The present disclosure generally relates to a semiconductor substrate processing apparatus.
In a semiconductor substrate processing apparatus, such as a vertical batch furnace, atomic layer deposition (ALD) apparatus, and the like, a wafer may be treated in a process chamber by depositing a layer of deposition material on said wafer. The wafer may be loaded in a wafer boat which may accommodate a plurality of spaced apart wafers. The wafer boat with loaded wafers may be placed in the process chamber for treatment. Uniform depositing of the material on the wafer in the wafer boat may be important for obtaining high quality wafers. A known problem may be the accumulation of deposited material near an outer edge of the wafer, i.e. in an outer edge zone of the wafer, making the layer in said outer edge zone thicker than elsewhere on the wafer. This edge effect may decrease the quality of the wafer and may reduce the effective area of the wafer. Also posts of the wafer boat containing slots by which the wafers are supported may disturb the deposition process so that the layer thickness which is deposited on the wafer adjacent the posts may be different from the layer thickness at parts of the wafer which are more remote from the posts.
It is known to put a shielding ring in a slot in the wafer boat above the wafer, wherein the shielding ring shields the outer edge zone of the wafer against superfluous deposition.
This summary is provided to introduce a selection of concepts in a simplified form. These concepts are described in further detail in the detailed description of example embodiments of the disclosure below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
It may be realized that in the known substrate processing apparatus using the shielding rings, deposition material is still accumulated near and deposited on the outer edge zone of the wafer.
It may be an object to provide a semiconductor processing apparatus in which the accumulation of deposition material on the outer edge zone of the wafer is less than in the known semiconductor processing apparatus.
To that end, there may be provided a semiconductor substrate processing apparatus. The semiconductor substrate processing apparatus may comprise a processing chamber, a wafer boat, and a plurality of wafer supports. The processing chamber may be configured for batch processing a plurality of wafers. The processing may include depositing a layer on each wafer of the plurality of wafers. The wafer boat may be configured to accommodate the plurality of wafers and be receivable in the processing chamber. The wafer boat may comprise at least two wafer boat posts. Each wafer boat post may comprise a plurality of slots. Each wafer support of the plurality of wafer supports may comprise a support area and a flange. The support area may be configured to support at least a circumferential edge of a wafer of the plurality of wafers. The flange may circumferentially surround the support area. The flange may be receivable in and supported by the slots. The flange may have a width to create a distance between the circumferential edge of the wafer of the plurality of wafers and the wafer boat posts of the wafer boat. The distance may be such that the wafer boat posts do substantially not influence a layer thickness of the layer which is deposited on the wafer during processing of the wafer.
There may also be provided another semiconductor substrate processing apparatus. The semiconductor substrate processing apparatus may comprise a processing chamber, a wafer boat, and a shield ring. The processing chamber may be configured for batch processing a plurality of wafers. The processing may include depositing a layer on each wafer of the plurality of wafers. The wafer boat may be configured to accommodate the plurality of wafers and be receivable in the processing chamber. The wafer boat may comprise at least two wafer boat posts. Each wafer boat post may comprise a plurality of slots. The shield ring may be configured to be supported in the slots of the wafer boat posts above an associated wafer. The shield ring may shield a circumferential outer edge zone at an upper surface of the associated wafer. The circumferential outer edge zone may be ring-shaped, have a radial width and extend circumferentially along a circumferential edge of the wafer. A surface part of the shield ring may define a nominal surface area which is a surface area of the surface part if it were flat. The surface part has a surface structure which may provide an enhanced surface area. An enhanced surface area ratio may be defined by the enhanced surface area of the surface part having the surface structure divided by the nominal surface area. The enhanced surface area ratio is higher than 1.5.
For purposes of summarizing the invention and the advantages achieved over the prior art, certain objects and advantages of the invention have been described herein above. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Various embodiments are claimed in the dependent claims, which will be further elucidated with reference to an example shown in the figures. The embodiments may be combined or may be applied separate from each other.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description of certain embodiments having reference to the attached figures, the invention not being limited to any particular embodiment(s) disclosed.
While the specification concludes with claims particularly pointing out and distinctly claiming what are regarded as embodiments of the invention, the advantages of embodiments of the disclosure may be more readily ascertained from the description of certain examples of the embodiments of the disclosure when read in conjunction with the accompanying drawings, in which:
In this application similar or corresponding features are denoted by similar or corresponding reference signs. The description of the various embodiments is not limited to the examples shown in the figures and the reference numbers used in the detailed description and the claims are not intended to limit the description of the embodiments, but are included to elucidate the embodiments.
Although certain embodiments and examples are disclosed below, it will be understood by those in the art that the invention extends beyond the specifically disclosed embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the invention disclosed should not be limited by the particular disclosed embodiments described below. The illustrations presented herein are not meant to be actual views of any particular material, structure, or device, but are merely idealized representations that are used to describe embodiments of the disclosure.
As used herein, the term “wafer” may refer to any underlying material or materials that may be used, or upon which, a device, a circuit, or a film may be formed.
In the most general terms the present disclosure may provide a semiconductor substrate processing apparatus 10. An example of the semiconductor substrate processing apparatus 10 is shown in
During deposition a precursor gas may be supplied in the processing chamber 12. This precursor gas may be deposited on the wafer 90 and form a layer of deposition material thereupon. The deposition of material on the wafer 90 may not always be uniform, which means that a layer thickness may vary.
To counter the edge effect, the known semiconductor substrate processing apparatus may have a wafer boat with wafers and shield rings placed therein. The setup of this known wafer boat may be similar to the one shown in
In the semiconductor substrate processing apparatus 10 of the present disclosure, the flange 24 may create the distance 28 between the circumferential edge 92 of the wafer 90 and the wafer boat posts 16. This may result in a wafer boat 14 in which the wafer boat posts 16 are further away from the circumferential edge 92 of the wafer 90 than in the wafer boat of the known semiconductor substrate processing apparatus. The width may be chosen such that the thicker part of the deposited layer may be formed on the flange 24 of the wafer support 20 and not on the outer edge zone 92 of the wafer 90. Additionally, the above described undesired effects of the wafer boat posts 16 on the layer thickness of the deposited layer adjacent the wafer boat posts 16 may be reduced. This may lead to a more even distribution of deposited material on the wafer 90 itself, thereby improving the quality of the wafer 90.
As shown in
In an embodiment the width of the flange 24 to create the distance between the circumferential edge 92 of the wafer 90 and the wafer boat posts 16 may be in the range between 5 and 35 mm, preferably between 10 and 25 mm, more preferably substantially 15 mm. This width of the flange 24 may suffice to reduce the influence of the wafer boat posts 16 on the layer thickness.
In an embodiment the distance 28 between the circumferential edge 92 of the wafer 90 and the wafer boat posts 16 may be in the range between 5 and 35 mm, preferably between 10 and 25 mm, more preferably substantially 10 mm. This distance between the wafer 90 and the wafer boat posts 16 may suffice to substantially reduce the influence of the wafer boat posts 16 on the layer thickness.
In an embodiment, of which an example is shown in
In an embodiment, of which an example is shown in
In an embodiment, the wafer support 20 with the wafer 90 may be removable from the wafer boat 14. An end effector 36 or the like, may be used to transport the wafer support 20. The end effector 36 may, for example, engage a bottom surface of the wafer support 20 and may carry the wafer support 20 together with the wafer 90.
In an embodiment the wafer support 20 may comprise quartz. Quartz may ensure that high purity is maintained while being able to withstand high temperature, while not reacting with the wafers 90 themselves or introducing particles which may cause impurities in the deposited layers..
In an embodiment the wafer support 20 may comprise silicon carbide (SiC). As quartz, silicon carbide may be a material with high temperature resistance.
In an embodiment, of which an example is shown in
The present disclosure may also provide another semiconductor substrate processing apparatus 10. The semiconductor substrate processing apparatus 50 may comprise a processing chamber 12, a wafer boat 54, and a shield ring 62. Examples of the wafer boat 54 of this example are shown in
A physical surface may have an enhanced surface area which may be different from the nominal surface area 66. An illustration hereof is shown in
As with the previous semiconductor substrate processing apparatus 10, due to the edge effect the thickness of the deposited layer may be thicker in the outer edge zone 94 of the wafer 90 than in more central parts of the wafer 90. Although the known shield ring may shield the circumferential outer edge zone 94 at an upper surface 96 of the wafer 90, there still may be an accumulation of deposition material on said outer edge zone 94. With the shield ring 62 according to the description having a surface part 64 and/or 65 with an enhance surface area 68, such an accumulation of deposition material may be reduced.
With the surface part 64, 65 of the shield ring 62 which may have an enhanced surface area ratio of more than 1.5, more deposition material may be prevented from being deposited on the circumferential outer edge zone 94 of the wafer 90. This may even have as a result that no accumulation of deposition material on the circumferential outer edge zone 94 of the wafer 90 occurs and that a uniform layer thickness is obtained over at least the entire upper surface of the wafer 90.
Because of the high enhanced surface area ratio, the surface part 64 and/or 65 with the enhanced surface area 68 may have a relatively high roughness which may result in more deposition material adhering to the surface part 64 and/or 65 of the shield ring 62 according to the descripting thus reducing the edge effect.
Continuous use of the shield ring 62 during processing, may result in the deposition material smoothening the enhanced surface area. This may lead to the enhanced surface area ratio becoming smaller. To ensure the level of enhanced surface area ratio, it may be necessary to periodically treat the surface part 64, 65 of the shield ring 64 having the enhanced surface area ratio. The surface part 64 and/or, 65 of the shield ring 62 may e.g. be treated with an etching process to remove deposited material from the shield ring 62.
In an embodiment, the surface part of the shield ring 62 with the enhanced surface area 68 may exclusively comprise an upper surface 64 of the shield ring 62.
In an alternative embodiment, the surface part of the shield ring 62 with the enhanced surface area 68 may exclusively comprise a lower surface 65 of the shield ring 62.
In yet another alternative embodiment, the surface part of the shield ring 62 with the enhanced surface area 68 may comprise both an upper surface 64 and a lower surface 65 of the shield ring 62.
Which choice from these three embodiments is made depends on the type of deposition process and the materials used. It will be clear that the position of the enhanced surface area 68 on an upper surface 64, a lower surface 65 or on both may have an impact on the edge effect and thus on the layer thickness in the outer edge zone 94 of the wafer 90.
In an embodiment, the enhanced surface area ratio may be higher than 20, preferably higher than 50. This value of the enhance surface area ratio may be enough to prevent any accumulation of deposition material on the outer edge zone 94 of the wafer 90.
In an embodiment, the surface structure 70 may comprise a coating which provides a roughness. The coating may have a thickness between 500 nm to 5000 nm. Such a coating may provide the enhanced surface area 68 with the enhanced surface area ratio higher than 1.5, preferably higher than 20, and even more preferably higher than 50.
In an embodiment, the surface structure 70 may comprise a coating including hemi-spherical grains.
In an embodiment, the shield ring 62 may be manufactured from a construction material. The surface structure 70 may comprise geometrical shapes which are provided in the construction material to provide the enhanced surface area with the enhanced surface area ratio of the present disclosure. For example, the surface part 64, 65 of the shield ring 62 with the enhanced surface area 68 may be milled in a rough milling operation to provide the enhanced surface area.
In an embodiment, the surface part 64 and/or 65 with the enhanced surface area 68 may comprise a coating comprising silicon dioxide SiO2.
In an embodiment, at least the surface part 64 and/or 65 of the shield ring 62 with the enhanced surface area 68 may comprise porous material. The porous material may comprise e.g. porous silicon oxide.
In an embodiment, the shield ring 92 may have a radial width which is selected such that the circumferential outer edge zone 94 which is shielded by the shield ring 92 may have a width in the range of 10 mm to 30 mm. This radial width may be enough to prevent the above-described edge effect.
In an embodiment, of which an example is shown in
As with the previous semiconductor substrate processing apparatus 10, the flange 24 may create the distance 28 between the circumferential edge 92 of the wafer 90 and the wafer boat posts 16. This may result in a wafer boat 14 in which the wafer boat posts 16 are further away from the circumferential edge 92 of the wafer 90 than in the wafer boat of the known semiconductor substrate processing apparatus. The width may be chosen such that the thicker part of the deposited layer caused by the edge effect may be formed on the flange 24 of the wafer support 20 and not on the outer edge zone 92 of the wafer 90. This may lead to a more even distribution of deposited material on the wafer 90 itself, thereby improving the quality of the wafer 90. The shield ring 62 for the associated wafer 90, which is at the same time the wafer support 20 for the wafer 90 directly above the associated wafer 90, not only reduces the edge effect due to the enhanced surface area of the shield ring 62 but also reduces the negative influence of wafer boat posts 56 on the uniformity of the layer thickness because the flange 24 of the wafer support 20/shield ring 62 provides an increased distance between the circumferential edge 92 of the wafer 90 and the wafer boat posts 56.
Again, in a further elaboration of this embodiment, of which an example is shown in
In an alternative embodiment, of which an example is shown in
In this way each wafer 90 may be shielded by the shield ring 62 directly positioned above said wafer 90. In this embodiment, the shield ring 62 does not have the function of wafer support 20.
An advantage of the embodiment of
Although illustrative embodiments of the present invention have been described above, in part with reference to the accompanying drawings, it is to be understood that the invention is not limited to these embodiments. Variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this description are not necessarily all referring to the same embodiment.
Furthermore, it is noted that particular features, structures, or characteristics of one or more of the various embodiments which are described above may be used implemented independently from one another and may be combined in any suitable manner to form new, not explicitly described embodiments. The reference numbers used in the detailed description and the claims do not limit the description of the embodiments, nor do they limit the claims. The reference numbers are solely used to clarify.
Number | Date | Country | |
---|---|---|---|
63274666 | Nov 2021 | US |