Claims
- 1. A semiconductor laser device comprising a semiconductor laser crystal body having a side face and which generates a laser beam and heat during operation, an electrically conductive silicon crystal body having a side face and two opposite main surfaces of a larger area than that of said semiconductor laser crystal body, first means for electrically and thermally connecting said semiconductor crystal body to one of said main surfaces of said silicon crystal body, thereby providing ohmic contact between said silicon crystal body and said semiconductor crystal body, a metal body having a main surface of a larger area than that of said silicon crystal body, and second means spaced from said first connecting means for electrically and thermally connecting the other of said main surfaces of said silicon crystal body to said main surface of said metal body, thereby providing ohmic contact between said silicon crystal body and said metal body, whereby an electrical conduction path is established from said metal body to said semiconductor crystal body through said silicon crystal body.
- 2. The semiconductor laser device of claim 1, in which said one main surface of said silicon crystal body is substantially flat, and said semiconductor laser crystal body is so positioned on the flat main surface of said silicon crystal body that a laser beam from said side face of said semiconductor laser crystal body is emitted without intersection with said first means and said silicon crystal body.
- 3. The semiconductor laser device of claim 2, in which said first means consists of a metallic layer, and said side face of said semiconductor laser crystal body is substantially flush with a side face of said metallic layer and with said side face of said silicon crystal body.
- 4. The semiconductor laser device of claim 1, wherein a plurality of semiconductor lasers are formed in an array in said semiconductor laser crystal body, a plurality of mutually independent electrically conductive regions being formed in said silicon crystal body corresponding to the electrodes of one of said plurality of semiconductor lasers, said electrodes and said electrically conductive regions being electrically connected to each other, said plurality of semiconductor lasers being able to be driven independently of each other.
- 5. The semiconductor laser device of claim 1, further comprising a diode formed by diffusing an impurity in said silicon crystal body, and means for connecting said diode to said semiconductor laser crystal body so that a bypass is formed for said semiconductor laser crystal body in the event a reverse voltage is applied thereto.
- 6. The semiconductor laser device of claim 1, further comprising a photodiode formed in said silicon crystal body in an area where an output beam from said semiconductor laser crystal body falls and means for controlling said current-supplying means in response to the output current of said photodiode.
- 7. The semiconductor laser device of claim 1, in which said side face of said silicon crystal body is substantially flat and perpendicular to said flat main surface of said silicon crystal body, and said laser crystal body is positioned at the edge of said main surface of said silicon crystal body so that said side face of said semiconductor laser crystal is substantially flush with said flat side face of said silicon crystal body.
- 8. A semiconductor laser device comprising a semiconductor laser crystal body having a side face and which generates a laser beam and heat during operation, an electrically conductive silicon crystal body having a side face and two opposite main flat surfaces of a larger area than that of said semiconductor laser crystal body in the direction of said laser beam and in which said side face of said silicon crystal body is substantially perpendicular to said main flat surfaces, first means for electrically and thermally connecting said laser crystal body to one of said main flat surfaces of said silicon crystal body with said side face of said laser crystal body substantially flush with said side face of said silicon body, thereby providing ohmic contact between said laser crystal body and said silicon crystal body, a metal body having a main surface of a larger area than that of said silicon crystal body, second means separated from said first connecting means for electrically and thermally connecting the other of said main flat surfaces of said silicon crystal body to said main surface of said metal body and thereby providing ohmic contact between said silicon crystal body and said metal body, a lead wire bonded to another part of said crystal body, and means for supplying electrical current between said metal body and said lead wire.
Priority Claims (4)
Number |
Date |
Country |
Kind |
49-121124 |
Oct 1974 |
JA |
|
49-121123 |
Oct 1974 |
JA |
|
49-115560 |
Sep 1974 |
JA |
|
49-114616 |
Sep 1974 |
JA |
|
Parent Case Info
This is a continuation of Ser. No. 613,428, filed Sept. 15, 1975 now abandoned.
US Referenced Citations (8)
Non-Patent Literature Citations (2)
Entry |
Patlach, "Laser Packaging" IBM Technical Disclosure Bulletin, vol. 13, No. 2, Jul. 1970, pp. 337-338. |
Hutchins, IBM Technical Disclosure Bulletin, vol. 17, No. 1, Jun. 1974, p. 282. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
613428 |
Sep 1975 |
|