Semiconductor process

Information

  • Patent Grant
  • 8674433
  • Patent Number
    8,674,433
  • Date Filed
    Wednesday, August 24, 2011
    13 years ago
  • Date Issued
    Tuesday, March 18, 2014
    10 years ago
Abstract
A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate. An oxide layer is formed on the substrate without the fin-shaped structure being formed thereon. A gate is formed to cover a part of the oxide layer and a part of the fin-shaped structure. An etching process is performed to etch a part of the fin-shaped structure beside the gate, therefore at least a recess is formed in the fin-shaped structure. An epitaxial process is performed to form an epitaxial layer in the recess, wherein the epitaxial layer has a hexagon-shaped profile structure.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to a semiconductor process, and more specifically, to a semiconductor process that forms at least a recess in a fin-shaped structure beside a gate structure, thereby forming an epitaxial layer having a hexagon-shaped profile structure in the recess.


2. Description of the Prior Art


With increasing miniaturization of semiconductor devices, various Fin-shaped field effect transistor (FinFET) devices have been developed. The Fin-shaped field effect transistor (FinFET) is advantageous for the following reasons. First, manufacturing processes of Fin-shaped field effect transistor (FinFET) devices can be integrated into traditional logic device processes, and thus are more compatible. In addition, since the three-dimensional structure of the FinFET increases the overlapping area between the gate and the substrate, the channel region is controlled more effectively. This therefore reduces drain-induced barrier lowering (DIBL) effect and short channel effect. Moreover, the channel region is longer for the same gate length. Therefore, the current between the source and the drain is increased.


In a current FinFET process, agate structure (which may include a gate dielectric layer, a gate electrode located on the gate dielectric layer, a cap layer located on the gate electrode, and a spacer located beside the gate dielectric layer, the gate electrode and the cap layer) is formed on a substrate having at least a fin-shaped structure. Then, epitaxial layers are formed on the fin-shaped structure beside the gate structure. Thereafter, other processes such as removing spacers of the gate structure may be performed.


However, the epitaxial layers make removal of the spacers difficult. The distance between the epitaxial layers on either side of the gate structure is also too great, resulting in insufficient stress forcing the gate channel below the gate structure, and limited ability to enhance carrier mobility of the gate channel through the epitaxial layers.


Therefore, a semiconductor process, more specifically a FinFET process, which can improve the performance of the epitaxial layers is needed in the industry.


SUMMARY OF THE INVENTION

The present invention provides a semiconductor process, that can etch and form at least a recess in a fin-shaped structure beside a gate structure, so that form an epitaxial layer having a hexagon-shaped profile structure in the recess, therefore a Multi-gate MOSFET such as a FinFET or a Tri-gate MOSFET can be formed.


The present invention provides a semiconductor process including the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate. An oxide layer is formed on the substrate without the fin-shaped structure being formed thereon. A gate covering a part of the oxide layer and a part of the fin-shaped structure is formed. An etching process is performed to etch a part of the fin-shaped structure beside the gate, therefore forming at least a recess in the fin-shaped structure. An epitaxial process is performed to form an epitaxial layer in the recess, wherein the epitaxial layer has a hexagon-shaped profile structure.


The present invention provides a semiconductor process, that etches at least a recess having a specific profile structure in the fin-shaped structure beside the gate structure. Thus, an epitaxial layer having a hexagon-shaped profile structure can be formed in the recess, and the performance of the semiconductor structure can therefore be improved. For example, the epitaxial layer formed in the present invention can make spacers easier to be removed. Besides, the epitaxial layer formed in the present invention can be easier to force stresses to the gate channel below the gate structure, so that improving the carrier mobility in the gate channel.


These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1-8 schematically depict a stereo view of a semiconductor process according to one preferred embodiment of the present invention.



FIG. 9 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 7.



FIG. 10 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 8.





DETAILED DESCRIPTION


FIGS. 1-8 schematically depict a stereo view of a semiconductor process according to one preferred embodiment of the present invention. FIG. 9 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 7. FIG. 10 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 8. The semiconductor process of the present invention is suited for application to a bulk substrate or a silicon-on-insulator substrate.


Please refer to FIGS. 1-3. As shown in FIG. 1, a substrate 110 is provided, wherein the substrate 110 is a bulk substrate, for example. A mask layer (not shown) is formed on the substrate, wherein the mask layer includes a pad oxide layer (not shown) and a nitride layer (not shown) located on the pad oxide layer. A photolithography process E1 is performed to pattern the mask layer for forming a patterned pad oxide layer 122 and a patterned nitride layer 124 and exposing a part of the substrate 110. As shown in FIG. 2, an epitaxial process E2 is performed to form a fin-shaped structure 120 on the exposed part of the substrate 110, wherein the fin-shaped structure 120 protrudes from the pad oxide layer 122 and the nitride layer 124. In addition, a photolithography process can be performed on the substrate 110 by using the mask layer already patterned as a hard mask, so that desired fin-shaped structures can be formed from the part of the substrate 110 that is not etched. As shown in FIG. 3, the patterned pad oxide layer 122 and the patterned nitride layer 124 are removed. An oxide layer 130 is formed on the substrate 110 without the fin-shaped structure 120 being formed thereon, wherein the oxide layer 130 may be formed by processes such as a depositing process and an etching back process, for use as a shallow trench isolation structure. In another embodiment, the oxide layer 130 may also be an isolation structure. By doing this, a fin-shaped structure 120 can be formed on the substrate 110, and an oxide layer 130 can be formed on the substrate 110 without the fin-shaped structure 120 being formed thereon.


Additionally, please refer to FIGS. 4-5, which schematically depict another forming method of this embodiment. As shown in FIG. 4, a silicon-on-insulator substrate 210 is provided, which includes a silicon substrate 212, a bottom oxide layer 214 located on the silicon substrate 212 and a silicon layer 216 located on the bottom oxide layer 214. As shown in FIG. 5, the silicon layer 216 is patterned to form the fin-shaped structures 220 and a part of the bottom oxide layer 214 without exposing the fin-shaped structure 220 formed thereon. In this way, the fin-shaped structure 220 can also be formed on the silicon substrate 212, and an oxide layer (such as the bottom oxide layer 214) can be formed on the silicon substrate 212 without the fin-shaped structure 220 being formed thereon. The difference between FIG. 3 and FIG. 5 is: the oxide layer 130 formed on the silicon substrate 110 is just located on the substrate 110 without the fin-shaped structure 120 being formed thereon (as shown in FIG. 3), but the bottom oxide layer 214 formed in the silicon-on-insulator substrate 210 has the fin-shaped structure 220 located thereon. However, the difference does not affect later semiconductor processes of the present invention. This embodiment depicts a single fin-shaped structure 120 or 220 to illustrate the semiconductor process of the present invention, but the semiconductor process of the present invention can also be applied to a substrate having a plurality of fin-shaped structures.


As shown in FIG. 6, a gate 140 is formed to cover a part of the oxide layer 130 and a part of the fin-shaped structure 120. The forming method of the gate 140 may include: forming a gate dielectric layer 142 covering a part of the oxide layer 130 and a part of the fin-shaped structure 120; forming a gate electrode layer 144 covering the gate dielectric layer 142; forming a cap layer 146 covering the gate electrode layer 144; patterning the cap layer 146, the gate electrode layer 144 and the gate dielectric layer 142; and forming a spacer 148 beside the pattern gate dielectric layer 142, gate electrode layer 144 and cap layer 146. In one embodiment, the material of the gate dielectric layer 142 may include silicon dioxide, silicon nitride, silicon oxynitride, high-k dielectric material such as metallic oxide, etc. The material of the gate electrode layer 144 may include heavily doped polysilicon, metallic oxide silicon, or metal alloys for forming a metal gate by a gate first process, such as metallic oxide silicon, titanium, tantalum, titanium nitride, tantalum nitride, or tungsten, etc. In one case, if the gate electrode layer 144 of the gate structure 140 is a polysilicon electrode layer, a replacement metal gate (RMG) process, such as a gate-last process, can be performed to replace the polysilicon electrode layer with the metal electrode layer. The cap layer 146 and the spacer 148 may be composed of silicon nitride. The spacer 148 may be a multilayer structure (not shown) including the inner spacer and an outer spacer. The forming methods of the gate 140 are known in the art, and not described herein.


As shown in FIG. 7, an etching process E3 is performed to etch a part of the fin-shaped structure 120 beside the gate 140, so that a recess R in the fin-shaped structure 120 is formed on either side of the gate 140 respectively. In the present invention, the etching process E3 may include a dry etching process or a wet etching process. In a preferred embodiment, the etching process E3 may include a dry etching process and a wet etching process, or at least one wet etching process. In one case, the wet etching process comprises etching by an etchant containing ammonia, hydrogen peroxide and water, which performs at least an etching process to form the recess R using the characteristic of different etching rates applied to various crystal planes of the fin-shaped structure 120. Furthermore, the desired shape of the recess R can be attained by adjusting the ratio of ammonia, hydrogen peroxide and water in the etchant. In another embodiment, the recess R may be obtained by performing a wet etching process one or more times using different etchants, wherein the etchants may be ammonia etchant, methyl ammonium hydroxide etchant, hydroxide etchant, or ethylene diamine pyrocatechol etchant, etc. Therefore, the present invention can form the recess R having a hexagon-shaped profile structure.


In this embodiment, the recess R formed by the etching process will pass through the short axis X of the fin-shaped structure 120, but will not pass through the long axis y of the fin-shaped structure 120, therefore a source/drain region can be formed in the recess R. FIG. 9 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 7. As shown in FIG. 9, the recess R located in a part of the fin-shaped structure 120 beside the gate 140 is formed by the etching process E3, wherein the recess R has a hexagon-shaped profile structure. In this embodiment, a part of the fin-shaped structure 120 will be reserved below the recess R for forming an epitaxial layer in the recess R by a later epitaxial process.


As shown in FIG. 8, an epitaxial process E4 is performed to form an epitaxial layer 150 having a hexagon-shaped profile structure in the recess R. The epitaxial layer 150 may include a silicon-germanium epitaxial layer suited for a PMOS transistor, or a silicon-carbide epitaxial layer suited for an NMOS transistor, depending upon the electrical properties of the Multi-gate MOSFET. FIG. 10 schematically depicts a cross-sectional view of a semiconductor process along line A-A′ and above the plane S of FIG. 8. The epitaxial layer 150 is formed in the recess R, and grows conformally along the shape of the recess R, therefore having a hexagon-shaped profile structure. In a preferred embodiment, the level of the top surface S1 of the epitaxial layer 150 is higher than the level of the top surface S2 of the fin-shaped structure 120.


Thereafter, an ion implantation process may be performed to dope impurities, or impurities may be doped while performing the epitaxial process E4, so that the epitaxial layer 150 can be used as a source/drain region. After the epitaxial layer 150 is formed, a silicide process (or a salicide process, not shown) may be performed to form silicide in the source/drain region, wherein the silicide process may include a post clean process, a metal depositing process, an annealing process, a selective etching process, or a test process, etc. Thereafter, other processes may be performed after the silicide process is performed.


Above all, the present invention provides a semiconductor process that etches and forms at least a recess having a specific profile structure in the fin-shaped structure beside the gate, wherein the etching methods may include a dry etching process or a wet etching process. Preferably, the wet etching process comprises etching by an etchant containing ammonia, hydrogen peroxide and water. The epitaxial layer formed in the recess R has a hexagon-shaped profile structure and therefore improves performance of the semiconductor structure. For instance, after the epitaxial layer is formed, the spacer can be removed more easily. The epitaxial layer formed in the present invention makes it easier to force stress to the gate channel below the gate structure and enhance the carrier mobility of the gate channel.


Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims
  • 1. A semiconductor process, comprising: providing a substrate;forming at least a fin-shaped structure on the substrate;forming an oxide layer on the substrate without the fin-shaped structure being formed thereon;forming a gate covering a part of the oxide layer and a part of the fin-shaped structure;performing an etching process to etch a part of the fin-shaped structure beside the gate to form at least a hexagon-shaped recess in the fin-shaped structure; andperforming an epitaxial process to form an epitaxial layer in the hexagon-shaped recess, wherein the epitaxial layer has a hexagon-shaped profile structure.
  • 2. The semiconductor process according to claim 1, wherein the substrate comprises a bulk substrate or a silicon-on-insulator substrate.
  • 3. The semiconductor process according to claim 2, wherein the steps of forming the fin-shaped structure comprise: forming a mask layer on the bulk substrate;performing a photolithography process to pattern the mask layer and expose a part of the bulk substrate; andperforming an epitaxial process to form the fin-shaped structure on the exposed part of the bulk substrate.
  • 4. The semiconductor process according to claim 3, wherein the mask layer comprises a pad oxide layer and a nitride layer.
  • 5. The semiconductor process according to claim 2, wherein the silicon-on-insulator substrate comprises: a silicon substrate;a bottom oxide layer located on the silicon substrate; anda silicon layer located on the bottom oxide layer.
  • 6. The semiconductor process according to claim 5, wherein the steps of forming the fin-shaped structure on the silicon-on-insulator substrate and forming the oxide layer on the substrate without the fin-shaped structure being formed thereon comprise: patterning the silicon layer to form the fin-shaped structure, and exposing a part of the bottom oxide layer on the substrate without the fin-shaped structure being formed thereon.
  • 7. The semiconductor process according to claim 1, wherein forming the gate comprises: forming a gate dielectric layer covering the oxide layer and the fin-shaped structure;forming a gate electrode layer covering the gate dielectric layer;forming a cap layer covering the gate electrode layer;patterning the cap layer, the gate electrode layer and the gate dielectric layer; andforming a spacer beside the patterned gate dielectric layer, gate electrode layer and cap layer.
  • 8. The semiconductor process according to claim 7, wherein the gate electrode layer comprises a polysilicon electrode layer.
  • 9. The semiconductor process according to claim 8, further comprising: performing a replacement metal gate (RMG) process to replace the polysilicon electrode layer with a metal electrode layer.
  • 10. The semiconductor process according to claim 1, wherein the etching process comprises a dry etching process or a wet etching process.
  • 11. The semiconductor process according to claim 10, wherein the etching process comprises a dry etching process and a wet etching process.
  • 12. The semiconductor process according to claim 10, wherein the wet etching process comprises etching by an etchant containing ammonia, hydrogen peroxide and water.
  • 13. The semiconductor process according to claim 1, wherein the epitaxial process comprises a silicon-germanium epitaxial layer or a silicon-carbide epitaxial layer.
US Referenced Citations (169)
Number Name Date Kind
4891303 Garza Jan 1990 A
5217910 Shimizu Jun 1993 A
5273930 Steele Dec 1993 A
5356830 Yoshikawa Oct 1994 A
5372957 Liang Dec 1994 A
5385630 Philipossian Jan 1995 A
5399506 Tsukamoto Mar 1995 A
5625217 Chau Apr 1997 A
5777364 Crabbe Jul 1998 A
5783478 Chau Jul 1998 A
5783479 Lin Jul 1998 A
5960322 Xiang Sep 1999 A
6030874 Grider Feb 2000 A
6043138 Ibok Mar 2000 A
6048756 Lee Apr 2000 A
6074954 Lill Jun 2000 A
6100171 Ishida Aug 2000 A
6110787 Chan Aug 2000 A
6165826 Chau Dec 2000 A
6165881 Tao Dec 2000 A
6191052 Wang Feb 2001 B1
6228730 Chen May 2001 B1
6274447 Takasou Aug 2001 B1
6355533 Lee Mar 2002 B2
6365476 Talwar Apr 2002 B1
6368926 Wu Apr 2002 B1
6444591 Schuegraf Sep 2002 B1
6492216 Yeo Dec 2002 B1
6537370 Hernandez Mar 2003 B1
6544822 Kim Apr 2003 B2
6605498 Murthy Aug 2003 B1
6613695 Pomarede Sep 2003 B2
6621131 Murthy Sep 2003 B2
6624068 Thakar Sep 2003 B2
6632718 Grider Oct 2003 B1
6642122 Yu Nov 2003 B1
6664156 Ang Dec 2003 B1
6676764 Joo Jan 2004 B2
6699763 Grider Mar 2004 B2
6703271 Yeo Mar 2004 B2
6777275 Kluth Aug 2004 B1
6806151 Wasshuber Oct 2004 B2
6809402 Hopper Oct 2004 B1
6858506 Chang Feb 2005 B2
6861318 Murthy Mar 2005 B2
6864135 Grudowski Mar 2005 B2
6869867 Miyashita Mar 2005 B2
6887751 Chidambarrao May 2005 B2
6887762 Murthy May 2005 B1
6891192 Chen May 2005 B2
6921963 Krivokapic Jul 2005 B2
6930007 Bu Aug 2005 B2
6946350 Lindert Sep 2005 B2
6962856 Park Nov 2005 B2
6972461 Chen Dec 2005 B1
6991979 Ajmera Jan 2006 B2
6991991 Cheng Jan 2006 B2
7037773 Wang May 2006 B2
7060576 Lindert Jun 2006 B2
7060579 Chidambaram Jun 2006 B2
7087477 Fried Aug 2006 B2
7091551 Anderson Aug 2006 B1
7112495 Ko Sep 2006 B2
7118952 Chen Oct 2006 B2
7132338 Samoilov Nov 2006 B2
7169675 Tan Jan 2007 B2
7183596 Wu Feb 2007 B2
7202124 Fitzgerald Apr 2007 B2
7217627 Kim May 2007 B2
7247887 King Jul 2007 B2
7250658 Doris Jul 2007 B2
7288822 Ting Oct 2007 B1
7303999 Sriraman Dec 2007 B1
7309626 Ieong Dec 2007 B2
7335959 Curello Feb 2008 B2
7352034 Booth, Jr. Apr 2008 B2
7410859 Peidous Aug 2008 B1
7462239 Brabant Dec 2008 B2
7470570 Beintner Dec 2008 B2
7491615 Wu Feb 2009 B2
7494856 Zhang Feb 2009 B2
7494858 Bohr Feb 2009 B2
7531437 Brask May 2009 B2
7569857 Simon Aug 2009 B2
7592231 Cheng Sep 2009 B2
7667227 Shimamune Feb 2010 B2
7691752 Ranade Apr 2010 B2
7838370 Mehta Nov 2010 B2
20020011612 Hieda Jan 2002 A1
20020160587 Jagannathan Oct 2002 A1
20020182423 Chu Dec 2002 A1
20030181005 Hachimine Sep 2003 A1
20030203599 Kanzawa Oct 2003 A1
20040045499 Langdo Mar 2004 A1
20040067631 Bu Apr 2004 A1
20040195624 Liu Oct 2004 A1
20040227164 Lee Nov 2004 A1
20050051825 Fujiwara Mar 2005 A1
20050070076 Dion Mar 2005 A1
20050079692 Samoilov Apr 2005 A1
20050082616 Chen Apr 2005 A1
20050139231 Abadie Jun 2005 A1
20050156171 Brask et al. Jul 2005 A1
20050260830 Kwon Nov 2005 A1
20050285193 Lee Dec 2005 A1
20050287752 Nouri Dec 2005 A1
20060051922 Huang Mar 2006 A1
20060057859 Chen Mar 2006 A1
20060076627 Chen Apr 2006 A1
20060088968 Shin Apr 2006 A1
20060099830 Walther May 2006 A1
20060115949 Zhang Jun 2006 A1
20060163558 Lee Jul 2006 A1
20060228842 Zhang Oct 2006 A1
20060231826 Kohyama Oct 2006 A1
20060258126 Shiono Nov 2006 A1
20060281288 Kawamura Dec 2006 A1
20060286729 Kavalieros Dec 2006 A1
20060292779 Chen Dec 2006 A1
20060292783 Lee Dec 2006 A1
20070023847 Rhee Feb 2007 A1
20070034906 Wang Feb 2007 A1
20070049014 Chen Mar 2007 A1
20070072353 Wu Mar 2007 A1
20070072376 Chen Mar 2007 A1
20070082451 Samoilov Apr 2007 A1
20070108528 Anderson May 2007 A1
20070128783 Ting Jun 2007 A1
20070158756 Dreeskornfeld Jul 2007 A1
20070166929 Matsumoto Jul 2007 A1
20070262396 Zhu Nov 2007 A1
20080014688 Thean Jan 2008 A1
20080061366 Liu Mar 2008 A1
20080067545 Rhee Mar 2008 A1
20080076236 Chiang Mar 2008 A1
20080085577 Shih Apr 2008 A1
20080116525 Liu May 2008 A1
20080124874 Park May 2008 A1
20080128746 Wang Jun 2008 A1
20080142886 Liao Jun 2008 A1
20080157208 Fischer Jul 2008 A1
20080220579 Pal Sep 2008 A1
20080233722 Liao Sep 2008 A1
20080233746 Huang Sep 2008 A1
20090039389 Tseng Feb 2009 A1
20090045456 Chen Feb 2009 A1
20090095992 Sanuki Apr 2009 A1
20090117715 Fukuda May 2009 A1
20090124056 Chen May 2009 A1
20090124097 Cheng May 2009 A1
20090166625 Ting Jul 2009 A1
20090184402 Chen Jul 2009 A1
20090186475 Ting Jul 2009 A1
20090242964 Akil Oct 2009 A1
20090246922 Wu Oct 2009 A1
20090269916 Kang Oct 2009 A1
20090278170 Yang Nov 2009 A1
20090302348 Adam Dec 2009 A1
20100001317 Chen Jan 2010 A1
20100048027 Cheng Feb 2010 A1
20100052059 Lee Mar 2010 A1
20100072553 Xu Mar 2010 A1
20100093147 Liao Apr 2010 A1
20100144121 Chang Jun 2010 A1
20100167506 Lin Jul 2010 A1
20110147828 Murthy et al. Jun 2011 A1
20110147842 Cappellani et al. Jun 2011 A1
20120161238 Scheiper et al. Jun 2012 A1
20120299099 Huang et al. Nov 2012 A1
Non-Patent Literature Citations (1)
Entry
Kavalieros et al., “Tri-Gate Transistor Architecture With High-k Gate Dielectrics, Metal Gates and Strain Engineering”, Intel Corporation Components Research Technology Manufacturing Group Jun. 13, 2006, p. 12.
Related Publications (1)
Number Date Country
20130052778 A1 Feb 2013 US