Semiconductor structure and process thereof

Information

  • Patent Grant
  • 8664069
  • Patent Number
    8,664,069
  • Date Filed
    Thursday, April 5, 2012
    12 years ago
  • Date Issued
    Tuesday, March 4, 2014
    10 years ago
Abstract
A semiconductor structure includes a gate structure, an epitaxial layer and a carbon-containing silicon germanium cap layer. The gate structure is located on a substrate. The epitaxial layer is located in the substrate beside the gate structure. The carbon-containing silicon germanium cap layer is located on the epitaxial layer. Otherwise, semiconductor processes for forming said semiconductor structure are also provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to a semiconductor structure and a process thereof, and more specifically to a semiconductor structure and a process thereof, that forms a carbon-containing silicon germanium cap layer on an epitaxial layer.


2. Description of the Prior Art


For decades, chip manufacturers have made metal-oxide-semiconductor (MOS) transistors faster by making them smaller. As the semiconductor processes advance to very deep sub micron era, such as 65-nm node or beyond, how to increase the driving current for MOS transistors has become a critical issue.


In order to improve device performances, crystal strain technology has been developed. Crystal strain technology is becoming more and more attractive as a mean to obtain better performances in the field of CMOS transistor fabrication. Putting a strain on a semiconductor crystal alters the speed at which charges move through that crystal. Strain makes CMOS transistors work better by enabling electrical charges, such as electrons, to pass more easily through the silicon lattice of the gate channel.


In the prior arts, attempts have been made to use a strained silicon layer, which was grown epitaxially on a silicon substrate with a silicon germanium (SiGe) layer disposed in between. In this type of MOS transistor, a biaxial tensile strain occurs in the epitaxial silicon layer due to the silicon germanium having a larger lattice constant than the silicon one, and, as a result, the band structure alters, and the carrier mobility is increased. This enhances the speed performances of the MOS transistors.


However, ingredients of the epitaxial layer are complex and will diffuse easily and pollute the peripheries during subsequent processes.


SUMMARY OF THE INVENTION

The present invention provides a semiconductor structure and a process thereof that forms a carbon-containing silicon germanium cap layer on an epitaxial layer, to prevent germanium in the epitaxial layer or in the cap layer from precipitating to the surface of the cap layer.


The present invention provides a semiconductor structure including a gate structure, an epitaxial layer and a carbon-containing silicon germanium cap layer. The gate structure is located on a substrate. The epitaxial layer is located in the substrate beside the gate structure. The carbon-containing silicon germanium cap layer is located on the epitaxial layer.


The present invention provides a semiconductor process including the following steps. A gate structure is formed on a substrate. An epitaxial layer is formed in the substrate beside the gate structure. An in-situ epitaxial process is performed to form a carbon-containing silicon germanium cap layer on the epitaxial layer.


The present invention provides a semiconductor process including the following steps. A gate structure is formed on a substrate. An epitaxial layer is formed in the substrate beside the gate structure. A silicon germanium cap layer is formed on the epitaxial layer. Carbon is doped into the silicon germanium cap layer to form a carbon-containing silicon germanium cap layer on the epitaxial layer.


According to the above, the present invention provides a semiconductor structure and a process thereof that forms a carbon-containing silicon germanium cap layer on an epitaxial layer, to prevent germanium in the epitaxial layer or in the cap layer from precipitating to the surface of the cap layer. Therefore, black spots formed on the surface of the cap layer are avoided.


These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-4 schematically depict cross-sectional views of a semiconductor process according to a first embodiment of the present invention.



FIGS. 5-10 schematically depict cross-sectional views of a semiconductor process according to a second embodiment of the present invention.





DETAILED DESCRIPTION


FIGS. 1-4 schematically depict cross-sectional views of a semiconductor process according to a first embodiment of the present invention. A substrate 110 is provided. The substrate 110 may be a semiconductor substrate such as a silicon substrate, a silicon containing substrate, an III-V group-on-silicon (such as GaN-on-silicon) substrate, a graphene-on-silicon substrate or a silicon-on-insulator (SOI) substrate. An isolation structure 10 is formed between every transistor to electrically isolate these transistors. The isolation structure 10 may be a shallow trench isolation structure, but it is not limited thereto. A gate structure G is formed on the substrate 110. The gate structure G may include a stacked structure composed of a buffer layer 122, a dielectric layer 124, a gate layer 126, a cap layer 128 and a spacer 129 located on the substrate 110 beside the buffer layer 122, the dielectric layer 124, the gate layer 126 and the cap layer 128. More precisely, methods of forming the gate structure G may include: entirely covering a buffer layer (not shown), a dielectric layer (not shown), a gate layer (not shown) and a cap layer (not shown) on the substrate 110; patterning layers of them to form a buffer layer 122, a dielectric layer 124, a gate layer 126 and a cap layer 128; conformally covering a spacer (not shown) on the cap layer 128 and the substrate 110; then, forming the spacer 129 by an etch process.


The buffer layer 122 may include an oxide layer. The gate dielectric layer 124 may be a dielectric layer having a high dielectric constant, such as the group selected from hafnium oxide (HfO2), hafnium silicon oxide (HfSiO4), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3), zirconium oxide (ZrO2), strontium titanate oxide (SrTiO3), zirconium silicon oxide (ZrSiO4), hafnium zirconium oxide (HfZrO4), strontium bismuth tantalite (SrBi2Ta2O9, SBT), lead zirconate titanate (PbZrxTi1-xO3, PZT) and barium strontium titanate (BaxSr1-xTiO3, BST). The gate layer 126 may include a polysilicon layer, or a sacrificial layer, which may be replaced by a metal layer to form a metal gate in subsequent processes. The cap layer 128 may be a nitride layer or etc. The spacer 129 may be a single layer or a multilayer structure composed of silicon nitride, silicon oxide or etc. The aforesaid materials of the buffer layer 122, the dielectric layer 124, the gate layer 126 and the cap layer 128 are just some cases, but the present invention is not restricted thereto.


As shown in FIG. 2, two recesses R are formed in the substrate 110 beside the gate structure G by methods such as sequentially performing a dry etching process and a wet etching process. After cleaning steps, an epitaxial layer 130 is formed in the recesses R beside the gate structure G through a selectively epitaxial process as shown in FIG. 3. An ion implantation process or an in-situ doping process may be performed before the recesses R are formed, after an epitaxial layer 130 is formed, or as an epitaxial layer 130 is formed, to implant dopants into the epitaxial layer 130 for forming a source/drain region in a transistor. In this embodiment, the surface S1 of the epitaxial layer 130 is higher than the top surface S2 of the substrate 110, so that improving the performances of the epitaxial layer 130 induces stresses on the gate channel C right below the gate structure G, but it is not limited thereto. In a preferred embodiment, each recess R has a diamond-shaped cross-sectional profile structure or other shaped cross-sectional profile structure. In other words, the sidewalls of each recess R below the gate structure G has a sharp corner, enabling the epitaxial layer 130 formed in each recess R to have a diamond shaped cross-sectional profile structure as well. Thus, the stresses induced by the epitaxial layer 130 on the gate channel C can be increased. In this embodiment, the epitaxial layer 130 may be a silicon germanium epitaxial layer, and the concentration of germanium is larger than 36% for forming a P-MOS transistor. In another embodiment, the epitaxial layer 130 may be a silicon carbide epitaxial layer for forming an N-MOS transistor. Or, the epitaxial layer 130 may be a silicon epitaxial layer, or an epitaxial layer with different material layers, so that the epitaxial layer 130 may be composed of a lower silicon germanium epitaxial layer and an upper silicon epitaxial layer. An epitaxial layer (not shown) with low concentration of germanium such as 25% of germanium or a pure silicon epitaxial layer may also be selectively formed in each recess R trough a selective epitaxial process to prevent the threshold voltage of the transistors from decreasing dramatically due to the great difference of lattice constant while contacting the surfaces between the epitaxial layer 130 and the substrate 110, but it is not limited thereto.


As shown in FIG. 4, an epitaxial process is performed to form a silicon epitaxial layer 140a with low germanium concentration on the epitaxial layer 130 to serve as a reacting region during a later salicide process, so that agglomeration of metals and germanium during the salicide process can be avoided. In this embodiment, the epitaxial layer 130 is a silicon germanium epitaxial layer, and germanium in the epitaxial layer 130 may diffuse to the surface S of the silicon epitaxial layer 140a, resulting in black spots generated on the surface S of the silicon epitaxial layer 140a.


A second embodiment solving the problem of the first embodiment is presented in the following. FIGS. 5-10 schematically depict cross-sectional views of a semiconductor process according to a second embodiment of the present invention.


After the epitaxial layer 130 is formed (as shown in FIG. 3), a carbon-containing silicon germanium cap layer 140b is formed on the epitaxial layer 130. A first forming method is shown in FIG. 5, and a second forming method is shown in FIGS. 6-7.


The First Method:


As shown in FIG. 5, an in-situ epitaxial process P1 is performed to form a carbon-containing silicon germanium cap layer 140b on the epitaxial layer 130. More precisely, the in-situ epitaxial process P1 is implanting carbon atoms in the cap layer while the silicon germanium cap is formed. The processing gas imported in the in-situ epitaxial process P1 may be methyl silane (MS) or monomethyl silane (MMS) etc, and the chemical formula may be (CH3)xSi4-x; X>1, so that carbon can be implanted into the silicon germanium cap layer while the silicon germanium cap layer is formed, so that the carbon-containing silicon germanium cap layer 140b can be formed, but it is not limited thereto.


The Second Method:


As shown in FIG. 6, a silicon germanium cap layer 140b′ is formed on the epitaxial layer 130. As shown in FIG. 7, a doping process P2 is performed to implant carbon atoms into the silicon germanium cap layer 140b′. Therefore, a carbon-containing silicon germanium cap layer 140b can be formed in the epitaxial layer 130. The processing gas imported while doping carbon may be methyl silane (MS) or monomethyl silane (MMS) etc, and the chemical formula may be (CH3)xSi4-x; X>1. Otherwise, an ion implantation process may be performed to implant carbon, but it is not limited thereto.


The carbon-containing silicon germanium cap layer 140b can be formed by the epitaxial layer 130 by the first method or the second method. In this embodiment, the carbon-containing silicon germanium cap layer 140b is higher than the top surface S2 of the substrate 110. Due to the carbon-containing silicon germanium cap layer 140b containing carbon, diffusion of germanium in the epitaxial layer 130 and in the carbon-containing silicon germanium cap layer 140b upwards to the surface of the carbon-containing silicon germanium cap layer 140b during subsequent processes, such as a salicide process or etc, which leads to the formation of black spots on the surface of the carbon-containing silicon germanium cap layer 140b and degrades the performances of transistors, can be avoided. However, as the carbon content of the carbon-containing silicon germanium cap layer 140b is too high, tensile stresses on the gate channel C induced by the silicon germanium cap layer 140b will cancel out the compressive stresses induced by the epitaxial layer 130 on the channel C. The effect of the epitaxial layer 130 inducing forces on the channel C is therefore reduced. In a preferred embodiment, the chemical formula of the carbon-containing silicon germanium cap layer 140b is —SiGexCz— and the carbon concentration of the carbon-containing silicon germanium cap layer 140b is 0.1%˜1%, while the X value is larger than or equal to 0%. The distribution of the carbon content of the carbon-containing silicon germanium cap layer 140b is a gradient from top to bottom. So, the diffusion of germanium in the epitaxial layer 130 or in the carbon-containing silicon germanium cap layer 140b can be avoided and the tensile stresses induced by the carbon-containing silicon germanium cap layer 140b on the gate channel C can be reduced by adjusting the distribution of the carbon content of the carbon-containing silicon germanium cap layer 140b. In one case, the distribution of the carbon content of the carbon-containing silicon germanium cap layer 140b is a gradient decreasing vertically from top to bottom. In another way, the distribution of the carbon content of the carbon-containing silicon germanium cap layer 140b may be a gradient decreasing horizontally from away to close to the gate structure G, but it is not limited thereto. Furthermore, the distribution of the germanium content of the carbon-containing silicon germanium cap layer 140b may be formed as a gradient decreasing from bottom to top, in order to preventing germanium in the carbon-containing silicon germanium cap layer 140b from diffusing to the surface of the carbon-containing silicon germanium cap layer 140b. Due to the upwards diffusion of germanium in the epitaxial layer 130, the distribution of germanium in the epitaxial layer 130 may be a gradient decreasing from bottom to top.


As shown in FIG. 8, after the carbon-containing silicon germanium cap layer 140b is formed, a doping process P3 may be selectively performed to implant boron atoms into the carbon-containing silicon germanium cap layer 140b, so that a carbon and boron-containing silicon germanium cap layer 140c can be formed. The carbon and boron-containing silicon germanium cap layer 140c will be consumed partially or entirely as a metal silicide covers the carbon and boron-containing silicon germanium cap layer 140c. Since the carbon and boron-containing silicon germanium cap layer 140c remains, the carbon and boron-containing silicon germanium cap layer 140c can reduce the contact resistance. In this embodiment, boron is implanted into the carbon-containing silicon germanium cap layer 140b and the epitaxial layer 130 at the same time while the doping process P3 is performed. In this embodiment, the epitaxial layer 130 is a silicon germanium epitaxial layer and boron is implanted into the inside of the epitaxial layer 130. A photoresist may be used as a mask (not shown) selectively, enabling boron being implanted only in the inside of the epitaxial layer 130, so that an internal epitaxial layer area 132 and an external epitaxial layer area 134 undoped with boron are formed, wherein the external epitaxial layer area 134 coats the sidewall S3 and the bottom surface S4 of the internal epitaxial layer area 132. In another embodiment, boron may just be implanted into the carbon-containing silicon germanium cap layer 140b.


In another way, after the silicon germanium cap layer 140b′ is formed on the epitaxial layer 130 by the second method (as shown in FIG. 6), boron may be implanted into the silicon germanium cap layer 140b′ by the doping process P3 to form a boron containing silicon germanium cap layer (not shown). Then, carbon is implanted into the boron containing silicon germanium cap layer (not shown) by the doping process P2 to form a carbon and boron-containing silicon germanium cap layer 140c on the epitaxial layer 130. Furthermore, boron may be implanted into the epitaxial layer 130 as well while boron is implanted into the silicon germanium cap layer 140b′.


In another way, boron may be implanted into the cap layer or the epitaxial layer before the cap layer is formed, or after the cap layer is formed. As shown in FIG. 9, after the epitaxial layer 130 is formed (as shown in FIG. 3), a doping process P4 may be performed to implant boron into the epitaxial layer 130. As shown in FIG. 9, a photoresist may be used as a selective mask (not shown), enabling boron being implanted into the inside of the epitaxial layer 130, so that an internal epitaxial layer area 132 and an external epitaxial layer area 134 without boron doping are formed, wherein the external epitaxial layer area 134 coats the sidewalls S3 and the bottom surface S4 of the internal epitaxial layer area 132. As shown in FIG. 10, the carbon-containing silicon germanium cap layer 140b is formed on the epitaxial layer 130 by said first method or said second method. The carbon-containing silicon germanium cap layer 140b does not have boron at this time, so that boron may be further implanted into the carbon-containing silicon germanium cap layer 140b. Due to the epitaxial layer 130 already containing boron, boron atoms already present inside may diffuse to the carbon-containing silicon germanium cap layer 140b during following thermal processes. Or, boron may be just implanted into the carbon-containing silicon germanium cap layer 140b as the carbon-containing silicon germanium cap layer 140b is formed on the epitaxial layer 130, so that a carbon and boron-containing silicon germanium cap layer 140c can be formed.


After the carbon-containing silicon germanium cap layer 140b or the carbon and boron-containing silicon germanium cap layer 140c are formed on the epitaxial layer 130 by applying the first method or the second method, a silicon-containing cap layer (not shown) may further be formed on the carbon-containing silicon germanium cap layer 140b or on the carbon and boron-containing silicon germanium cap layer 140c, to provide a layer that would be consumed during a later salicide process, thereby structures under the silicon-containing cap layer (not shown) can be reserved.


In summary, the present invention provides a semiconductor structure and a process thereof that forms a carbon-containing silicon germanium cap layer on an epitaxial layer, to prevent germanium in the epitaxial layer or in the cap layer from precipitating to the surface of the cap layer. Therefore, the formation of black spots on the surface of the cap layer is avoided. Specifically, methods of forming the carbon-containing silicon germanium cap layer on the epitaxial layer may include: (1) a carbon-containing silicon germanium cap layer is formed on the epitaxial layer by an in-situ epitaxial process; or, (2) a silicon germanium cap layer is formed on the epitaxial layer, and then carbon is implanted into the silicon germanium cap layer by a doping process, so that a carbon-containing silicon germanium cap layer is formed on the epitaxial layer.


Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims
  • 1. A semiconductor process, comprising forming a gate structure on a substrate, the substrate having a to surface; forming an epitaxial layer in the to surface of the substrate beside the gate structure, andperforming an epitaxial process to form a carbon-containing silicon germanium cap layer on the epitaxial layer, wherein the entire carbon-containing silicon germanium cap layer is higher than the top surface of the substrate.
  • 2. The semiconductor process according to claim 1, wherein the chemical formula of the carbon-containing silicon germanium cap layer is —SiGexCz—, and the carbon concentration of the carbon-containing silicon germanium cap layer is 0.1%˜1%.
  • 3. The semiconductor process according to claim 1, further comprising: implanting boron inside the epitaxial layer after the epitaxial layer is formed.
  • 4. The semiconductor process according to claim 1, wherein the epitaxial process comprises an in-situ epitaxial process.
  • 5. The semiconductor process according to claim 1, wherein forming the carbon-containing silicon germanium cap layer comprises forming a boron and carbon-containing silicon germanium cap layer.
  • 6. The semiconductor process according to claim 5, wherein boron and carbon atoms of the boron and carbon-containing silicon germanium cap layer are doped ex-situ.
US Referenced Citations (149)
Number Name Date Kind
4891303 Garza Jan 1990 A
5217910 Shimizu Jun 1993 A
5273930 Steele Dec 1993 A
5356830 Yoshikawa Oct 1994 A
5372957 Liang Dec 1994 A
5385630 Philipossian Jan 1995 A
5399506 Tsukamoto Mar 1995 A
5625217 Chau Apr 1997 A
5777364 Crabbe Jul 1998 A
5783478 Chau Jul 1998 A
5783479 Lin Jul 1998 A
5960322 Xiang Sep 1999 A
6030874 Grider Feb 2000 A
6048756 Lee Apr 2000 A
6074954 Lill Jun 2000 A
6100171 Ishida Aug 2000 A
6110787 Chan Aug 2000 A
6165826 Chau Dec 2000 A
6165881 Tao Dec 2000 A
6191052 Wang Feb 2001 B1
6228730 Chen May 2001 B1
6274447 Takasou Aug 2001 B1
6355533 Lee Mar 2002 B2
6365476 Talwar Apr 2002 B1
6368926 Wu Apr 2002 B1
6444591 Schuegraf Sep 2002 B1
6537370 Hernandez Mar 2003 B1
6544822 Kim Apr 2003 B2
6605498 Murthy Aug 2003 B1
6613695 Pomarede Sep 2003 B2
6621131 Murthy Sep 2003 B2
6624068 Thakar Sep 2003 B2
6632718 Grider Oct 2003 B1
6642122 Yu Nov 2003 B1
6664156 Ang Dec 2003 B1
6676764 Joo Jan 2004 B2
6699763 Grider Mar 2004 B2
6703271 Yeo Mar 2004 B2
6777275 Kluth Aug 2004 B1
6806151 Wasshuber Oct 2004 B2
6809402 Hopper Oct 2004 B1
6858506 Chang Feb 2005 B2
6861318 Murthy Mar 2005 B2
6864135 Grudowski Mar 2005 B2
6869867 Miyashita Mar 2005 B2
6887751 Chidambarrao May 2005 B2
6887762 Murthy May 2005 B1
6891192 Chen May 2005 B2
6930007 Bu Aug 2005 B2
6946350 Lindert Sep 2005 B2
6962856 Park Nov 2005 B2
6972461 Chen Dec 2005 B1
6991979 Ajmera Jan 2006 B2
6991991 Cheng Jan 2006 B2
7037773 Wang May 2006 B2
7060576 Lindert Jun 2006 B2
7060579 Chidambaram Jun 2006 B2
7064399 Babcock et al. Jun 2006 B2
7112495 Ko Sep 2006 B2
7118952 Chen Oct 2006 B2
7132338 Samoilov Nov 2006 B2
7169675 Tan Jan 2007 B2
7183596 Wu Feb 2007 B2
7202124 Fitzgerald Apr 2007 B2
7217627 Kim May 2007 B2
7288822 Ting Oct 2007 B1
7303999 Sriraman Dec 2007 B1
7335959 Curello Feb 2008 B2
7410859 Peidous Aug 2008 B1
7462239 Brabant Dec 2008 B2
7491615 Wu Feb 2009 B2
7494856 Zhang Feb 2009 B2
7494858 Bohr Feb 2009 B2
7592231 Cheng Sep 2009 B2
7612389 Lin Nov 2009 B2
7667227 Shimamune Feb 2010 B2
7691752 Ranade Apr 2010 B2
7781799 Yu Aug 2010 B2
7838370 Mehta Nov 2010 B2
8093634 Mowry et al. Jan 2012 B2
20020045317 Oishi et al. Apr 2002 A1
20020160587 Jagannathan Oct 2002 A1
20020182423 Chu Dec 2002 A1
20030181005 Hachimine Sep 2003 A1
20030203599 Kanzawa Oct 2003 A1
20040045499 Langdo Mar 2004 A1
20040067631 Bu Apr 2004 A1
20040227164 Lee Nov 2004 A1
20050070076 Dion Mar 2005 A1
20050079692 Samoilov Apr 2005 A1
20050082616 Chen Apr 2005 A1
20050093075 Bentum et al. May 2005 A1
20050139231 Abadie Jun 2005 A1
20050260830 Kwon Nov 2005 A1
20050285193 Lee Dec 2005 A1
20050287752 Nouri Dec 2005 A1
20060051922 Huang Mar 2006 A1
20060057859 Chen Mar 2006 A1
20060076627 Chen Apr 2006 A1
20060088968 Shin Apr 2006 A1
20060115934 Kim et al. Jun 2006 A1
20060115949 Zhang Jun 2006 A1
20060163558 Lee Jul 2006 A1
20060166414 Carlson et al. Jul 2006 A1
20060228842 Zhang Oct 2006 A1
20060231826 Kohyama Oct 2006 A1
20060258126 Shiono Nov 2006 A1
20060281288 Kawamura Dec 2006 A1
20060292779 Chen Dec 2006 A1
20060292783 Lee Dec 2006 A1
20070023847 Rhee Feb 2007 A1
20070034906 Wang Feb 2007 A1
20070049014 Chen Mar 2007 A1
20070072353 Wu Mar 2007 A1
20070072376 Chen Mar 2007 A1
20070082451 Samoilov Apr 2007 A1
20070128783 Ting Jun 2007 A1
20070166929 Matsumoto Jul 2007 A1
20070262396 Zhu Nov 2007 A1
20080014688 Thean Jan 2008 A1
20080061366 Liu Mar 2008 A1
20080067545 Rhee Mar 2008 A1
20080076236 Chiang Mar 2008 A1
20080085577 Shih Apr 2008 A1
20080116525 Liu May 2008 A1
20080124874 Park May 2008 A1
20080128746 Wang Jun 2008 A1
20080142886 Liao Jun 2008 A1
20080220579 Pal Sep 2008 A1
20080233722 Liao Sep 2008 A1
20080233746 Huang Sep 2008 A1
20090039388 Teo et al. Feb 2009 A1
20090039389 Tseng Feb 2009 A1
20090045456 Chen Feb 2009 A1
20090081836 Liu et al. Mar 2009 A1
20090095992 Sanuki Apr 2009 A1
20090108291 Cheng Apr 2009 A1
20090117715 Fukuda May 2009 A1
20090124056 Chen May 2009 A1
20090166625 Ting Jul 2009 A1
20090184402 Chen Jul 2009 A1
20090186475 Ting Jul 2009 A1
20090246922 Wu Oct 2009 A1
20090278170 Yang Nov 2009 A1
20090302348 Adam Dec 2009 A1
20100001317 Chen Jan 2010 A1
20100093147 Liao et al. Apr 2010 A1
20110117732 Bauer et al. May 2011 A1
20110171795 Tsai et al. Jul 2011 A1
Related Publications (1)
Number Date Country
20130264613 A1 Oct 2013 US