1 . . . semiconductor laser apparatus; 2a, 2b, 2c . . . semiconductor laser array; 10a, 10a′, 10a″, 10b, 10c heat sink; 100a, 100b, 100c . . . semiconductor laser unit; 200 . . . semiconductor laser stack; 400 . . . refrigerant; and 500 . . . chiller (refrigerant supplier).
In the following, embodiments of a semiconductor laser apparatus according to the present invention will hereinafter be described in detail with reference to
The chiller 500 comprises an air-cooling unit 510 and a circulation pump 520. The air-cooling unit 510 is adapted to cool the refrigerant, and the circulation pump 520 is adapted to supply the refrigerant 400 to the semiconductor laser stack 200 via the piping 600.
The refrigerant 400 is comprised of fluorocarbon. Fluorocarbon is a compound in which some or all of the hydrogen atoms in the hydrocarbons are replaced by fluorine atoms. Since fluorine atoms have an atomic radius larger than that of hydrogen atoms, the atomic framework of the carbons becomes as when covered with the fluorine atoms after fluorine atoms are replaced. Also, since fluorine atoms have a high electronegativity, an electron cloud exists locally nearer the fluorine atoms. This causes the electron concentration in the framework portion of the carbons to be reduced, resulting in a significant reduction in reactivity. As a result, fluorocarbon has a high chemical stability to react with few substances. Further, since fluorocarbon has a significantly high resistivity of 1013 Ω·m relative to that of water 107 Ω·m, electrolysis due to energization is not likely to occur unlike water. It is further preferable that the refrigerant be perfluorocarbon, a compound in which all of the hydrogen atoms in the hydrocarbons are replaced by fluorine atoms. Perfluorocarbon, which in particular has a high chemical stability and also a high resistivity, is particularly preferable as the refrigerant.
The heat sinks 10a to 1Oc are comprised of conductive material, and the positive electrode 110, heat sink 10a, semiconductor laser array 2a, n-type electrode 6a, heat sink 1Ob, semiconductor laser array 2b, n-type electrode 6b, heat sink 10c, semiconductor laser array 2c, n-type electrode 6c, and negative electrode 120 are connected electrically in this order. Applying a voltage between the positive and negative electrodes 110 and 120 allows the semiconductor laser arrays 2a to 2c to emit a laser beam.
Each of the semiconductor laser arrays 2a to 2c includes a plurality of linearly arranged semiconductor laser elements, and therefore has a plurality of laser emitting spots arranged in a line. The present embodiment adopts semiconductor laser arrays in which a plurality of semiconductor laser elements are integrated in a monolithic manner. In such semiconductor laser arrays, active layers and electrodes are commonly divided by a plurality of stripe waveguides to be arranged in parallel. Additionally, the semiconductor laser apparatus according to the present invention may adopt semiconductor laser arrays having a structure in which a plurality of independent semiconductor laser chips are arranged in line, instead of the semiconductor laser arrays having such a structure as mentioned above.
The supply and discharge ports 160 and 180 are provided in such a manner as to penetrate through the semiconductor laser units 100a to 100c. The supply port 160 is connected to supply ports 160a to 160c formed in the respective semiconductor laser units 100a to 100c (described hereinafter in detail), while the discharge port 180 is connected to discharge ports 180a to 180c formed in the respective semiconductor laser units 100a to 100c (described hereinafter in detail). This enables the refrigerant made of fluorocarbon to be supplied to the heat sinks 100a to 100c through the supply port 160 and also to be discharged from the heat sinks 100a to 100c through the discharge port 180.
Next, the semiconductor laser units 100a to 100c will be explained. In addition, since the semiconductor laser units 100a to 100c have the same structure, only the semiconductor laser unit 100a will be explained below.
The semiconductor laser unit 100a comprises the semiconductor laser array 2a, dummy spacer 4a, n-type electrode 6a, sealing silicon rubber 8a, and heat sink l0a. The semiconductor laser array 2a, dummy spacer 4a, and sealing silicon rubber 8a are mounted on the upper surface of the heat sink 10a. The dummy spacer 4a mounted adjacent to the semiconductor laser array 2a has approximately the same thickness as the semiconductor laser array 2a, and the n-type electrode 6a is mounted on the dummy spacer 4a and the semiconductor laser array 2a. The sealing silicon rubber 8a with the supply and discharge ports 160a and 180a provided therein in a penetrating manner functions in such a manner as to ensure insulation against a heat sink to be stacked thereon and to prevent leakage of the refrigerant.
The upper plate member 40 is also a copper plate with a thickness of about 400 μm, and has two through holes 42, 44 in positions corresponding to those of the through holes 22, 24 in the lower plate member 20. In the lower surface of the upper plate member 40 (to be brought into contact with the intermediate plate member 30), a refrigerant flow path depressed portion 46 (second depressed portion), having a depth of about 200 μm, is formed. The refrigerant flow path depressed portion 46 has a bell shape, the top of the bell shape is in communication with the through hole 44, and the bottom of the bell shape extends toward one end of the upper plate member 40 (in the direction in which the semiconductor laser array 2a is to be disposed). Meanwhile, as shown in
The intermediate plate member 30 is a copper plate with a thickness of about 100 μm, and has through holes 32, 34 in positions corresponding to those of the through holes 22, 24 in the lower plate member 20. Also, a screw hole 38 is provided in a position corresponding to that of the screw hole 28 in the lower plate member 20. Further, a plurality of conduit holes 36 is formed in a portion in which the semiconductor laser array 2a is to be disposed.
When the upper surface of the lower plate member 20 and the lower surface of the intermediate plate member 30 are joined, and when the upper surface of the intermediate plate member 30 and the lower surface of the upper plate member 40 are joined, the refrigerant flow path depressed portion 26 formed in the lower plate member 20 and the lower surface of the intermediate plate member 30 form a space that defines a part of the refrigerant flow path. Similarly, the refrigerant flow path depressed portion 46 formed in the upper plate member 40 and the upper surface of the intermediate plate member 30 form a space that defines a part of the refrigerant flow path.
When the through hole 22 formed in the lower plate member 20, the through hole 32 formed in the intermediate plate member 30, and the through hole 42 formed in the upper plate member 40 are connected, the supply port 160a for supplying the refrigerant to the refrigerant flow path is formed. On the other hand, when the through hole 24 formed in the lower plate member 20, the through hole 34 formed in the intermediate plate member 30, and the through hole 44 formed in the upper plate member 40 are connected, the discharge port 180a for discharging the refrigerant from the refrigerant flow path is formed.
Then, the refrigerant flow path is formed by a combination of the supply port 160a, the refrigerant flow path depressed portion 26, the conduit holes 36, the refrigerant flow path depressed portion 46, and the discharge port 180a. The conduit holes 36 are fine flow paths having a width of 1 μm or less. Here, the diameter of the conduit holes 36 is sufficiently small to shed the refrigerant into the refrigerant flow path depressed portion 46 to be turbulent jet flow. Further, in order to bring the refrigerant into turbulent jet flow, the refrigerant flowing inside the heat sink 10a is preferably controlled to have a flow velocity of 1 m/s or more, and more preferably 2 /s or more. On the other hand, since the conduit holes 36 are provided in plurality, the refrigerant flowing through the refrigerant flow path is controlled to have a flow velocity of 10 m/s or less across the entire refrigerant flow path. The flow velocity of the refrigerant is to be controlled by, for example, adjusting the refrigerant supply pressure of the circulation pump 520 in the chiller 500 shown in
Next, the functions of the semiconductor laser apparatus according to the present invention will be explained.
In the present semiconductor laser apparatus, fluorocarbon is adopted as a refrigerant instead of water, which has conventionally been adopted.
It has conventionally been known that the heat transfer characteristics of fluorocarbon are significantly inferior to those of water, and have not been adopted as a refrigerant for semiconductor laser arrays. As shown in
However, the present inventors have actually carried out experiments under the assumption that fluorocarbon and water are each adopted as a refrigerant for the heat sinks in the semiconductor laser apparatus to find that the heat transfer characteristics of fluorocarbon are better than expected. The actually measured values (indicated by symbols “♦” and symbols “◯”) shown in
The reason that the heat transfer characteristics of fluorocarbon are thus found better in the actually measured values obtained by simulating the semiconductor laser apparatus than in the calculated values can be considered as follows. That is, the surface tension of fluorocarbon is smaller than that of water. Therefore, when fluorocarbon is flowed through such a fine refrigerant flow path as in the semiconductor laser apparatus, the fluorocarbon can proceed into finer portions in the refrigerant flow path, resulting in a more increased thermal conduction effect than expected. Accordingly, it can be considered that the thermal resistance gets smaller than the calculated values.
As described above, it is found that fluorocarbon can achieve a cooling efficiency close to that of water if adopted as a refrigerant for the heat sinks in the semiconductor laser apparatus. Then, fluorocarbon, which has a significantly higher chemical stability and a lower conductivity than water, has potential for prevention of corrosion of the refrigerant flow path.
Meanwhile, it is found that fluorocarbon is more likely to generate cavitations than water if adopted as a refrigerant. Cavitation is a phenomenon of generating voids in fluid due to evaporation of the fluid and/or separation of dissolved gas, etc., that may occur in portions having a locally lower pressure caused by the flowing of the fluid. When cavitations may occur, the contact area with the heating element is to be reduced, resulting in a reduction in heat exchange efficiency.
The risk of generating cavitations depends also on the change in the flow velocity of the refrigerant. When the flow velocity of the refrigerant changes significantly, cavitations are likely to occur even if the average flow velocity of the refrigerant may be the same. The flow velocity of the refrigerant is in inverse proportion to the cross-sectional area of the refrigerant flow path. Hence, the present invention is designed in such a manner that the change in the cross-sectional area of the refrigerant flow path in the heat sinks is within ±30%.
When the semiconductor laser apparatus 1 having such a structure as shown in
The refrigerant 400 comprised of fluorocarbon and flowing through the heat sinks 10a to 10c, which is controlled to have a flow velocity of 1 to 10 m/s, can achieve efficient cooling without generating cavitations. Further, since the change in the cross-sectional area of the refrigerant flow path in the heat sinks is restrained within ±30%, it is also possible to avoid the occurrence of cavitations due to flow velocity change. This allows the semiconductor laser arrays 2a to 2c to be cooled efficiently with no erosion of the refrigerant flow path.
Further, since the refrigerant 400 comprised of fluorocarbon cannot corrode the refrigerant flow path, it is possible to cool the semiconductor laser arrays 2a to 2c stably over a long period of time. Accordingly, it is possible to extend the element lifetime and to achieve stable light output.
In addition, although the foregoing embodiments describe the semiconductor laser apparatuses with jet-cooling-type heat sinks adopted therein, microchannel-type heat sinks may be adopted.
From the invention thus described, it will be obvious that the embodiments of the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
The semiconductor laser apparatus according to the present invention can achieve a high output power of several to 100 W, which therefore is applicable to a light source of, for example, a laser knife, a laser soldering iron, and a laser marker.
Number | Date | Country | Kind |
---|---|---|---|
2004-076939 | Mar 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/03980 | 3/8/2005 | WO | 00 | 6/21/2007 |