1. Field of the Invention
The present invention relates generally to a semiconductor process, and more specifically, to a semiconductor process that forms at least a recess in a fin-shaped structure beside a gate structure, thereby forming an epitaxial layer having a hexagon-shaped profile structure in the recess.
2. Description of the Prior Art
With increasing miniaturization of semiconductor devices, various Fin-shaped field effect transistor (FinFET) devices have been developed. The Fin-shaped field effect transistor (FinFET) is advantageous for the following reasons. First, manufacturing processes of Fin-shaped field effect transistor (FinFET) devices can be integrated into traditional logic device processes, and thus are more compatible. In addition, since the three-dimensional structure of the FinFET increases the overlapping area between the gate and the substrate, the channel region is controlled more effectively. This therefore reduces drain-induced barrier lowering (DIBL) effect and short channel effect. Moreover, the channel region is longer for the same gate length. Therefore, the current between the source and the drain is increased.
In a current FinFET process, agate structure (which may include a gate dielectric layer, a gate electrode located on the gate dielectric layer, a cap layer located on the gate electrode, and a spacer located beside the gate dielectric layer, the gate electrode and the cap layer) is formed on a substrate having at least a fin-shaped structure. Then, epitaxial layers are formed on the fin-shaped structure beside the gate structure. Thereafter, other processes such as removing spacers of the gate structure may be performed.
However, the epitaxial layers make removal of the spacers difficult. The distance between the epitaxial layers on either side of the gate structure is also too great, resulting in insufficient stress forcing the gate channel below the gate structure, and limited ability to enhance carrier mobility of the gate channel through the epitaxial layers.
Therefore, a semiconductor process, more specifically a FinFET process, which can improve the performance of the epitaxial layers is needed in the industry.
The present invention provides a semiconductor process, that can etch and form at least a recess in a fin-shaped structure beside a gate structure, so that form an epitaxial layer having a hexagon-shaped profile structure in the recess, therefore a Multi-gate MOSFET such as a FinFET or a Tri-gate MOSFET can be formed.
The present invention provides a semiconductor process including the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate. An oxide layer is formed on the substrate without the fin-shaped structure being formed thereon. A gate covering a part of the oxide layer and a part of the fin-shaped structure is formed. An etching process is performed to etch a part of the fin-shaped structure beside the gate, therefore forming at least a recess in the fin-shaped structure. An epitaxial process is performed to form an epitaxial layer in the recess, wherein the epitaxial layer has a hexagon-shaped profile structure.
The present invention provides a semiconductor process, that etches at least a recess having a specific profile structure in the fin-shaped structure beside the gate structure. Thus, an epitaxial layer having a hexagon-shaped profile structure can be formed in the recess, and the performance of the semiconductor structure can therefore be improved. For example, the epitaxial layer formed in the present invention can make spacers easier to be removed. Besides, the epitaxial layer formed in the present invention can be easier to force stresses to the gate channel below the gate structure, so that improving the carrier mobility in the gate channel.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Additionally, please refer to
As shown in
As shown in
In this embodiment, the recess R formed by the etching process will pass through the short axis X of the fin-shaped structure 120, but will not pass through the long axis y of the fin-shaped structure 120, therefore a source/drain region can be formed in the recess R.
As shown in
Thereafter, an ion implantation process may be performed to dope impurities, or impurities may be doped while performing the epitaxial process E4, so that the epitaxial layer 150 can be used as a source/drain region. After the epitaxial layer 150 is formed, a silicide process (or a salicide process, not shown) may be performed to form silicide in the source/drain region, wherein the silicide process may include a post clean process, a metal depositing process, an annealing process, a selective etching process, or a test process, etc. Thereafter, other processes may be performed after the silicide process is performed.
Above all, the present invention provides a semiconductor process that etches and forms at least a recess having a specific profile structure in the fin-shaped structure beside the gate, wherein the etching methods may include a dry etching process or a wet etching process. Preferably, the wet etching process comprises etching by an etchant containing ammonia, hydrogen peroxide and water. The epitaxial layer formed in the recess R has a hexagon-shaped profile structure and therefore improves performance of the semiconductor structure. For instance, after the epitaxial layer is formed, the spacer can be removed more easily. The epitaxial layer formed in the present invention makes it easier to force stress to the gate channel below the gate structure and enhance the carrier mobility of the gate channel.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4891303 | Garza | Jan 1990 | A |
5217910 | Shimizu | Jun 1993 | A |
5273930 | Steele | Dec 1993 | A |
5356830 | Yoshikawa | Oct 1994 | A |
5372957 | Liang | Dec 1994 | A |
5385630 | Philipossian | Jan 1995 | A |
5399506 | Tsukamoto | Mar 1995 | A |
5625217 | Chau | Apr 1997 | A |
5777364 | Crabbe | Jul 1998 | A |
5783478 | Chau | Jul 1998 | A |
5783479 | Lin | Jul 1998 | A |
5960322 | Xiang | Sep 1999 | A |
6030874 | Grider | Feb 2000 | A |
6043138 | Ibok | Mar 2000 | A |
6048756 | Lee | Apr 2000 | A |
6074954 | Lill | Jun 2000 | A |
6100171 | Ishida | Aug 2000 | A |
6110787 | Chan | Aug 2000 | A |
6165826 | Chau | Dec 2000 | A |
6165881 | Tao | Dec 2000 | A |
6191052 | Wang | Feb 2001 | B1 |
6228730 | Chen | May 2001 | B1 |
6274447 | Takasou | Aug 2001 | B1 |
6355533 | Lee | Mar 2002 | B2 |
6365476 | Talwar | Apr 2002 | B1 |
6368926 | Wu | Apr 2002 | B1 |
6444591 | Schuegraf | Sep 2002 | B1 |
6492216 | Yeo | Dec 2002 | B1 |
6537370 | Hernandez | Mar 2003 | B1 |
6544822 | Kim | Apr 2003 | B2 |
6605498 | Murthy | Aug 2003 | B1 |
6613695 | Pomarede | Sep 2003 | B2 |
6621131 | Murthy | Sep 2003 | B2 |
6624068 | Thakar | Sep 2003 | B2 |
6632718 | Grider | Oct 2003 | B1 |
6642122 | Yu | Nov 2003 | B1 |
6664156 | Ang | Dec 2003 | B1 |
6676764 | Joo | Jan 2004 | B2 |
6699763 | Grider | Mar 2004 | B2 |
6703271 | Yeo | Mar 2004 | B2 |
6777275 | Kluth | Aug 2004 | B1 |
6806151 | Wasshuber | Oct 2004 | B2 |
6809402 | Hopper | Oct 2004 | B1 |
6858506 | Chang | Feb 2005 | B2 |
6861318 | Murthy | Mar 2005 | B2 |
6864135 | Grudowski | Mar 2005 | B2 |
6869867 | Miyashita | Mar 2005 | B2 |
6887751 | Chidambarrao | May 2005 | B2 |
6887762 | Murthy | May 2005 | B1 |
6891192 | Chen | May 2005 | B2 |
6921963 | Krivokapic | Jul 2005 | B2 |
6930007 | Bu | Aug 2005 | B2 |
6946350 | Lindert | Sep 2005 | B2 |
6962856 | Park | Nov 2005 | B2 |
6972461 | Chen | Dec 2005 | B1 |
6991979 | Ajmera | Jan 2006 | B2 |
6991991 | Cheng | Jan 2006 | B2 |
7037773 | Wang | May 2006 | B2 |
7060576 | Lindert | Jun 2006 | B2 |
7060579 | Chidambaram | Jun 2006 | B2 |
7087477 | Fried | Aug 2006 | B2 |
7091551 | Anderson | Aug 2006 | B1 |
7112495 | Ko | Sep 2006 | B2 |
7118952 | Chen | Oct 2006 | B2 |
7132338 | Samoilov | Nov 2006 | B2 |
7169675 | Tan | Jan 2007 | B2 |
7183596 | Wu | Feb 2007 | B2 |
7202124 | Fitzgerald | Apr 2007 | B2 |
7217627 | Kim | May 2007 | B2 |
7247887 | King | Jul 2007 | B2 |
7250658 | Doris | Jul 2007 | B2 |
7288822 | Ting | Oct 2007 | B1 |
7303999 | Sriraman | Dec 2007 | B1 |
7309626 | Ieong | Dec 2007 | B2 |
7335959 | Curello | Feb 2008 | B2 |
7352034 | Booth, Jr. | Apr 2008 | B2 |
7410859 | Peidous | Aug 2008 | B1 |
7462239 | Brabant | Dec 2008 | B2 |
7470570 | Beintner | Dec 2008 | B2 |
7491615 | Wu | Feb 2009 | B2 |
7494856 | Zhang | Feb 2009 | B2 |
7494858 | Bohr | Feb 2009 | B2 |
7531437 | Brask | May 2009 | B2 |
7569857 | Simon | Aug 2009 | B2 |
7592231 | Cheng | Sep 2009 | B2 |
7667227 | Shimamune | Feb 2010 | B2 |
7691752 | Ranade | Apr 2010 | B2 |
7838370 | Mehta | Nov 2010 | B2 |
20020011612 | Hieda | Jan 2002 | A1 |
20020160587 | Jagannathan | Oct 2002 | A1 |
20020182423 | Chu | Dec 2002 | A1 |
20030181005 | Hachimine | Sep 2003 | A1 |
20030203599 | Kanzawa | Oct 2003 | A1 |
20040045499 | Langdo | Mar 2004 | A1 |
20040067631 | Bu | Apr 2004 | A1 |
20040195624 | Liu | Oct 2004 | A1 |
20040227164 | Lee | Nov 2004 | A1 |
20050051825 | Fujiwara | Mar 2005 | A1 |
20050070076 | Dion | Mar 2005 | A1 |
20050079692 | Samoilov | Apr 2005 | A1 |
20050082616 | Chen | Apr 2005 | A1 |
20050139231 | Abadie | Jun 2005 | A1 |
20050156171 | Brask et al. | Jul 2005 | A1 |
20050260830 | Kwon | Nov 2005 | A1 |
20050285193 | Lee | Dec 2005 | A1 |
20050287752 | Nouri | Dec 2005 | A1 |
20060051922 | Huang | Mar 2006 | A1 |
20060057859 | Chen | Mar 2006 | A1 |
20060076627 | Chen | Apr 2006 | A1 |
20060088968 | Shin | Apr 2006 | A1 |
20060099830 | Walther | May 2006 | A1 |
20060115949 | Zhang | Jun 2006 | A1 |
20060163558 | Lee | Jul 2006 | A1 |
20060228842 | Zhang | Oct 2006 | A1 |
20060231826 | Kohyama | Oct 2006 | A1 |
20060258126 | Shiono | Nov 2006 | A1 |
20060281288 | Kawamura | Dec 2006 | A1 |
20060286729 | Kavalieros | Dec 2006 | A1 |
20060292779 | Chen | Dec 2006 | A1 |
20060292783 | Lee | Dec 2006 | A1 |
20070023847 | Rhee | Feb 2007 | A1 |
20070034906 | Wang | Feb 2007 | A1 |
20070049014 | Chen | Mar 2007 | A1 |
20070072353 | Wu | Mar 2007 | A1 |
20070072376 | Chen | Mar 2007 | A1 |
20070082451 | Samoilov | Apr 2007 | A1 |
20070108528 | Anderson | May 2007 | A1 |
20070128783 | Ting | Jun 2007 | A1 |
20070158756 | Dreeskornfeld | Jul 2007 | A1 |
20070166929 | Matsumoto | Jul 2007 | A1 |
20070262396 | Zhu | Nov 2007 | A1 |
20080014688 | Thean | Jan 2008 | A1 |
20080061366 | Liu | Mar 2008 | A1 |
20080067545 | Rhee | Mar 2008 | A1 |
20080076236 | Chiang | Mar 2008 | A1 |
20080085577 | Shih | Apr 2008 | A1 |
20080116525 | Liu | May 2008 | A1 |
20080124874 | Park | May 2008 | A1 |
20080128746 | Wang | Jun 2008 | A1 |
20080142886 | Liao | Jun 2008 | A1 |
20080157208 | Fischer | Jul 2008 | A1 |
20080220579 | Pal | Sep 2008 | A1 |
20080233722 | Liao | Sep 2008 | A1 |
20080233746 | Huang | Sep 2008 | A1 |
20090039389 | Tseng | Feb 2009 | A1 |
20090045456 | Chen | Feb 2009 | A1 |
20090095992 | Sanuki | Apr 2009 | A1 |
20090117715 | Fukuda | May 2009 | A1 |
20090124056 | Chen | May 2009 | A1 |
20090124097 | Cheng | May 2009 | A1 |
20090166625 | Ting | Jul 2009 | A1 |
20090184402 | Chen | Jul 2009 | A1 |
20090186475 | Ting | Jul 2009 | A1 |
20090242964 | Akil | Oct 2009 | A1 |
20090246922 | Wu | Oct 2009 | A1 |
20090269916 | Kang | Oct 2009 | A1 |
20090278170 | Yang | Nov 2009 | A1 |
20090302348 | Adam | Dec 2009 | A1 |
20100001317 | Chen | Jan 2010 | A1 |
20100048027 | Cheng | Feb 2010 | A1 |
20100052059 | Lee | Mar 2010 | A1 |
20100072553 | Xu | Mar 2010 | A1 |
20100093147 | Liao | Apr 2010 | A1 |
20100144121 | Chang | Jun 2010 | A1 |
20100167506 | Lin | Jul 2010 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110147842 | Cappellani et al. | Jun 2011 | A1 |
20120161238 | Scheiper et al. | Jun 2012 | A1 |
20120299099 | Huang et al. | Nov 2012 | A1 |
Entry |
---|
Kavalieros et al., “Tri-Gate Transistor Architecture With High-k Gate Dielectrics, Metal Gates and Strain Engineering”, Intel Corporation Components Research Technology Manufacturing Group Jun. 13, 2006, p. 12. |
Number | Date | Country | |
---|---|---|---|
20130052778 A1 | Feb 2013 | US |