The present invention relates generally to semiconductor processing, and more specifically, to a semiconductor die having a protective periphery region.
The periphery region of a semiconductor die is typically prone to damage, especially during the packaging processing and reliability testing. Generally, the corners and edges of a semiconductor die are under more stress as compared to the center of the die. For example, during wafer dicing, the die edge could be chipped or cracked otherwise damaged. Also, during packaging processing and reliability testing, the semiconductor die is subjected to thermal cycling, causing additional stress to the corners and edges.
Damage that occurs at the corners and edges of a die easily propagates into the active area of the die, destroying all or parts of the die's interconnection or circuitry and reducing the reliability of devices. For example, cracks may propagate from the edges and corners into the active area of the semiconductor die. Also, the edges and corners are more prone to delamination, which also propagates into the active area, further reducing reliability. Furthermore, technology today uses more materials having low dielectric constant, K, (also referred to as low-K dielectric materials) in fabricating semiconductor die, and these low-K materials typically have low adhesion and mechanical strength, which further exacerbates the problem. Current die protection schemes provide inadequate protection thus resulting in reduced reliability and increased processing cost.
One current die protection scheme used today uses a dual ring scheme having a crack stop ring which prevents passivation cracking and the propagation of these cracks and a seal ring, inside of the crack stop ring, to prevent the ingression of moisture. In this dual ring scheme, the edges of the rings are each formed as a solid continuous line of metal in the various metal layers. The continuous lines of metal within different metal layers are connected to each other through the use of vias in the via layers. However, the vias within each via layer are discontinuous. Therefore, since these rings are formed with solid continuous lines within the various metal layers and the vias are discontinuous within each via layer, propagation of a crack or delamination is not sufficiently prevented, resulting in increased failure of the active circuitry.
The present invention is illustrated by way of example and not limited by the accompanying figures, in which like references indicate similar elements, and in which:
Skilled artisans appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve the understanding of the embodiments of the present invention.
In one embodiment of the present invention, a protective periphery region of the die is used to provide protection to the active area of the semiconductor die. In one embodiment, a honeycomb structure is used to form a protective ring around the active area of the semiconductor die in order to provide protection from moisture, cracking, delamination, etc. Alternatively, other polygon structures or a circular structure may be used to form the protective ring.
Semiconductor die 10 also includes a scribe region 20 located outside of ring 12, between the outer edge of ring 12 and the outer edge of semiconductor die 10. In the illustrated embodiment, ring 12 and ring 14 are illustrated as continuous rings; however, in alternate embodiments, these rings may not be continuous. For example, ring 12, ring 14, or both may include one or more gaps. Also, as will be discussed in more detail below, rings 12 and 14 may have different forms other than the rectangular shape form illustrated in
Note that in the illustrated embodiment, outer edge 34 of ring 12 is a straight edge formed of a conductive material, such as the conductive material used to form the walls of the hexagon cells. The straight edge of outer edge 34 of ring 12 is accomplished by either stacking whole hexagons (such as hexagon 32) with partial hexagons (such as partial hexagon 36), or stacking partial hexagons together. In the illustrated embodiment, the inner edge of ring 12 does not form a straight edge like the outer edge of ring 12. In an alternate embodiment, the outer edge 34 of ring 12 may not form a straight edge by not using partial hexagons. In another alternate embodiment, the inner edge may also form a straight edge, as shown by the dotted line, by the addition of partial hexagons (similar to partial hexagon 36, along the inner edge).
In one embodiment, a width 37 of ring 12 is approximately 2-4 hexagon cells. In alternate embodiments, width 37 may be smaller or larger to accommodate fewer or more hexagon cells. In one embodiment, width 37 is in a range of approximately 1 to 10 microns. Also, note that the hexagons may be of any size, depending on the desired value of width 37 and the desired number of rows of hexagons. For example, in one embodiment a width of a hexagon cell may be approximately one micron.
In alternate embodiments, the cells of ring 12 may have other polygon shapes. For example, rather than hexagon shaped cells, ring 12 may include pentagon shaped cells or octagon shaped cells, etc., or combinations of different cell shapes. Ring 12 may also include combinations of complete polygon shaped cells and partial polygon shaped cells (similar to complete hexagon shaped cell 32 and partial hexagon shaped cell 36). Alternatively, as will be seen below in reference to
In the illustrated embodiment, ring 14 is also formed as a ring of conductive material having a honeycomb structure. That is, ring 14 includes a number of hexagon cells formed in a honeycomb structure (also including both whole hexagons and partial hexagons). The descriptions, examples, and alternatives provided above with respect to ring 12 and the hexagon cells of ring 12 also apply to ring 14 and the hexagon cells of ring 14 (e.g., the same types of shapes, materials, and sizes provided for ring 12 and the cells of ring 12 may also be used for ring 14).
Also, as with ring 12, the outer edge of ring 14 is also formed of a conductive material, such as the conductive material used to form the walls of the hexagon cells. In the illustrated embodiment, the inner edge of ring 14 does not form a straight edge like the outer edge of ring 14; however, in an alternate embodiment, the inner edge may also be formed of a conductive material to form a straight edge. The conductive materials used to form the outer edges, if present, or inner edges, if present, of ring 12 or ring 14 may be the same conductive material used to form the walls of the hexagon cells. Alternatively, a different conductive material may be used.
In one embodiment, a width 39 of ring 14 is approximately 5-7 hexagon cells. In alternate embodiments, width 39 may be smaller or larger to accommodate fewer or more hexagon cells. In one embodiment, width 39 is in a range of approximately 1 to 10 microns. Also, in one embodiment, width 37 is approximately half of width 39. Also, note that the hexagons may be any size, depending on the desired value of width 39 and the desired number of rows of hexagons. For example, in one embodiment a width of a hexagon cell may be approximately one micron. In one embodiment, the cells of ring 12 are of the same size and shape as the cells of ring 14; however, in alternate embodiments, different sized or shaped cells may be used for each ring.
In the illustrated embodiment, rings 12 and 14 are separated by a gap 24 having a width 38. In one embodiment, width 38 is in a range of approximately 1 to 10 microns. In the illustrated embodiment, gap 24 is substantially uniform between the rings. In the illustrated embodiment, gap 24 is filled with one or more dielectric materials. As an alternative embodiment, the gap can be filled with hexagon shaped cells like in rings 12 and 14, thus combining rings 12 and 14 into a wider ring.
Each vertical stack of cell wall portions (such as cell wall portion 48 of via layer 44 and cell wall portion 50 of metal layer 46) forms a wall of a cell within rings 12 and 14. Referring back to
Note that the cell wall portions in each via layer (such as cell wall portion 48 of via layer 44) and the cell wall portions in each metal layer (such as cell wall portion 50 of metal layer 46) are formed as the vias and metal portions (i.e. routing metal) for the interconnection and active circuitry of active area 22 are formed. Therefore, as the vias and metal interconnects are formed in forming the active circuitry, the cell wall portions in the via layers and metal layers of rings 12 and 14 are also formed. Note that conventional processing and materials may be used to form the cell wall portions in the via layers and the cell wall portions in the metal layers of rings 12 and 14.
In one embodiment, the cell wall portions in the via and metal layers include copper. Alternatively, other conductive materials, such as aluminum, gold, or tungsten, or any combination of conductive materials may be used. Note also that the cell wall portions in the via and metal layers may also include other materials or layers as needed, such as, for example, barrier and adhesions layers, as known in the art. Each via layer and metal layer also includes a dielectric material in which the cell wall portions are formed (such as dielectric 54 and dielectric 56, respectively). For example, contact layer 45 overlying substrate 42 may include PSG (phosphate-doped silicon glass), the middle layers (all layers excluding contact layer 45, via layer 44, and metal layer 46) may include a low-K dielectric or a porous low-K dielectric, and the upper layers (via layer 44 and metal layer 46) may include a tetra-ethyl orthosilicate (TEOS) formed oxide. Therefore, note that the dielectric filling within each cell may include different types of dielectric materials.
Also, note that any number of metal and via layers may be used, depending, for example, on the number of layers needed to form the circuitry and interconnection of active area 22. Therefore, note that by stacking the cell wall portions of the via and metal layers, walls of the cells (such as walls 70 to 78) may be formed extending down to substrate 42. Note that in the illustrated embodiment, the cell wall portions in the via layers are thinner than the cell wall portions in the metal layers. In alternate embodiments, the cell wall portions in the via layers and in the metal layers may have different sizes and may also have any shape.
Semiconductor die 10 also includes a passivation layer 58 overlying the uppermost metal layer (metal layer 46 in the illustrated embodiment). In the illustrated embodiment, passivation layer 58 includes openings which expose the cell wall portions of metal layer 46 of ring 12. In one embodiment, the openings in passivation layer 58 may be discontinuous within passivation layer 58. In another embodiment, the opening in passivation layer 58 provides a honeycomb shape overlying the cell wall portions of metal layer 46 of ring 12. These openings are then capped or filled with a conductive material 52 (also referred to as caps 52), such as, for example, aluminum. Alternatively, other conductive materials may be used.
In one embodiment, ring 12 may be referred to as a crack stop ring which prevents passivation cracking and the propagation of these cracks. For example, referring to
In an alternate embodiment, the gap separating these rings 12 and 14 can be eliminated and these two rings can be combined to form a single ring (which at least partially surrounds the active area) to protect the active area. That is, the protective periphery region of semiconductor die 10 may include a single ring which may perform some or all of these protective functions. In this embodiment, the passivation layer above the outer cells within the single ring area may include openings with caps (such as caps 52 of
Note that in the illustrated embodiment of
Note that the use of a polygon shaped cell or circular cell may provide improved crack stop capability and better stress protection. For example, similar to the bee hive of honeycombs demonstrated in nature, the honeycomb or hexagon shaped cell structure surrounding the semiconductor die may provide maximum strength with a minimal amount of conductive material, such as copper. This may therefore provide maximum capability to strengthen die peripheral area. Similarly, a circular cell filled with dielectric material may also provide improved crack stop ability. Also, note that in some embodiments, the actual etching process in forming the hexagonal cell walls would round off the corners of the hexagons, thus making the hexagon close to a circle shape. These rounded hexagon shaped cells not only have good strength, but also are good in preventing crack from propagation. Also, adjusting the ratio of cell wall thickness and cell size can provide a way to control the density of the conductive material used to form the protective rings. Thus, each polygon shaped cell can serve as an individual crack-stop structure and prevent cracks from further propagating into the active circuitry region. This may therefore result in improved reliability.
In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.