1. Field of the Invention
The present invention relates to a semiconductor wafer storage case used for transporting or storing a semiconductor wafer, and a method of storing a semiconductor wafer.
2. Description of the Related Art
In view of the growing demand for miniaturization of a semiconductor package, techniques are being developed for reducing the thickness of a semiconductor wafer. However, a semiconductor wafer with reduced thickness may easily break when it is transported or stored in the conventional manner. Thus, new techniques for safely storing a semiconductor wafer are currently in demand.
A storage case having slit portions arranged at predetermined intervals is normally used upon transporting or storing a semiconductor wafer. Such a storage case may be configured to store up to twenty-five (25) semiconductor wafers, for example. Another exemplary storage case may be configured to store plural semiconductor wafers that are stacked one on top of the other with interlayer sheets inserted therebetween. Other various storage cases have been proposed for transporting or storing plural semiconductor wafers, such as those described in Japanese Laid-Open Patent Publication No. 6-085046, Japanese Laid-Open Patent Publication No. 2000-355392, and Japanese Laid-Open Patent Publication No. 7-161805.
As is described above, techniques for reducing the thickness of a semiconductor wafer are being developed in response to the demand for a miniaturized semiconductor package. For example, a semiconductor wafer previously having a thickness of approximately 0.7 mm may now be reduced to have a thickness of approximately 0.05 mm.
A conventional semiconductor wafer storage case has grooves (or slit portions) arranged at its inner side at predetermined intervals. Semiconductor wafers are held within these grooves and stored in such a storage case. The storage case is normally configured to store unprocessed semiconductor wafers (e.g., semiconductor wafers having a thickness of approximately 0.7 mm), and accordingly, its inner side has grooves arranged at approximately 1-2 mm intervals.
It is noted that a conventional semiconductor wafer storage case does not have a structure for holding the peripheral edge portion of a semiconductor wafer in place. Although such a storage case may have versatility, when such a conventional semiconductor storage case is used for storing or transporting semiconductor wafers with reduced thickness, there may be a relatively high risk of the semiconductor wafers being damaged. Specifically, the semiconductor wafers may be prone to break due to vibrations and shock created during its transportation, for example.
As is shown in
In the following, storing or transporting a semiconductor wafer 1 with reduced thickness using the above-described extensible storage case 4 is described.
As is shown in
When storing or transporting the semiconductor wafer 1, an external force is applied to the storage case 4 so that the storage case 4 may be compressed as is shown in
Such a problem occurs due to the fact that an R-shaped portion of the periphery of the semiconductor wafer 1 is reduced to half of its original thickness. Specifically, in the process of reducing the thickness of the semiconductor wafer 1, the wafer edge of the semiconductor wafer 1 becomes sharp so that it may easily break even when a small external force is exerted thereon.
Also, the storage case 4 is relatively tall and has a relatively large volume so that the storage case 4 takes up space and may not be convenient cost-wise for being transported to a different location, for example. Accordingly, measures are desired for reducing the size of the storage case itself.
In view of the above-described problems, a stacking type storage case has been developed that stacks plural semiconductor wafers one on top of the other with interlayer sheets inserted between the stacked semiconductor wafers.
However, with such a configuration, the side face of the semiconductor wafer comes into contact with the inner wall of the storage case so that problems such as damage of the semiconductor wafer may not be adequately prevented when such a storage case is used for storing the semiconductor wafer 1 with reduced thickness.
Also, Japanese Laid-Open Patent Publication No. 7-161805 discloses a concertina type extensible case that is configured to protect the semiconductor wafer accommodated therein from damage during its transportation. However, the disclosed storage case cannot adequately protect a semiconductor wafer having a sharp wafer edge from breaking as is described in detail below with reference to
In
The back grinding process is performed on the semiconductor wafer 1 so that the pre-ground face 1d is ground to the solid line (ground face 1b) shown in
As is described above with respect to
Further, when the storage case 4 is compressed in order to hold the semiconductor wafer 1 in place, the vertical direction pressing force applied to the storage case 4 may be focused on the edge of the semiconductor wafer 1 to thereby increase its risk of breaking.
According to one aspect of an embodiment, a semiconductor wafer storage case is provided that includes:
support members that are spaced at predetermined intervals with respect to each other, each of which support members is configured to come into contact with a peripheral edge region of a first face of a semiconductor wafer; and
an elastic member that elastically supports the support members with respect to each other, which elastic member is configured to elastically deform to come into contact with a second face of the semiconductor wafer and press the semiconductor wafer onto a corresponding support member of the support members.
According to another aspect of the embodiment, a semiconductor wafer storage case is provided that includes:
support members that are spaced at predetermined intervals with respect to each other, each of which support members has a semiconductor wafer support face that comes into contact with a peripheral edge region of a first face of a semiconductor wafer;
a damper that is arranged on another face of each of the support members which clamper is configured to come into contact with a second face of the semiconductor wafer and press the semiconductor wafer onto a corresponding support member of the support members; and
an elastic member that elastically supports the support members with respect to each other.
According to the other aspect of the embodiment, a semiconductor wafer storing method is provided for storing a semiconductor wafer using one of the semiconductor wafer storage cases according to the above-described embodiments, the method including the steps of:
inserting one or more semiconductor wafers into one or more of the spaces between the support members when the semiconductor wafer storage case is expanded; and
compressing the semiconductor wafer storage case in a manner such that the peripheral edge region of the first face of each of the semiconductor wafers comes into contact with the corresponding support member and the elastic member elastically deforms to press each of the semiconductor wafers onto the corresponding support member.
According to the other aspect of the embodiment, a semiconductor wafer storage case is provided that includes:
a continuous V-shaped spring member having plural V-shaped portions each configured to accommodate a semiconductor wafer; and
a damper that is configured to press the semiconductor wafer and is arranged at a contact location of the continuous V-shaped spring member that comes into contact with the semiconductor wafer.
According to another embodiment of the present invention, a semiconductor wafer storing method is provided for storing a semiconductor wafer using the semiconductor wafer storage case according to the above-described embodiment, the method comprising the steps of:
inserting one or more semiconductor wafers into one or more of the V-shaped portions of the continuous V-shaped spring member when the semiconductor wafer storage case is expanded; and
compressing the semiconductor wafer storage case in a manner such that each peripheral edge region of a first face and a second face of each of the semiconductor wafers comes into contact with and is supported by the clamper.
In the following, preferred embodiments of the present invention are described with reference to the accompanying drawings.
A semiconductor wafer storage case 10A according to a first embodiment of the present invention is described below with reference to
The storage case 10A according to the present embodiment may be expanded and compressed. The storage case 10A includes plural U-shaped plates 12 as semiconductor wafer support members.
The U-shaped plates 12 as the semiconductor wafer support members form an opening at the front side (open portion of the U-shape structure) of the storage case 10A for enabling insertion of a semiconductor wafer. Also, plural spring members 14 are arranged at the rear side (the U-shape periphery) of the storage case 10A.
Specifically, the U-shaped plates 12 are coupled to each other and supported by plural spring members 14 corresponding to elastic members that are arranged along the U-shape periphery of the U-shaped plates 12. The space between the U-shaped plates 12 when the storage case 11A is not compressed may be approximately 5 mm.
It is noted that in certain embodiments, the linear portions and curved portions of the U-shaped plates 12 may be substantially sealed depending on the number of spring members 14.
The storage case 10A according to the present embodiment has a case upper plate 15a and a case lower plate 15b that are respectively arranged above the uppermost U-shaped plate 12 and below the lowermost U-shaped plate 12 via the spring members 14. A handgrip 16 for holding the storage case 10A and expanded/compressed case fixing holes 17 for fixing the storage case 10A in the expanded/compressed state are arranged on the surface of the case upper plate 15a. Also, expanded/compressed case fixing holes 17 and apparatus fixing holes 13 are arranged on the case lower plate 15b.
As is shown in
The U-shaped plate 12 is arranged to have outer dimensions that are greater than the outer dimensions of the semiconductor wafer 1, and the rear side portion of the U-shaped plate 12 (i.e., opposite side of the semiconductor wafer insertion opening) is arranged into a semi-circular shape in accordance with the outer shape of the semiconductor wafer 1.
It is noted that by arranging the storage case 10A according to the present embodiment to have the above-described configuration, its storage space may be reduced compared to that of the storage case 4 shown in
The U-shaped plate 12 used in the present embodiment is a plate member made of hard resin or metal that is processed to be static-free and has a thickness of approximately 1 mm. With such a configuration, the U-shaped plate 12 may be prevented from deforming and may be able to maintain a flat plane structure.
By using such a U-shaped plate 12, the semiconductor wafer 1 with reduced thickness may be safely stored without being damaged or broken, for example.
Referring back to
The arc spring portion 14b is arranged on the surface of the lower side U-shaped plate 12, the plate portion 14a extends above the semiconductor wafer 1 arranged on this lower side U-shaped plate 12, and the damper portion 14c is fixed to the bottom face of the upper side U-shaped plate 12.
The spring member 14 may be a resin spring or a metal plate spring that is processed to be static-free and has a thickness of approximately 0.2 mm. When an external force is not applied to the storage case 10A, namely, when the storage case 10A is not compressed, the spring member 14 separates the two opposing U-shaped plates 12 from each other to enable insertion/removal of a semiconductor wafer 1 into/from the space between the U-shaped plates 12.
In other words, when the storage case 10A is expanded as is shown in
After a desired number of semiconductor wafers 1 are stored in the storage case 10A, an external pressing force in vertical directions is applied to the case upper plate 15a and the case lower plate 15b so that the storage case 10A is compressed.
Specifically,
As can be appreciated from these drawings, when the storage case 11A is compressed, the arc spring portion 14b elastically deforms, and the plate portion 14b and the damper portion 14c move toward the semiconductor wafer 1. In this way, the damper portion 14c comes into contact with the surface of the semiconductor wafer 1 at a location distanced away from the peripheral edge of the semiconductor wafer 1 by a predetermined distance W (e.g., 1 mm) to press the semiconductor wafer 1 toward the lower side U-shaped plate 12.
It is noted that the distance A (see
As is shown in
Upon storing the semiconductor wafer 1 in the storage case 10A, the space between the U-shaped plates 12 arranged within the case upper plate 15a and the case lower plate 15b are expanded by the spring members 14. It is noted that the U-shaped plates 12 are made of relatively rigid material so that they may not deform and may be able to maintain their flat plane structures. Accordingly, even a semiconductor wafer 1 with reduced thickness may be safely stored without being damaged or broken, for example.
Specifically, in this drawing, after compressing the storage case 10A, a clip 18 is arranged across the case upper plate 15a and the case lower plate 15b. By engaging the ends of the clip 18 with the expanded/compressed case fixing holes 17 arranged on the case upper plate 15a and the case lower plate 15b, expansion of the case upper plate 15a and the case lower plate 15b may be prevented. It is noted that the clip 18 may be made of resin or metal, for example.
In one embodiment, the storage case 10A having the semiconductor wafers 1 stored therein and compressed thereafter in the above-described manner may be accommodated inside a hermetic case upon being transported.
Specifically, when taking the storage case 10A out of a clean room, for example, the storage case 10A may be accommodated inside the hermetic case 19a and sealed by the hermetic case lid 19b as shown in
The illustrated apparatus 24 is a wafer carrying unit including an automated carrying mechanism such as a carrying robot (not shown) for removing a semiconductor wafer 1 to be processed out of the storage case 10A or accommodating the semiconductor wafer in the storage case 10A after the semiconductor wafer 1 is processed at a processing apparatus (not shown) configured to perform processes, such as etching or vapor phase epitaxy, on the semiconductor wafer 1.
In the present example, the storage case 10A that is fixed in the compressed state as shown in
Next, the clip 18 is detached from the storage case 10A so that the case 10A may be expanded. Then, as is shown in
Then, the semiconductor wafer 1 may be carried out of the storage case 10A or carried into the storage case 10A by an automated carrying mechanism such as a robot (not shown).
In the following, a semiconductor wafer storage case 10B according to a second embodiment of the present invention is described with reference to
The storage case 10B of the second embodiment differs from the storage case 10A of the first embodiment in that it uses a circular tube 25 as an elastic member instead of the spring member 14.
Specifically, as is shown in
It is noted that the linear portions and curved portions of the U-shaped plates 12 may be substantially sealed depending on the number of circular tubes 25 arranged between the U-shaped plates 12. Also, in one embodiment, the circular tube 25 may be one continuous tube that extends along the periphery of the U-shaped plate 12.
The circular tube 25 is an elastic member that is made of elastic material such as rubber.
The storage case 10B according to the present embodiment has one or more clampers 26 arranged along the inner perimeter side bottom surface of the U-shaped plate 12. The damper 26 is made of elastic material such as urethane or silicon rubber and are bonded and fixed to the U-shaped plate 12.
In one specific embodiment, plural clampers 26a may be dotted along the inner side perimeter of the U-shaped plate 12 as is shown in
When no external pressing force is applied to the storage case 10B, the circular tube 25 separates two opposing U-shaped plates 12 from each other to enable insertion and removal of a semiconductor wafer 1.
Specifically, when the storage case 10B is expanded as shown in
When an external pressing force in vertical directions is applied to the case upper plate 15a and the case lower plate 15b to cause compression of the storage case 10B as shown in
It is noted that the distance A (see
Also, it is noted that the storage case 10B according to the present embodiment may be transported or used for processing a semiconductor wafer 1 at a processing apparatus in a manner similar to the way the storage case 10A according to the first embodiment is transported or used as is described above.
In the following, a semiconductor wafer storage case 10C according to a third embodiment of the present invention is described with reference to
The storage case 10C according to the third embodiment differs from the previously-described embodiments in that it uses a rubber plate member 27 as the elastic member.
Specifically, as is shown in
In certain embodiments, the linear portions and curved portions of the U-shaped plates 12 may be substantially sealed depending on the number of the rubber plate members 27 arranged at the periphery of the U-shaped plated 12. In one specific embodiment, the rubber plate member 27 may be one continuous plate member surrounding the periphery of the U-shaped plates 12 of the storage case 10C.
The storage case 10C according to the present embodiment has one or more clampers 26 arranged at the inner side bottom faces of the U-shaped plates 12. The damper 26 is made of elastic material such as urethane or silicon rubber and is bonded and fixed to the U-shaped plates 12.
In one specific embodiment, plural clampers 26a may be dotted along the inner side perimeter of the U-shaped plate 12 as is shown in
When no external pressing force is applied to the to the case upper plate 15a and the case lower plate 15b, namely, when the storage case 10C is not compressed, the rubber plate member 27 separates two opposing U-shaped plates 12 from each other to enable insertion/removal of a semiconductor wafer 1 into/from the space between the U-shaped plates 12.
Specifically, when the storage case 10C is expanded as shown in
When an external pressing force in vertical directions is applied to the case upper plate 15a and the case lower plate 15b to cause compression of the storage case 10C as shown in
As with the previously-described embodiments, the distance A (see
It is noted that the storage case 10C according to the present embodiment having the above-described configuration may be capable of being compressed at a higher compression rate without inflicting damage on the semiconductor wafer 1.
Also, the height of the storage case 10C according to the present embodiment may be reduced compared to that of the storage case 4 shown in
Also, the storage case 10C according to the present embodiment may be transported or utilized for processing a semiconductor wafer 1 at a processing apparatus in a manner similar to the way the storage case 10A according to the first embodiment is transported or used as described above.
In the following, a semiconductor wafer storage case 10D according to a fourth embodiment of the present invention is described with reference to
In the storage case 10D according to the present embodiment, a V-shaped spring member 28 is used as an elastic member instead of the spring member 14 of the first embodiment.
Specifically, as is shown in
In certain embodiments, the linear portions and curved portions of the U-shaped plates 12 may be substantially sealed depending on the number of V-shaped spring members 28 arranged along the U-shape periphery of the U-shaped plates 12.
It is noted that the V-shaped spring member 28 may be made of SUS304CSP having a thickness of approximately 0.1-0.3 mm, for example.
The storage case 10D according to the present embodiment has one or more clampers 26 arranged at the inner side bottom faces of the U-shaped plates 12. The clamper 26 may be made of elastic material such as urethane or silicon rubber and is bonded and fixed to the U-shaped plates 12.
In one specific embodiment, plural clampers 26a may be dotted along the inner side perimeter of the U-shaped plate 12 as is shown in
When no external pressing force is applied to the to the case upper plate 15a and the case lower plate 15b, namely, when the storage case 10D is not compressed, the V-shaped spring member 28 separates two opposing U-shaped plates 12 from each other to enable insertion/removal of a semiconductor wafer 1 into/from the space between the U-shaped plates 12.
Specifically, when the storage case 10D is expanded as shown in
When an external pressing force in vertical directions is applied to the case upper plate 15a and the case lower plate 15b to cause compression of the storage case 10D as shown in
As with the previously-described embodiments, the distance A (see
Also, the storage case 10D according to the present embodiment may be transported or utilized for processing a semiconductor wafer 1 at a processing apparatus in a manner similar to the way the storage case 10A according to the first embodiment is transported or used as described above.
In one embodiment, the V-shaped spring member 28 may normally be open as shown in
In the case where the V-shaped spring member 28 is normally closed, the pressure and speed for compressing the storage case 10D may be adjusted so that a semiconductor wafer may be prevented receiving shock and be protected from damage. On the other hand, in the case where the V-shaped spring member 28 is normally closed, a semiconductor wafer may be securely held between the U-shaped plates 12 on a constant basis so that the semiconductor wafer may be prevented from falling when it is being transported within the storage case 10D.
In the following, a semiconductor wafer storage case 10E according to a fifth embodiment of the present invention is described with reference to
The storage case 10E according to the present embodiment differs from the previously-described embodiments in that it does not use the U-shaped plates 12 as the semiconductor support members.
Specifically, as is shown in
When no external pressing force is applied to the continuous V-shaped spring member 29, namely, when the storage case 10E is not compressed as shown in
It is noted that the continuous V-shaped spring member 29 may be made of synthetic resin material such as polyethylene, terephthalate, or polypropylene, for example.
As is shown in
In one specific embodiment, plural clampers 26aa may be dotted along corresponding upper and lower positions of the protruding ends of the bent portions as is shown in
When no external pressing force is applied, namely, when the storage case 10E is not compressed, the continuous V-shaped spring member 29 is expanded to create a relatively large space to enable insertion/removal of a semiconductor wafer 1.
Specifically, when the continuous V-shaped spring member 29 is expanded as shown in
When an external pressing force in vertical directions is applied to the case upper plate 15a and the case lower plate 15b (not shown) to cause compression of the storage case 10E as shown in
In this case, the clampers 26 positioned on top of the semiconductor wafer 1 comes into linear contact or point contact with the surface of the semiconductor wafer 1 at a position located at least 1 mm inward from the peripheral edge of the semiconductor wafer 1. In other words, the storage case 10E according to the present embodiment is configured such that its continuous V-shaped spring member 29 and clampers 26 may be prevented from coming into contact with the peripheral edge of the semiconductor wafer 1.
Accordingly, even when a semiconductor wafer 1 with reduced thickness is inserted into the storage case 10E, the semiconductor wafer 1 may be safely stored without being damaged or broken. Specifically, by arranging the clampers 26 at the upper and lower positions of the protruding ends of the bent portions of the continuous V-shaped spring member 29 to come into contact with near edge regions on the upper and lower faces of the semiconductor wafer as opposed to its peripheral edge, the semiconductor wafer may be prevented from breaking or being damaged.
It is noted that the storage case 10E according to the present embodiment may be transported or utilized for processing a semiconductor wafer 1 at a processing apparatus in a manner similar to the way the storage case 10A according to the first embodiment is transported or used as described above.
As can be appreciated from the above descriptions, the storage cases 10A-10D according to the first through fourth embodiments of the present invention have plural U-shaped plates 12 and elastic members (e.g., spring member 14, circular tube 25, rubber plate member 27, V-shaped spring member 28) stacked at predetermined intervals.
According to an aspect of the above embodiments, the U-shaped plates 12 made of rigid material are prevented from deforming and are able to maintain a flat plane structure so that even a semiconductor wafer 1 with reduced thickness may be safely stored without being damaged or broken, for example.
According to another aspect of the above embodiments, the U-shaped plates 12 are arranged to have external dimensions that are greater than those of the semiconductor wafer 1 and the rear side shape of the U-shaped plates 12 is arranged in accordance with the shape of the semiconductor wafer 1 so that the storage space of the storage cases 10A-10C may be reduced compared to the conventional storage case 4.
The storage case 10E according to the fifth embodiment of the present invention has a concertina structure and uses a continuous V-shaped spring member 29 that functions as the semiconductor wafer support member and the elastic member so that the storage case configuration may be simplified.
According to an aspect of the above embodiment, a semiconductor wafer stored inside such a concertina type storage case may be supported by clampers having elastic properties that are arranged to be in linear contact or point contact with near edge portions of the semiconductor wafer. In this way, even a semiconductor wafer with reduced thickness may be safely stored without being damaged or broken.
As can be appreciated from the above descriptions, in a semiconductor wafer storage case according to an embodiment of the present invention, the side wall portion of the semiconductor wafer storage case that comes into contact with a semiconductor wafer is arranged to come into contact with the upper and lower faces of the semiconductor wafer rather than the peripheral edge of the semiconductor wafer so that the semiconductor wafer being stored may be prevented from breaking or being damaged, for example. Also, a semiconductor wafer stored in a semiconductor wafer storage case according to an embodiment of the present invention may be prevented from breaking even when a pressing force in vertical directions is applied to the storage case to hold the semiconductor wafer in place. Thus, even a semiconductor wafer with reduced thickness may be reliably stored in a semiconductor wafer storage case according to an embodiment of the present invention.
It is noted that although the present invention is described above with respect to certain specific embodiments, the present invention is not limited to these embodiments, and variations and modifications may be made without departing from the scope of the present invention.
This application is a U.S. continuation application filed under 35 USC 111(a) claiming benefit under 35 USC 120 and 365(c) of PCT application JP2005/022360, filed Dec. 6, 2005, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2725087 | Potter | Nov 1955 | A |
3391698 | Wiles | Jul 1968 | A |
5314068 | Nakazato et al. | May 1994 | A |
5353934 | Yamauchi | Oct 1994 | A |
5743409 | Nakahara et al. | Apr 1998 | A |
5749469 | Williams | May 1998 | A |
6092981 | Pfeiffer et al. | Jul 2000 | A |
6981594 | Sarver | Jan 2006 | B1 |
7325692 | Nanjo | Feb 2008 | B2 |
7501370 | Narendar et al. | Mar 2009 | B2 |
Number | Date | Country |
---|---|---|
55-55963 | Apr 1980 | JP |
6-85046 | Mar 1994 | JP |
7-161805 | Jun 1995 | JP |
2000-355392 | Dec 2000 | JP |
2002-305239 | Oct 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20080230438 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2005/022360 | Dec 2005 | US |
Child | 12131296 | US |