Semiconductor memory device

Information

  • Patent Application
  • 20080049515
  • Publication Number
    20080049515
  • Date Filed
    August 21, 2007
    17 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
Obtained is a highly-reliable non-volatile memory without increasing the area of a memory cell or adding a step to a CMOS process. The non-volatile memory includes an SRAM cell configured of 6 MOS transistors, a first word line electrically connected to the gate of a first transfer MOS transistor, and a second word line electrically connected to the gate of a second transfer MOS transistor. During a write operation of a first PMOS transistor, a drive circuit applies a positive voltage whose absolute value is not larger than a junction breakdown voltage to an n-type well as well as the sources of first and second PMOS transistors, concurrently applying the positive voltage to the first word line and a ground voltage to the second word line and a first data line.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, advantages and features of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a circuit diagram schematically showing a configuration of a memory cell in the semiconductor memory device according to Embodiment 1 of the present invention,



FIG. 2 is a partially cross-sectional view schematically showing a configuration of a first PMOS transistor in the memory cell in the semiconductor memory device according to Embodiment 1 of the present invention,



FIG. 3 is a table showing voltage conditions for operating the memory cell in the semiconductor memory device according to Embodiment of the present invention,



FIG. 4 is a circuit diagram schematically showing a configuration of an SRAM-integrated basic circuit according to Example 3,



FIG. 5. is an explanatory diagram schematically showing a cross-sectional structure of a p-channel non-volatile memory cell included in a semiconductor device according to Example 4,



FIG. 6 shows an equivalent circuit of a source-line-division p-channel non-volatile memory cell included in the semiconductor device according to Example 4, and



FIG. 7 is an explanatory diagram showing examples of voltage conditions for operating the source-line-division p-channel non-volatile memory cell included in the semiconductor device according to Example 4.





DESCRIPTION OF THE PREFERRED EMBODIMENT
Embodiment 1


FIG. 1 is a circuit diagram schematically showing a configuration of a memory cell in the semiconductor memory device according to Embodiment 1 of the present invention. FIG. 2 is a partially cross-sectional view schematically showing a configuration of a first PMOS transistor in the memory cell in the semiconductor memory device according to Embodiment of the present invention. FIG. 3 is a table showing voltage conditions for operating the memory cell in the semiconductor memory device according to Embodiment of the present invention.


The semiconductor memory cell includes an SRAM (Static Random Access Memory) memory cell which does not need an operation for holding accumulated data (a refresh operation) (see FIG. 1). The SRAM cell includes PMOS transistors P1 and P2, NMOS transistors N1 and N2, and transfer MOS transistors T1 and T2. It is noted that PMOS and NMOS indicates to P-channel metal oxide semiconductor and N-channel metal oxide semiconductor, respectively.


The PMOS transistors P1 and P2 are formed in an n-type well 2 electrically connected to an n-type wiring NW, and thus constitute a flip flop. The gate of the PMOS transistor P1 is electrically connected to the gate of NMOS transistor N1, the drain of the PMOS transistor P2, the source of the NMOS transistor N2 and the drain of the transfer MOS transistor T2. The source of the PMOS transistor P1 is electrically connected to a first power supply wiring VDD. The gates of NMOS and PMOS may be made of a conductive material such as poly-silicon. The drain of the PMOS transistor P1 is electrically connected to the source of the NMOS transistor N1, the gate of the PMOS transistor P2, the gate of the NMOS transistor N2 and the drain of the transfer MOS transistor T1. The gate of the PMOS transistor P2 is electrically connected to the gate of the NMOS transistor N2, the drain of the PMOS transistor P1, the source of the NMOS transistor N1 and the drain of the transfer MOS transistor T1. The source of the PMOS transistor P2 is electrically connected to a first power supply wiring VDD. The drain of the PMOS transistor P2 is electrically connected to the source of the NMOS transistor N2, the gate of the PMOS transistor P1, the gate of the NMOS transistor N1 and the drain of the transfer MOS transistor T2.


The NMOS transistors N1 and N2 are formed in the p-type well. The gate of the NMOS transistor N1 is electrically connected to the gate of the PMOS transistor P11, the drain of the PMOS transistor P2, the source of the NMOS transistor N2 and the drain of the transfer MOS transistor T2. The source of the NMOS transistor N1 is electrically connected to the drain of the PMOS transistor P1, the gate of the PMOS transistor P2, the gate of the NMOS transistor N2 and the drain of the transfer MOS transistor T1. The drain of the NMOS transistor N1 is electrically connected to a second power supply wiring VSS. The gate of the NMOS transistor N2 is electrically connected to the gate of the PMOS transistor P2, the drain of the PMOS transistor P1, the source of the NMOS transistor N1 and the drain of the transfer MOS transistor T1. The source of the NMOS transistor N2 is electrically connected to the drain of the PMOS transistor P2, the gate of the PMOS transistor P1, the gate of the NMOS transistor N1 and the drain of the transfer MOS transistor T2. The drain of the NMOS transistor N2 is electrically connected to the second power supply wiring VSS.


The transfer MOS transistors T1 and T2 are selection transistors for choosing between a first storage node configured of the PMOS transistor P1 and the NMOS transistor N1 and a second storage node configured of the PMOS transistor P2 and the NMOS transistor N2. The gate of the transfer MOS transistor T1 is electrically connected to a first word line W1. The source of the transfer MOS transistor T1 is electrically connected to a first data line D1. The drain of the transfer MOS transistor T1 is electrically connected to the drain of the PMOS transistor P1, the source of the NMOS transistor N1, the gate of the PMOS transistor P2 and the gate of the NMOS transistor N2. The gate of the transfer MOS transistor T2 is electrically connected to a second word line W2. The source of the transfer MOS transistor T2 is electrically connected to a second data line D2. The drain of the transfer MOS transistor T2 is electrically connected to the gate of the PMOS transistor P1, the gate of the NMOS transistor N1, the drain of the PMOS transistor P2 and the source of the NMOS transistor N2. It should be noted that, unlike Conventional Example 3 (see FIG. 4), the gates of the transfer MOS transistors T1 and T2 are not electrically connected to each other in the case of Embodiment 1, and that the first and second word lines W1 and W2 are not electrically connected to each other.


Albeit not illustrated, a peripheral region of the. SRAM cell includes a drive circuit serving as a peripheral circuit. The drive circuit controls voltages applied to the first data line D1, the second data line D2, the first word line W1, the second word line W2, the first power supply wiring VDD, the second power supply wiring VSS, a n-type well wiring NW and a substrate interconnect Vsub. Incidentally, descriptions will be provided for how the drive circuit controls the voltages.


Descriptions will be provided next for how the semiconductor memory device according to Embodiment 1 of the present invention operates.


In a case where data is written in the PMOS transistor P1, the drive circuit applies a write voltage VPP to the n-type well wiring NW and the first power supply wiring VDD. The write voltage VPP is a positive voltage, and its absolute value is not larger than a junction breakdown voltage. Thus, the second power supply wiring VSS is floated (Float, open). In addition, the positive voltage VPP is applied to the first word line W1; a ground voltage GND is applied to the first data line D1; and the ground voltage GND is applied to the second word line W2. Thus, the second data line D2 is floated (Float, open) Furthermore, the ground voltage GND is applied to the substrate interconnect Vsub (see FIGS. 1 to 3). Thereby, the write voltage VPP is applied to the n-type well 2 and the source of the PMOS transistor P1. The transfer MOS transistor T1 is turned on, and thus the ground voltage GND is applied to the drain of the PMOS transistor P1 (see FIG. 2). By this, while electrons 6 flow from a p+ diffusion layer 3a as the source of the PMOS transistor P1 to a p+ diffusion layer 3b as the drain of the PMOS transistor P1, parts of electrons 6 are trapped by a portion of the gate insulating film 4 under the gate electrode 5 of the PMOS transistor P1, the portion being close to the drain. This is a condition in which the data is written in the PMOS transistor P1.


In a case where data is written in the PMOS transistor P2, the drive circuit applies the write voltage VPP to the n-type well wiring NW and the first power supply wiring VDD. The write voltage VPP is a positive voltage, and its absolute value is not larger than the junction breakdown voltage. Thus, the second power supply wiring VSS is floated (Float, open). In addition, the ground voltage GND is applied to the first word line W1. Thus, the first data line D1 is floated (Float, open) Furthermore, the positive voltage VPP is applied to the second word line W2; the ground voltage GND is applied to the second data line D2; and the ground voltage GND is applied to the substrate interconnect Vsub (see FIGS. 1 and 3). Thereby, the write voltage VPP is applied to the n-type well 2 and the source of the PMOS transistor P2. The transfer MOS transistor T2 is turned on, and thus the ground voltage GND is applied to the drain of the PMOS transistor P2. By this, while electrons flow from a p+ diffusion layer as the source of the PMOS transistor P2 to a p+ diffusion layer as the drain of the PMOS transistor P2, parts of electrons are trapped by a portion of the gate insulating film under the gate electrode of the PMOS transistor P2, the portion being close to the drain, in common with the PMOS transistor P1 (see FIG. 2). This is a condition in which the data is written in the PMOS transistor P2.


In a case where data is read from the SRAM cell, the drive circuit applies a positive power supply voltage VCC to the n-type well wiring NW and the first power supply wiring VDD; the ground voltage GND is applied to the second power supply wiring VSS; the positive power supply voltage VCC is applied to the first word line W1; the positive power supply voltage VCC is applied to the second word line W2; and the ground voltage GND is applied to the substrate interconnect Vsub (see FIGS. 1 and 3). Thereby, the power supply voltage VCC is applied to the n-type well 2, the source of the PMOS transistor P1 and the source of the PMOS transistor P2. The transfer MOS transistors T1 and T2 are turned on. By this, the latch is fixed. Subsequently, electric potential conditions of the drain of the PMOS transistor P1 and the source of the NMOS transistor N1 (Data) are outputted to the first data line D1 via the transfer MOS transistor T1. Electric potential conditions of the drain of the PMOS transistor P2 and the source of the NMOS transistor N2 (Bar Data) are outputted to the second data line D2 via the transfer MOS transistor T2. The data is read from the SRAM cell in this manner.


In the case of Embodiment 1, a write operation is performed by accumulating electrons in the gate insulating film 5 instead of in a floating gate including a tunnel oxide film. This makes it possible to provide a highly-reliable semiconductor memory device having a high retention characteristic even through a CMOS process including forming a thin gate insulating film. In addition, because the write operation is performed by accumulating electrons 6 in the gate insulating film 5, electrons 6 trapped in the gate insulating film 5 are unable to move and are fixed there. For this reason, it is only parts of electrons that leak from a vicinity of defects in the gate insulating film 5, even if the gate insulating film 5 is defective. The defects do not affect most of the trapped electrons 6. This makes it possible to realize a non-volatile memory having a highly-reliable retention characteristic even through a process including forming a thin gate insulating film 5. Moreover, because no negative voltage is used during the write operation, the peripheral circuit is simplified. Additionally, because the write operation is performed on the PMOS transistors P1 and P2 by use of the drain avalanche hot electron injection theory, the injection efficiency is high. This makes it possible to increase the write rate.

Claims
  • 1. A semiconductor memory device comprising: first and second PMOS transistors formed on an n-type well;first and second NMOS transistors formed on a p-type well;a first transfer MOS transistor, a source of the first transfer MOS transistor being electrically connected to a first data line, and a drain of the first transfer MOS transistor being electrically connected to a drain of the first PMOS transistor, a source of the first NMOS transistor, a gate of the second PMOS transistor and a gate of the second NMOS transistor;a second transfer MOS transistor, a source of the second transfer MOS transistor being electrically connected to a second data line, and a drain of the second transfer MOS transistor being electrically connected to a drain of the second PMOS transistor, a source of the second NMOS transistor, a gate of the first PMOS transistor and a gate of the first NMOS transistor;a first word line electrically connected to a gate of the first transfer MOS transistor;a second word line electrically connected to a gate of the second transfer MOS transistor; anda drive circuit for controlling voltages applied to at least the n-type well, the sources of the first and second PMOS transistors, the drains of the first and second NMOS transistors, the first word line, the second word line, the first data line, and the second data line,wherein, during a write operation of the first PMOS transistor, the drive circuit applies a positive voltage whose absolute value is not larger than a junction breakdown voltage to the n-type well as well as the sources of the first and second PMOS transistors, concurrently applying the positive voltage to the first word line and a ground voltage to the second word line and the first data line.
  • 2. The semiconductor memory device as claimed in claim 1, wherein, during a write operation of the second PMOS transistor, the drive circuit applies the positive voltage whose absolute value is not larger than the junction breakdown voltage to the n-type well as well as the sources of the first and second PMOS transistors, concurrently applying the positive voltage to the second word line and the ground voltage to the first word line and the second data line.
  • 3. The semiconductor memory device as claimed in claim 1, wherein, during a read operation, the drive circuit applies the positive voltage to the n-type well as well as the sources of the first and second PMOS transistors, concurrently applying the ground voltage to the drains of the first and second NMOS transistors, and the positive voltage to both the first and second word lines.
  • 4. A semiconductor memory device comprising: first and second PMOS transistors formed on an n-type well;first and second NMOS transistors formed on a p-type well;a first transfer MOS transistor containing a control gate coupled to a first word line, a first electrode coupled to a first data line, and a second electrode coupled to a connecting point of the first PMOS transistor and the first NMOS transistor and gates of the second PMOS transistor and the second NMOS transistor;a second transfer MOS transistor containing a control gate coupled to a second word line, a first electrode coupled to a second data line, and a second electrode coupled to a connecting point of the second PMOS transistor and the second NMOS transistor, and a second electrode coupled to gates of the first PMOS transistor and the first NMOS transistor; anda drive circuit, during a write operation of the first PMOS transistor, applying a positive voltage whose absolute value is not larger than a junction breakdown voltage to the n-type well as well as the sources of the first and second PMOS transistors, concurrently applying the positive voltage to the first word line and a ground voltage to the second word line and the first data line.
Priority Claims (1)
Number Date Country Kind
225169/2006 Aug 2006 JP national