiconductor device 4, the first gate voltage VG1 shown in
The p-type charge-ejecting layer 33 is provided so that the entire p-type charge-ejecting layer 33 is inverted to the n-type when the second control electrode 50 has a positive potential. In the example, the gate control circuit 60 (referring to
As shown in
In the process shown in
As shown in
Also, in the example, the first gate voltage VG1 shown in
Since the n-type barrier layer 27 is provided between the p-type base layer 13 and the p-type charge-ejecting layer 25, the p-type charge-ejecting layer 25 is not linked to the p-type base layer 13. For example, the n-type impurity in the second region 27b of the n-type barrier layer 27 is compensated by the p-type impurity in the p-type region 115 (referring to
Also, in the example, the first gate voltage VG1 shown in
For example, the gate voltage VG2 of negative 5 V is applied between the emitter electrode 30 and the second control electrode 50 directly before the turn-off period (i.e., the period from the time t2 to the time t3). Thereby, the p-type inversion layer PIV1 (referring to
Thus, by providing the p-type charge-ejecting layer 33, for example, the drop amount of the gate voltage VG2 of the second control electrode 50 can be reduced at the time t2 (referring to
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2020-043815 | Mar 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20110012171 | Kobayashi | Jan 2011 | A1 |
20110272708 | Yoshioka | Nov 2011 | A1 |
20120012929 | Saito | Jan 2012 | A1 |
20120146091 | Tanabe et al. | Jun 2012 | A1 |
20120217555 | Saito | Aug 2012 | A1 |
20130146941 | Andou | Jun 2013 | A1 |
20140203356 | Kagata | Jul 2014 | A1 |
20150200248 | Ono | Jul 2015 | A1 |
20150262999 | Ogura | Sep 2015 | A1 |
20160049509 | Tomita | Feb 2016 | A1 |
20160071940 | Okumura | Mar 2016 | A1 |
20160093719 | Kobayashi | Mar 2016 | A1 |
20190081162 | Gejo | Mar 2019 | A1 |
20190096989 | Yoshida | Mar 2019 | A1 |
20190296133 | Iwakaji et al. | Sep 2019 | A1 |
20190296134 | Matsudai et al. | Sep 2019 | A1 |
20190326118 | Naito | Oct 2019 | A1 |
20200091326 | Iwakaji et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
2013-84905 | May 2013 | JP |
5594276 | Sep 2014 | JP |
2019-169575 | Oct 2019 | JP |
2019-169597 | Oct 2019 | JP |
2020-047790 | Mar 2020 | JP |
Number | Date | Country | |
---|---|---|---|
20210288143 A1 | Sep 2021 | US |