The present invention relates to a semiconductor wafer conveying tool which is used for conveying a semiconductor wafer in a semiconductor manufacturing process. It particularly relates to the semiconductor wafer conveying tool which enables a semiconductor wafer to be uniformly heated when heating the same.
An exclusive conveying tool has been used in the past on a heat treatment process of the semiconductor wafer or on the conveying line thereof in the semiconductor manufacturing process, in order to transfer and/or convey a plurality of semiconductor wafers.
There are different cases about a size of an individual semiconductor wafer to be conveyed. Accordingly, in order to omit a step of changing the conveying tool for each time when the size of the semiconductor wafer to be conveyed is changed, a conveying tool that can cope with the conveyance of the wafers with plural sizes by one species of the conveying tool has been known (see Patent Documents 1 and 2).
In the Patent Document 1, a wafer fork has been disclosed in which holding pins are fixed into their corresponding fixing holes according to a magnitude of a diameter of the semiconductor wafer to be conveyed so as to be able to cope with the conveyance of the wafers with plural sizes. Further, in the Patent Document 2, a wafer-holding table that can cope with the conveyance of the wafers with plural sizes has been disclosed. According to this wafer-holding table, a semiconductor wafer W is conveyed by conveying beams which move vertically and horizontally by a vertical cylinder and a horizontal cylinder. This is so-called “a wafer-holding table of walking beam system”. In connection therewith, there are at least three species of heights of conveying backs; they, having the same height, are arranged around the same circumference; and they are concentrically arranged so that the outer becomes taller in an order of heights. It is configured that the wafer supported by the pins each having a height corresponding to a dimension of the wafer is positioned by contacting it with next higher pins.
As another example of the wafer conveyance in which it is possible to cope with the conveyance of the wafers with plural sizes, the example as shown in
Patent Document 1: Japanese Patent Application Publication No. H06-151550
Patent Document 2: Japanese Utility Model Application Publication No. S62-26037
However, there are the following problems in the wafer fork disclosed in the Patent Document 1, the wafer-holding table disclosed in the Patent document 2 and the conventional wafer conveying tool shown in
When the heat transfer to the semiconductor wafer deteriorates, a part of the surface of the wafer in which the temperature is lower than the other part thereof in a temperature distribution thereof, namely, a low temperature part occurs so that any extra thermal dose to the semiconductor wafer is required. Accordingly, energy efficiency deteriorates and it is heated so that the low temperature part thereof reaches to a necessary temperature, which results in rupture of the excessively heated part thereof other than the low temperature part and causes an excess costs and/or any failure.
In order to solve the above-mentioned problem, the semiconductor wafer conveying tool claimed in claim 1 is a semiconductor wafer conveying tool which holds a semiconductor wafer having a predetermined diameter to convey it, characterized in that the tool is provided with a main body having an opening with a diameter which is larger than a diameter of the semiconductor wafer, and at least three supporting members each having a predetermined length, containing plural pins which are arranged corresponding to the diameter of the semiconductor wafer and being configured to be a holding mechanism for holding the semiconductor wafer concentrically at a projection position from an inner periphery portion of the main body around the opening. According to the semiconductor wafer conveying tool claimed in claim 1, since the opening provided in the conveying tool is larger than the diameter of the semiconductor wafer, the wafer is not overlapped with the main body of the conveying tool.
The semiconductor wafer conveying tool claimed in claim 2 is, in the claim 1, a semiconductor wafer conveying tool wherein one guide or more for preventing misalignment of the wafer are concentrically arranged for each pin, the guide being taller than the pin.
The semiconductor wafer conveying tool claimed in claim 3 is, in the claim 2, characterized in that the pins have at least two species of heights, the pins having the same height are arranged around the same circumference and the pins are concentrically arranged so that their heights become taller in order from a center of the conveying tool to an outside thereof.
The semiconductor wafer conveying tool claimed in claim 4 is, in the claim 1, characterized in that the position adjustment mechanism includes a supporting plate which is arranged radially from the center of the opening, a holding pin for holding the semiconductor wafer from below on the supporting plate, and a guide for preventing misalignment of the wafer, the guide being taller than the holding pin and being arranged outer than the holding pin on the supporting plate.
The semiconductor wafer conveying tool claimed in claim 5 is, in the claim 4, characterized in that at least three of the supporting plates are radially arranged from the center of the opening.
The semiconductor wafer conveying tool according to the invention has the opening having the diameter that is larger than the diameter of the semiconductor wafer. Therefore, when overheating, no heat is transferred to the main body of the wafer conveying tool so that it is possible to heat the whole of the wafer uniformly. This allows any costs reduction based on the prevention of surplus power consumption and enables the generation of any failure because of the overheating to be prevented.
Further, by arranging the guide for preventing misalignment of the wafer and the pin for holding the semiconductor wafer in a set, it is possible to prevent the misalignment of the wafer during the conveyance thereof, and it is possible to prevent the wafer from being heated ununiformly.
Additionally, the holding pins have at least two species of heights, those having the same height are arranged around the same circumference and they are concentrically arranged so that their heights become taller in order from the center of the conveying tool to an outside thereof. Thus, it is possible to convey plural species of the wafers by one conveying tool, which enables any conventional change step of the conveying tool to be omitted and any work load to be considerably decreased.
This invention has an object to present a semiconductor wafer conveying tool which can realize uniform heating to a surface of a semiconductor wafer when heating the semiconductor wafer.
The following will describe embodiments of the invention with reference to the attached drawings.
Namely, the wafer conveying tool 100 according to the embodiment constitutes an example of the semiconductor wafer conveying tool and is a tool that holds a semiconductor wafer to convey the same in the semiconductor manufacturing process. In a center of a base plate 1 as an example of a main body, an opening 9 is present and conveying guides 2 are respectively attached to both of the right and left sides of the base plate 1 along a conveying direction shown in an arrow by bolts 8 and the like. Supporting plates, four supporting plates (3A through 3D) in this embodiment, are arranged on the base plate 1 directing to the opening 9. The supporting plates 3A and 3C and the supporting plates 3B and 3D respectively constitute examples of supporting members and are arranged on diagonal lines, namely, the supporting plates 3A through 3D are arranged almost radially from the center of the opening 9 in the embodiment shown in
Anodized aluminum is suitable for the base plate 1.
The supporting plates 3A through 3D, the holding pins 4A through 4D and the holding pins 6A through 6D a wafer having a diameter of 200 mm or a wafer having a diameter of 300 mm at their respective predetermined positions and the prevention guides 5A through 5D and the prevention guides 7A through 7D are arranged on each of the supporting plates 3A through 3D one by one so that they are concentrically positioned. The holding pins 4A through 4D and the holding pins 6A through 6D can hold them from below in the opening 9. The prevention guides 5A through 5D and the prevention guides 7A through 7D have an objection of preventing misalignment of the wafer during the conveying time. The holding pins 4A through 4D, the holding pins 6A through 6D and the prevention guides 5A through 5D are arranged on each of the supporting plates 3A through 3D one by one so that they are concentrically positioned. An arranged order of respective hold pins and guides is such that the holding pins 4A through 4D, the prevention guides 5A through 5D, the holding pins 6A through 6D and the prevention guides 7A through 7D are arranged in order starting from the center of the opening 9. Heights of the pins and guides are configured so that the further they are apart from the center of the opening 9, they are gradually taller (Height of 4A<Height of 5A<Height of 6A<Height of 7).
It is to be noted that in this embodiment, the holding pins 4A through 4D and the holding pins 6A through 6D as well as the prevention guides 5A through 5D and the prevention guides 7A through 7D are respectively pushed into the supporting plates 3A through 3D. Each of the supporting plates 3A through 3D is provided on the base plate 1 on a straight line directing to the center of the opening 9 and constitutes a holding mechanism for holding the semiconductor wafer concentrically at their positions projected from an inner periphery portion of the base plate around the opening 9.
The supporting plates 3A through 3D may be made of aluminum like the base plate 1. Since, however, the aluminum is metal that is easy to charge, there is a problem such that the wafer is damaged by charged static electricity if it is under normal condition thereof. Accordingly, as the measure, it is necessary to use any aluminum on which any surface treatment is performed to prevent the charge, which results in an increase in the costs. Therefore, the supporting plate is preferably made of SUS so that it is hard to generate any charged static electricity under normal condition thereof.
The graph shown in
The graph shown in
The following will compare the differences (Δt) in peak temperatures of portions X1 through X5, measured using the jig for measuring the temperature profile having the size corresponding to the wafer with 200 mm.
In a case of the conventional conveying tool shown in
On the other hand, in a case of the conveying tool of the invention shown in
Similarly, the following will also compare the differences (Δt) in peak temperatures of portions Y1 through Y5, measured using the jig for measuring the temperature profile having the size corresponding to the wafer with 300 mm.
In a case of the conventional conveying tool shown in
On the other hand, in a case of the conveying tool of the invention shown in
As described above, when comparing the differences in the peak temperatures at every portions of the wafer surface between the embodiments of the invention and the conventional examples, the maximum difference of 2.8° C. occurs in temperature (8.3 minus 5.5) in the wafer with 200 mm. The maximum difference of 5.4° C. occurs in temperature (11.7 minus 6.3) in the wafer with 300 mm. This indicates that a sufficient effect of the invention is shown.
Although four supporting plates 3A through 3D have been set in the embodiment shown in
Although one prevention guide has been set for one holding (supporting) pin in the embodiment shown in
Further, a case where the bolts and the like fix the supporting plates 3A through 3D on the base plate 1 has been described. The invention, however, is not limited thereto: The supporting plates 3A through 3D may be configured so as to be slidable on the base plate 1. In this case, long straight slots are provided in the base plate 1 so that they extend directing to the center of the opening 9 and the supporting plates 3A through 3D may be respectively slid along the slots. This enables to be configured a position adjustment mechanism that can adjust the positions of the supporting plates 3A through 3D finely to the base plate 1.
Further, although a case where each of the supporting plates is provided on a straight line on the main body directing to the center of the opening, namely, they are radially set from the center of the opening has been described in the embodiment, the supporting plates may be configured so as to support the semiconductor wafer concentrically: The supporting plates are not always required to be set directing to the center of the opening or to be radially set from the center of the opening, if it has a configuration to attain this object.
The invention is preferably applicable to a semiconductor wafer conveying tool which uniformly heats a surface of the wafer when heating the wafer in a reflow furnace or the like.
1; Base Plate,
2; Conveying Guides,
3A through 3D; Supporting Plates,
4A through 3D; Holding Pins,
5A through 5D; Prevention Guides,
6A through 6D; Holding Pins,
7A through 7D; Prevention Guides,
8; Bolts,
9; Opening,
10; Base Plate,
11; Conveying Guides,
14; Bolts,
15; Opening,
16A through 16D; Holding Pins,
17A through 17D; Prevention guides,
18A through 18D; Holding Pins,
19A through 19D; Prevention guides,
100; Conveying tool,
200; Conveying tool, and
W1 through W5; Wafers.
Number | Date | Country | Kind |
---|---|---|---|
2012-165817 | Jul 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/070181 | 7/25/2013 | WO | 00 |