Semiconductor memory device

Information

  • Patent Grant
  • 4376985
  • Patent Number
    4,376,985
  • Date Filed
    Wednesday, August 20, 1980
    43 years ago
  • Date Issued
    Tuesday, March 15, 1983
    41 years ago
Abstract
A semiconductor memory device including memory cells, formed by a pair of multi-emitter transistors each having a collector and a base which are cross connected to each other and arranged in row and column directions, and read-out transistors, each having an emitter which is commonly connected to one of the emitters of the multi-emitter transistors, wherein the read-out transistors are arranged in each column. The multi-emitter transistors and the read out transistors are formed in patterns and the characteristics of both the multi-emitter and read-out transistors have the same variation due to a dispersion of the patterns caused by the manufacturing process.
Description

FIELD OF THE INVENTION
The present invention relates to a semiconductor memory device; more particularly to an improvement in a semiconductor memory device having memory cells formed by a pair of multi-emitter transistors, each having a collector and a base cross-connected to each other, and read-out transistors having emitters connected to one of the emitters of the multi-emitter transistors.
BACKGROUND OF THE INVENTION
With an increase in the memory capacity of a semiconductor memory device, the size of the memory cells forming the semiconductor memory device has a tendency to decrease. When the size of the memory cells is decreased, characteristics of the transistors which form the memory cells are affected by a dispersion of the transistors caused by the manufacturing process. For example, as the width of a window for an electrode, such as an emitter electrode varies, or the size of the window for an electrode varies, due to the manufacturing process, the forward current of the diode between the base and emitter of the transistor varies. If the position of the window for the electrode is not at the correct position, the base resistance of the transistor varies. When the characteristics of the transistors which form the memory cells vary due to the manufacturing process, as mentioned above, sometimes, information stored in the memory cells cannot be read out or, the information may be destroyed.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a semiconductor memory device which is not affected by a variation in the characteristics of the transistors. Another object of the present invention is to provide a semiconductor memory device which avoids a decrease in the margin of circuit operation due to a dispersion of the characteristics of the transistors caused during the manufacturing process.
The above mentioned objects can be achieved by a semiconductor memory device having memory cells, formed by a pair of multi-emitter transistors, each having a collector and a base which are cross-connected to each other are arranged in row and column directions, and read-out transistors having an emitter commonly connected to one of the emitters of the multi-emitter transistors arranged in a row direction. The multi-emitter transistors and the read-out transistors are formed by patterns having the same characteristic variation due to a dispersion of the patterns caused during the manufacturing process.
Further features and advantages of the present invention will be apparent from the ensuing description with reference to the accompanying drawings to which, however, the scope of the invention is in no way limited.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a circuit diagram of an example of a conventional semiconductor memory device;
FIG. 2 is a circuit diagram of an embodiment of a semiconductor memory device according to the present invention;
FIGS. 3A and 3B illustrate a plan view of an embodiment of the transistors used in the circuit illustrated in FIG. 2 and a cross-sectional view of an essential portion of the transistors, respectively;
FIGS. 4A and 4B illustrate a plan view of another embodiment of the transistors used in the circuit illustrated in FIG. 2 and a cross-sectional view of an essential portion of the transistors, respectively.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 is a circuit diagram of a conventional semiconductor memory device including a plurality of memory cells MC.sub.11, MC.sub.12, . . . arranged in a row direction and a column direction as illustrated in FIG. 1. Referring to FIG. 1, WD.sub.1, WD.sub.2, . . . denote row selection means for selecting the memory cells MC.sub.11, MC.sub.12 . . . arranged in the row direction, and B.sub.1, B.sub.2, . . . BT.sub.11, BT.sub.12 . . . denote column selection means for selecting the memory cells MC.sub.11, MC.sub.12 . . . arranged in the column direction. Read-out transistors TR.sub.11, TR.sub.12, TR.sub.21, TR.sub.22, . . . are provided in each column so as to read out information stored in the memory cells MC.sub.11, MC.sub.12 . . . . These read-out transistors TR.sub.11, TR.sub.12, TR.sub.21, TR.sub.22 . . . are also used for writing information into the memory cells MC.sub.11, MC.sub.12 . . . , RWC denotes a read and write circuit. As is well known, the memory cells MC.sub.11, MC.sub.12 are formed by multi-emitter transistors TC.sub.1 and TC.sub.2 which form a flip-flop circuit. Emitters TC.sub.12, TC.sub.22 of the multi-emitter transistors TC.sub.1 and TC.sub.2 are connected to a current source i for holding the information in the memory cells, and emitters TC.sub.11, TC.sub. 21 of the multi-emitter transistors TC.sub.1, TC.sub.2 are connected to bit lines B.sub.11 and B.sub.12 respectively.
An operation of the circuit illustrated in FIG. 1 is as described below.
If the row selection means WD.sub.1 and the column selection means B.sub.1 are selected, the memory cell MC.sub.11 is selected. If the transistor TC.sub.1 is in an ON state and the transistor TC.sub.2 is in an OFF state, a current which flows from the emitter TC.sub.12 to the current source i is changed to a current which flows from the emitter TC.sub.11 to the bit line B.sub.11. An emitter of the read out transistor TR.sub.11 is coupled to the emitter TC.sub.11 of the transistor TC.sub.1 and an emitter of the read-out transistor TR.sub.12 is coupled to the emitter TC.sub.21 of the transistor TC.sub.2 so as to operate as a current switch. Therefore, the current from the emitter TC.sub.11 of the transistor TC.sub.1 flows in the bit line B.sub.11 and the current from the emitter of the read-out transistor TR.sub.12 flows in the bit line B.sub.12. Accordingly, the collector of the read-out transistor TR.sub.11 is placed at a high potential level and the collector of the read-out transistor TR.sub.12 is placed at a low potential level, so that the content of the memory cell MC.sub.11 is read out by the read and write circuit RWC.
In the semiconductor memory device illustrated in FIG. 1, the transistors TC.sub.1 and TC.sub.2 and the read-out transistors TR.sub.11 and TR.sub.12 have emitters which are coupled respectively and operated as a current switch. However, the characteristics of the transistors TC.sub.1, TC.sub.2 and the read-out transistors TR.sub.11, TR.sub.12 vary during the manufacturing process. For example, if the size of the window for an emitter electrode varies during the manufacturing process, the forward current through the base and the emitter of the transistors TC.sub.1, TC.sub.2, TR.sub.11, TR.sub.12 disperses, or if the window for the electrode is not at the correct position, the base resistance or the current amplification factor disperses. If the characteristics of the read-out transistors TR.sub.11, TR.sub.12 and the transistors TC.sub.1, TC.sub.2 in the memory cell MC.sub.11 are different, it may not always be possible to correctly read out information stored in the memory cells and the information may even be destroyed.
FIG. 2 is a circuit diagram of one embodiment of the semiconductor memory device according to the present invention, and referring to FIG. 2, portions corresponding to portions illustrated in FIG. 1 are designated by the same symbols as those used in FIG. 1.
The circuit illustrated in FIG. 2 is different from the circuit illustrated in FIG. 1, in that the read-out transistors T.sub.11, T.sub.12 are formed by a multi-emitter transistors, and the emitters Te.sub.11, Te.sub.12 of the read-out transistors T.sub.11, T.sub.12, respectively, are connected to the bit lines B.sub.11 and B.sub.12, respectively, and the emitters Te.sub.12, Te.sub.22 of the read-out transistors T.sub.11, T.sub.12, respectively are connected to bit lines B.sub.21, B.sub.22, respectively.
In the circuit illustrated in FIG. 2, the read-out transistors TR.sub.11, TR.sub.12, TR.sub.21, TR.sub.22 illustrated in FIG. 1 are replaced by the multi-emitter transistors T.sub.11 and T.sub.12, and therefore, the operation of the circuit illustrated in FIG. 2 is quite similar to the circuit illustrated in FIG. 1. Therefore, the operation of the circuit illustrated in FIG. 2 is omitted herein.
FIG. 3A illustrates a plan view of one embodiment of the transistors used in the circuit illustrated in FIG. 2, and FIG. 3B is a cross-sectional view along line A--A of FIG. 3A. In FIG. 3A, the relationship between the memory cells MC.sub.11, MC.sub.12, the read-out transistors T.sub.11, T.sub.12 and the bit lines B.sub.11, B.sub.12, B.sub.21, B.sub.22, are illustrated. Referring to FIG. 3A, e.sub.11, e.sub.21, e.sub.12 and e.sub.22 in the read-out transistors T.sub.11 and T.sub.12 correspond, respectively, to emitters Te.sub.11, Te.sub.21, Te.sub.12, Te.sub.22 of the transistors T.sub.11 and T.sub.12 ; and b and c in the transistors T.sub.11 and T.sub.12 respectively denote a base and collector of the transistors T.sub.11 and T.sub.12. The symbols E.sub.11, E.sub.12, E.sub.21 and E.sub.22 in the memory cell MC.sub.11 correspond to the emitters TC.sub.11, TC.sub.12, TC.sub.21 and TC.sub.22 of the transistors TC.sub.1, TC.sub.2, respectively; and B and C in the memory cell MC.sub.11 correspond to the base and the collector of the transistors TC.sub.1 and TC.sub.2 respectively. Further, in FIG. 3A, SBD denotes a Shottky Barrier diode, and R denotes a resistor.
Referring to FIG. 3B, 11 denotes a substrate, 12 denotes a buried layer, 13 denotes an isolation region, 14 denotes a collector region, 15 denotes an insulation layer, 16 denotes a Shottky Barrier diode corresponding to the SBD of FIG. 3A, 17 denotes a base region, 17a denotes a base electrode corresponding to the base B of FIG. 3A, 18 denotes an emitter region, 18a denotes an emitter electrode corresponding to one of the emitters E.sub.11 or E.sub.12 of FIG. 3A, and 19 denotes a resistor corresponding to the resistor R of FIG. 3A.
A major advantage of the construction illustrated in FIG. 3A is compensation of the variation of the distance between the base B and the emitter E.sub.21 in the cell MC.sub.11 and a variation of the distance between the base B and the emitter E.sub.11 of the memory cell MC.sub.12. As can be understood from FIG. 3A, the construction of each of the transistors TC.sub.1 and TC.sub.2 in the memory cells MC.sub.11 and MC.sub.12 is the same as that of one of the read-out transistors T.sub.11 and T.sub.12. Therefore, if the position or size of the electrode window varies due to the dispersion caused by the manufacturing process, so that the characteristics of the transistor vary, the construction of the read-out transistors T.sub.11 and T.sub.12 becomes equivalent to the construction of the transistors TC.sub.1, TC.sub.2 which form the memory cells MC.sub.11 and MC.sub.12, so that a variation in the characteristics of the transistors can be compensated for. More particularly, the variation in the base resistance, due to the distance between the base and the emitter, of the read-out transistor T.sub.11, having an emitter e.sub.21 connected to the bit line B.sub.21, becomes equivalent to the variation of the base resistance of the transistors in the memory cells, which have emitters commonly connected to the bit line B.sub.21. Furthermore, the transistors, which have emitters commonly connected to the bit line B.sub.12, are varied in a similar fashion. Therefore, read out of the information is not disadvantageously affected, and destruction of the information can be prevented.
FIG. 4A illustrates a plan view of another embodiment of the transistors used in the circuit illustrated in FIG. 2 and FIG. 4B is a cross-sectional view along line B--B of FIG. 4A. Referring to FIGS. 4A and 4B, portions corresponding to portions illustrated in FIGS. 3A and 3B are designated by the same symbols.
The advantage of the construction illustrated in FIG. 4A is in compensation for the dispersion of the current amplification factor of the transistor due to the position of the emitter near an isolation region. As can be understood from FIG. 4A, the construction of the transistors in the memory cells MC.sub.11 and MC.sub.12 are the same as the read-out transistors T.sub.11 and T.sub.12. Therefore, if the position of the emitter varies due to the dispersion caused by the manufacturing process, so that the current amplification factor of the transistor varies, the construction of the read-out transistors T.sub.11 and T.sub.12 becomes equivalent to the construction of the transistors which form the memory cells MC.sub.11, MC.sub.12 . . . having emitters commonly connected to the same bit line as the read-out transistors T.sub.11 and T.sub.12, and the variation of the current amplification factor of the transistors can be compensated for. Therefore, read-out of information is not disadvantageously affected, and destruction of the information can be prevented.
As mentioned above, a semiconductor memory device includes a plurality of memory cells arranged in row and column directions, selection means for selecting the row and the column and read-out transistors which are provided in each column for reading out the information stored in the memory cells. According to the features of the present invention, the read-out transistors and the transistors in the memory cells, which have emitters commonly connected to a common bit line, are formed by the same construction. Therefore, if the characteristics of the transistors vary due to the manufacturing process, the characteristics of the transistors in the memory cells can provide the same characteristics as the read-out transistors so that neither a read out nor a storage of the information in the memory cells is adversely affected.
In the embodiment illustrated in FIG. 2, the emitters Te.sub.11, Te.sub.12, Te.sub.21 and Te.sub.22 of the read-out transistors T.sub.11 and T.sub.12 are connected to the column bit lines B.sub.11, B.sub.12, B.sub.21 and B.sub.22, respectively. However, it is understood that the effect of the present invention can be expected in a case when a transistor having one emitter is used as the read-out transistor, the emitters of which are connected to a column bit line of the memory matrix such as the bit line B.sub.11, and the multi-emitter transistors are used as the read-out transistors the emitters of which are connected two column bit lines such as the bit lines B.sub.12 and B.sub.21.
Claims
  • 1. A semiconductor memory device comprising:
  • an isolation region having a plurality of portions;
  • memory cells, each comprising a pair of multi-emitter transistors each having a collector and a base which are cross-connected to each other and each being surrounded by one of the plurality of portions of said isolation region, said memory cells arranged in row and column directions; and
  • read-out transistors, each having a base and an emitter which is commonly connected to one of the emitters of said multi-emitter transistors, arranged in each column, each of said read-out transistors being surrounded by one of the plurality of portions of said isolation region, each of said pair of multi-emitter transistors formed such that the relative position of said one of the emitters of said multi-emitter transistor, which is commonly connected to the emitter of one of said read-out transistors, to its base and the isolation region is the same as the relative position of said emitter, of said one of said read-out transistors, to its base and the isolation region, so that the characteristics of both the multi-emitter transistors and the read-out transistors have the same variation.
  • 2. A semiconductor memory device as set forth in claim 1, wherein each of said read-out transistors includes a collector and wherein the relative positions of the isolation region and the emitter regions, base regions and collector regions of said multi-emitter transistors and said read-out transistors are the same, so that the characteristics of said read-out transistors and said multi-emitter transistors are the same.
  • 3. A semiconductor memory device as set forth in claim 1, wherein the distance between said commonly connected one of the emitters and the base of said one of said multi-emitter transistors is the same as the distance between said commonly connected emitter and the base of said one of the read-out transistors.
  • 4. A semiconductor memory device as set forth in claim 1, wherein the distance between the isolation region and said commonly connected one of the emitters of said one of said multi-emitter transistors is the same as the distance between the isolation region and said commonly connected emitter of said one of the read-out transistors.
  • 5. A semiconductor memory device comprising:
  • an isolation region having first through sixth portions;
  • first, second, third and fourth bit lines;
  • a first memory cell operatively connected to said first and second bit lines;
  • a second memory cell operatively connected to said third and fourth bit lines, said first and second memory cells arranged in a row;
  • a first read-out transistor having a first emitter operatively connected to said first bit line, having a second emitter operatively connected to said third bit line, having a base and having a collector, said first read-out transistor being surrounded by the first portion of said isolation region; and
  • a second read-out transistor having a first emitter operatively connected to said second bit line, having a second emitter operatively connected to said fourth bit line, having a base and having a collector, said second read-out transistor being surrounded by the second portion of said isolation region;
  • said first memory cell comprising first and second multi-emitter transistors each having a collector and a base which are cross-connected to each other, said first multi-emitter transistor surrounded by the third portion of said isolation region and having a first emitter connected to said first bit line, said second multi-emitter transistor surrounded by the fourth portion of said isolation region and having a first emitter connected to said second bit line;
  • said second memory cell comprising third and fourth multi-emitter transistors each having a collector and a base which are cross-connected to each other and each having an isolation region, said third multi-emitter transistor surrounded by the fifth portion of said isolation region and having a first emitter connected to said third bit line, said fourth multi-emitter transistor surrounded by the sixth portion of said isolation region and having a first emitter connected to said fourth bit line;
  • said first and second multi-emitter transistors formed such that the relative positions of said isolation region to said first emitter and said base in said first and second multi-emitter transistors are the same as the relative positions of said isolation region to said first emitter and said base in said first and second read-out transistors, respectively, so that the characteristics of said first and second multi-emitter transistors and said first and second read-out transistors, respectively, have the same variation.
  • 6. A semiconductor memory device as set forth in claim 5, further comprising:
  • column selection means, operatively connected to said first, second, third and fourth bit lines, for selecting the desired bit lines;
  • row selection means, operatively connected to said first and second memory cells, for selectively accessing said first and second memory cells; and
  • a read-write circuit operatively connected to the bases of said first and second read-out transistors and to the collectors of said first and second read-out transistors.
  • 7. A semiconductor memory device as set forth in claim 5, wherein the distances between said first emitter and said base in said first and second multi-emitter transistors are the same as the distances between said first emitter and said base in said first and second read-out transistors, respectively.
  • 8. A semiconductor memory device as set forth in claim 7,
  • wherein each of said first and second multi-emitter transistors has a second emitter,
  • wherein said first and second emitters, said base and said collector of each of said first and second multi-emitter transistors and said first and second read-out transistors are positioned at the corners of a quadrilateral,
  • wherein said first emitter is positioned adjacent said base in said first multi-emitter transistor and said first read-out transistor, and
  • wherein said first emitter is positioned at a diagonal to said base in said second multi-emitter transistor and said second read-out transistor.
  • 9. A semiconductor memory device as set forth in claim 5, wherein the distance between said isolation region and said first emitter in said first and second multi-emitter transistors are the same as the distances between said isolation region and said first emitter in said first and second read-out transistors, respectively.
  • 10. A semiconductor memory device as set forth in claim 9,
  • wherein each of said first and second multi-emitter transistors has a second emitter;
  • wherein said first and second emitters, said base and said collector of each of said first and second multi-emitter transistors and said first and second read-out transistors are positioned at the corners of a quadrilateral,
  • wherein the first and third portions of said isolation region, respectively surrounding said first read-out transistor and said first multi-emitter transistor, are located at the bottom left corner of said quadrilateral, and
  • wherein the second and fourth portions of said isolation region, respectively surrounding said second read-out transistor and said second multi-emitter transistor, are located at the bottom right corner of said quadrilateral.
Priority Claims (1)
Number Date Country Kind
54/107393 Aug 1979 JPX
US Referenced Citations (1)
Number Name Date Kind
3764825 Stewart Oct 1973