1. Technical Field
The disclosure relates generally to semiconductor technology, and more particularly to a semiconductor light emitting device package.
2. Description of the Related Art
With progress in semiconductor light emitting device development, light emitting diodes (LEDs), organic light emitting diodes (OLEDs), and laser diodes (LDs) are becoming increasingly popular, due to longer lifetime, lower power consumption, less heat generation, and compact size. Semiconductor light emitting device packages provide a reflector to accommodate the light field of the semiconductor light emitting devices. Generally, the reflector is polyphthalamide (PPA) or polypropylene (PP), having limited reflection due to luminous absorption that results in light extraction reduction. What is needed, therefore, is a semiconductor light emitting device package which can overcome the described limitations.
Exemplary embodiments of the disclosure will now be described with reference to the accompanying drawings.
As shown in
The lead frame 20 comprises a carrier 201 and a connection 202, electrically disconnected from each other. The semiconductor light emitting device 10 is disposed on the carrier 201 and is electrically connected to the connection 202 by conductive wire 40. In the disclosure, a portion of the lead frame 20 is encapsulated by the reflector 30.
The semiconductor light emitting device 10 is capable of emitting light of at least one wavelength. Specifically, the semiconductor light emitting device 10 is a III-V or II-VI compound semiconductor able to emit visible or invisible light such as that of ultraviolet, blue, green or multiple wavelengths. Alternatively, the semiconductor light emitting device 10 can be a light emitting diode (LED), organic light emitting diodes (OLED), or laser diode (LD). Moreover, the semiconductor light emitting device 10 can comprise multiple devices able to emit different light of varied wavelengths respectively.
The semiconductor light emitting device package 1 also provides a cover layer 50 encapsulating the semiconductor light emitting device 10 and a portion of the lead frame 20. In the disclosure, the cover layer 50 is silicon oxide, epoxy or any transparent material. Alternatively, the cover layer 50 can comprise diffusers for enhancing light extraction from the cover layer 50.
To obtain white or mixed light emitted from the semiconductor light emitting device package 1, at least one wavelength converting element 60 is doped into the cover layer 50. When the wavelength converting element 60 is excited by light emitted from the semiconductor light emitting device 10, thereafter, converted light is emitted from the wavelength converting element 60 to mix with other light from the semiconductor light emitting device 10 to generate white or mixed light. In the disclosure, the wavelength converting element 60 is YAG, TAG, silicate, nitride, nitrogen oxides, phosphide, sulfide or combination thereof.
The reflector 30 is allocated on the lead frame 20, comprising a first reflective surface 31 surrounding the semiconductor light emitting device 10. In the disclosure, the reflector 30 is plastic, ceramic, silicon or metal. Referring to
As shown in
According to the disclosure, the plurality of reflective nanometer-structures is formed on the reflective surface of the semiconductor light emitting device package and enhances light emitting efficiency and centralize light to a desired direction. Additionally, while the plurality of second reflective nanometer-structures is formed on the lead frame, the superficial surface and thermal-dissipative efficiency of the lead frame are increased simultaneously.
It is to be understood, however, that even though numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structure and function of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
99102580 A | Jan 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6642547 | Matsubara et al. | Nov 2003 | B2 |
6674096 | Sommers | Jan 2004 | B2 |
7294912 | Takeuchi et al. | Nov 2007 | B2 |
20060097366 | Sirinorakul et al. | May 2006 | A1 |
20060170335 | Cho et al. | Aug 2006 | A1 |
20060285804 | Kinoshita | Dec 2006 | A1 |
20090244903 | Wong et al. | Oct 2009 | A1 |
20090267104 | Hsu et al. | Oct 2009 | A1 |
20110186888 | Chien | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110186891 A1 | Aug 2011 | US |