1. Field of the Invention
The present invention relates to a sensor device capable of reducing measurement processing time.
2. Description of the Related Art
There are conventionally known sensor devices for measuring displacements, lengths, angles and the like of a variety of objects to be measured. For example, a conventional displacement sensor device comprises: a light-transmitting portion for irradiating an object to be measured with slit light by driving a light-transmitting element such as a laser diode; a light-receiving portion for receiving the slit light having been transmitted from the light-transmitting portion and reflected by the object to be measured; a calculating means for calculating a distance to the object to be measured; and an outputting means for outputting the distance to the object to be measured which was calculated by the calculating means (see e.g., International Publication pamphlet No. 01/57471).
The case is assumed, as shown in
As shown in
When the variation area A shown in
The present invention was made focusing attention on such a conventional problem, and has an object to provide a sensor device capable of reading out and arithmetically processing data at high speed.
Still another object, as well as action effect, of the present invention would be readily understood by a skilled person in the art by referring to the following description.
A sensor device of the present invention comprises: a light-transmitting element for irradiating an object to be measured with light at a prescribed angle; an image pickup element for shooting the light-irradiated object to be measured at another angle; a normal measurement area setting means capable of setting a normal measurement area in the visual field of the image pickup element; an irradiated-light image position detecting means for detecting a position of a light-irradiated image in the visual field of the image pickup element by scanning the set normal measurement area; a following-type measurement area setting means for setting at least one following-type measurement area which includes the position of the detected irradiated-light image, and is narrower than the normal measurement area in a displacement measuring direction; a displacement measuring means for measuring a target displacement by measuring the following-type measurement area; and an output means for outputting the measured displacement.
Herein, the displacement measuring direction refers to a direction in which the position of the irradiated-light image detected by a displacement of the object to be measured is changed.
According to such a constitution, the normal measurement area is used for detecting an irradiated-light image corresponding to an object to be measured, and a target displacement is not measured here. On the other hand, the following-type measurement area which includes the position of the detected irradiated-light image and is narrower than the normal measurement area in a displacement measuring direction, is used for measuring the target displacement. Since this allows setting of a narrower measurement area for reading out data than that in the conventional sensor device, it is possible to read out and arithmetically processing data at high speed.
In an embodiment of the present invention, the irradiated-light image position detecting means may perform a thinning-out measurement of data arranged at prescribed intervals in a direction of measuring a displacement of the image pickup element, to measure a concentration distribution light-receiving signals in the displacement measuring direction in the visual field of the image pickup element, thereby detecting the position of the irradiated-light image based upon the measured concentration distribution.
According to such a constitution, since the number of items to be measured for detecting the position of the irradiated-light image can be reduced, even faster processing is possible.
In the embodiment of the present invention, the light-transmitting element may irradiate slit light, the image pickup element may be a two-dimensional image pickup element, and the irradiated-light image position detecting means may measure the concentration distribution of the light-receiving signals on at least one line in the displacement measuring direction in the visual field of the image pickup element, thereby detecting the position of the irradiated-light image based upon the measured concentration distribution.
In such an arrangement, since the concentration distribution of the light-receiving signals on one or more lines in the disposition measuring direction is measured, the light-receiving signal distribution area is detected from the normal measurement area based upon the concentration distribution. It is thereby possible to accurately detect the position of the irradiated-light image.
In the embodiment of the present invention, either an all-line measurement may be performed of all data arranged in the displacement measuring direction in the measurement area, or the thinning-out measurement may be performed of data arranged at prescribed intervals in the displacement measuring direction, thereby measuring the concentration distribution. According to such a constitution, since the position of the irradiated-light image can be determined with high precision by the all-line measurement, it is possible to prevent erroneous detection. Further, in the case of performing the thinning-out measurement, it is possible to read out and process data at high speed.
In the embodiment of the present invention, the irradiated-light image position detecting means performs either the all-line measurement or the thinning-out measurement of the concentration distribution of the light-receiving element signals in the displacement measuring direction in an area other than the normal measurement in the visual field of the image pickup element when an irradiated-light image is not detected in the normal measurement.
Further, in the embodiment of the present invention, the light-transmitting element may irradiate slit light, the image pickup element may be a two-dimensional image pickup element, and the irradiated-light image position detecting means may perform either the all-line measurement or the thinning-out measurement of the concentration distribution of the light-receiving element signals on at least one line in the displacement measuring direction in an area other than the normal measurement in the visual field of the two-dimensional image pickup element when an irradiated-light image is not detected in the normal measurement area. According to such a constitution, even when the position of the irradiated-light image cannot be detected at once, the area other than the normal measurement area is measured, and it is thereby possible to prevent erroneous detection due to failure to detect the position of the irradiated-light image.
In the embodiment of the present invention, the object to be measured may be a transparent body, two following-type measurement areas may be provided corresponding to the front face and rear face of the transparent body, and measurement may be performed while the two following-type areas are switched to one another. According to such a constitution, it is possible to measure the front and rear faces of the transparent body with high accuracy.
In the embodiment of the present invention, the thinning-out measurement may be performed of data arranged at prescribed intervals in the displacement measuring direction, connecting irradiated-light images arranged on the two following-type measurement area, thereby measuring a thickness of the transparent body. According to such a constitution, it is possible to measure the thickness of the transparent body at high speed.
In the embodiment of the present invention, the image pickup element may be constituted of any of a photodiode array, a CCD and a CMOS image pickup element. The image pickup element includes a one-dimensional image pickup element and a two-dimensional image pickup element.
The image pickup element may be constituted by the CMOS image pickup element, and the irradiated-light image position detecting means may be allowed to directly read out, from the CMOS image pickup element, pixel data of the set normal measurement data and following-type measurement area. In this arrangement, the number of images to be read out from the CMOS image pickup element can be reduced, and thereby high-speed processing is possible.
In the present embodiment, the sensor device may be constituted as a displacement sensor, a length measuring sensor, and an angle sensor.
As apparent from the above description, according to the present invention, the measurement area where data is read out can be set narrower by narrowing the measurement area of the irradiated-light image from the normal measurement area down to the following-type measurement area, and thereby data can be read out and processed at high speed. Therefore, the present invention has an advantage of being able to perform measurement where even an object to be measured that is conveyed while meandering along the line can be followed.
In the following, a preferred mode of the sensor device of this invention is specifically described by reference to attached drawings. It should be noted that an embodiment below described is merely one of examples of the present invention. The substance of the present invention is restricted only by what are recited in the claims.
A displacement sensor of the present embodiment is a so-called amplifier separate type displacement sensor constituted by separating a signal processing portion and a sensor head portion from one another, in order to compactly house the sensor into a control plate or the like and also facilitate installment of the sensor in a narrow measurement environment.
The upper face of the housing case 10 is provided with an openable and closable operating-portion cover 14. Although not shown in the figure, an operating portion is provided under the cover 14, for performing various instructed operations in the signal processing portion 1. Further, on the upper face of the housing case 10, a display portion 15 is arranged for displaying an action and the like.
On each of the right and left side faces of the housing case 10, an inter-signal-processing-portion connector cover 16 is provided. In this inter-signal-processing-portion connector cover 16, an inter-signal-processing-portion connector (intermediary connector 3) for connecting with another signal processing portion 1 is provided.
It is to be noted that, although the slit light is irradiated and the two-dimensional image pickup element is used for acquiring the irradiated-light image in this example, a method is not restricted to this. It is also possible to merely irradiate condensed light and then acquire an irradiated-light image by a one-dimensional image pickup element to measure a displacement.
The control portion 101 constitutes a normal measurement area setting means, an irradiated-light image position detecting means, a following-type measurement area setting means, and a disposition measuring means. The control portion 101 is constituted of a CPU (Central Processing Unit) and FPGA (Field Programmable Gate Array), and serves to integrally control the entire signal processing portion 1. The control portion 101 realizes later-mentioned various functions, and also binarizes the light-receiving signal with reference to a prescribed threshold value and then outputs the binarized value as an output data from the output portion 108 to the outside.
The storage portion 102 comprises a nonvolatile memory (EEPROM) 102a and an image memory 102b for storing image data displayed in the display portion 103.
The display portion 103 comprises a liquid crystal display portion 103a displaying a threshold value, various values according to distance to the object to be measured or the like; and an indication light LED 103b displaying an on/off state or the like, which is a target output.
The communication portion 104 serves to communicate with the sensor head portion 2.
The external communication portion 105 comprises a USB communication portion 105a for connecting with an external personal computer (PC), a serial communication portion 105b to be used for transmitting and receiving a command or data, and an inter-signal-processing-portion communication portion 105c for performing data communication with other signal processing portions adjacent to the right and the left by following a prescribed protocol and a transmit/receive format.
The key-input portion 106 is constituted of switches for various setting, an operating button and the like, which are not shown in the figure. The external input portion 107 for example receives various commands from the upper-level device such as the PLC to the signal processing portion 1. The output portion 108 is used for outputting a target on/off output to an upper-level device such as the PLC. The power source portion 109 supplies an electric power to the control portion 101 as well as the external hardware circuit.
The control portion 201 is constituted of a CPU (Central Processing Unit) and PLD (Programmable Logic Device), and serves to integrally control the constituents 202 to 206 of the sensor head portion while taking out a light-receiving signal from the light-receiving portion 203 and sending out the signal to the signal processing portion 1.
The light-transmitting portion 202 in this example comprises a laser diode as a light-transmitting element and a light-transmitting circuit, and irradiates an area to be measured with slit light. The light-receiving portion 203 comprises a two-dimensional image pickup element (photodiode array, CCD, CMOS image pickup element, etc.) for receiving the reflected slit light, and a light-receiving signal processing portion for amplifying a light-receiving signal acquired from the two-dimensional image pickup element, synchronized with a timing control signal from the control portion 201, and outputting the amplified signal to the control portion 201. The indication light LED 204 is turned on and off corresponding to various action states of the sensor head portion 2.
The storage portion 205 is for example constituted of a nonvolatile memory (EEPROM), and in this example, records ID (identification information) and the like for identifying the sensor head portion 2. The communication portion 206 serves to communicate with the signal processing portion 1 following a command from the control portion 201.
The sensor head portion 2 of the present embodiment has a circuit configuration as above described, and performs an appropriate light-transmitting/receiving process according to a command from the signal processing portion 1.
When the set mode is the “FUN mode”, after an initial setting process for the FUN mode has been performed (Step 603), a below-mentioned FUN mode process is performed (Step 604). Following Step 604, it is determined whether the FUN mode is continuing or not (Step 605). Namely, when the FUN mode is switched to another set mode, the process is returned to Step 602, whereas when it is not switched, the process is returned to Step 604.
When the set mode is the “TEACH mode”, after an initial setting process for the TEACH mode has been performed (Step 606), a so-called teaching process is performed in which various set values are automatically read (Step 607). Following Step 607, it is determined whether the TEACH mode is continuing or not (Step 608). Namely, when the TEACH mode is switched to another set mode, the process is returned to Step 602, whereas when it is not switched, the process is returned to Step 607.
When the set mode is the “RUN mode”, after an initial setting process for the RUN mode has been performed (Step 609), a below-mentioned RUN mode process is performed (Step 610). Following Step 610, it is determined whether the RUN mode is continuing or not (Step 611). Namely, when the RUN mode is switched to another set mode, the process is returned to Step 602, whereas when it is not switched, the process is returned to Step 610.
The displacement sensor device of the present embodiment is provided with an automatically following measurement mode as one example of the process for controlling the sensor head portion (Step 802) of the RUN mode. Further, the displacement sensor of the present embodiment is assumed to be used such that a plurality of objects to be measured are conveyed along a line, and the sensor head portion 2 of the displacement sensor irradiates the objects to be measured with slit light in a vertical direction to the direction of conveying the objects to be measured and then receives the light reflected by the objects to be measured. In the following, this automatically following measurement mode is specifically described.
When the action mode is the measurement mode for automatically following an area at high speed, an after-mentioned measurement process for automatically following an area at high speed is performed (Step 902). Following Step 902, it is determined whether the measurement mode for automatically following an area at high speed is continuing or not (Step 903). Namely, when this mode is switched to another set mode, the process is returned to Step 901, whereas when it is not switched, the process is returned to Step 902.
When the action mode is the measurement mode for automatically following plural areas, an after-mentioned measurement process for automatically following plural areas is performed (Step 904). Following Step 904, it is determined whether the measurement mode for automatically following plural areas is continuing or not (Step 905). Namely, when this mode is switched to another set mode, the process is returned to Step 901, whereas when it is not switched, the process is returned to Step 904.
The measurement process for automatically following an area at high speed is described by reference to a flowchart shown in
Herein, “Z” shown in
Subsequently to Step 1001, a process for acquiring light-receiving position data is executed (Step 1002). Herein, in the normal measurement area set in Step 1001, a thinning-out measurement of data along the horizontal line X is performed, to acquire a prescribed concentration distribution (luminance distribution). Herein, for example, data on one line at the center of the horizontal lines in the normal measurement area are measured while being thinned out in the displacement measuring direction.
Thereafter, the presence or absence of a light-receiving data area is determined (Step 1003). When the light-receiving area is present (when an irradiated-light image is in the normal measurement area), a following area measurement process is performed where the following-type measurement area is set to measure a target displacement (Step 1004).
On the other hand, when no light-receiving data area is present (when no irradiated-light image is present in the normal measurement area), a process for confirming a light-receiving position is executed (Step 1006). Herein, a measurement area is set other than the normal measurement area which is in the visual field of the two-dimensional image pickup element and was set in Step 1001. Subsequently, a process for acquiring light-receiving position data is executed, and the presence or absence of the light-receiving data area is again determined (Step 1007). Herein, when the light-receiving data area is present, the process is returned to above Step 1004, whereas when no light-receiving data area is present, a measurement-error output is executed (Step 1008), and then process is returned to Step 1002.
As thus described, in the displacement sensor of the present embodiment, the sensor head portion shown in
It is to be noted that, when a one-dimensional image pickup element is used, since no vertical line is present and only one horizontal line is present from the beginning, “Y” may all be replaced with Y1. The normal measurement area has the opposing end points: a coordinate position (X1, Y1) and a coordinate position (X2, Y1), and is a line shape. This can also apply to a following-type measurement area in this case.
Although only one following-type measurement area is set in the above embodiment, two or more following-type measurement areas may be set. Further, they may be set in the horizontal line direction X and/or the vertical line direction Y. It is assumed that, as an example of such a case, two following-type measurement areas are set, and then a thickness of a transparent body is measured. For example, a glass plate with its front face exposed while its rear face covered with a metal is often seen. Such a glass plate corresponds to glass plates used for cathode-ray tubes for television sets, glass plates used as liquid crystal display panels, and the like. Since measuring such a glass plate in the sensor head portion 2, the displacement sensor of the present embodiment is capable of executing a process of the measurement mode for automatically following plural areas as one of the automatically following measurement modes.
In the following, the measurement process for automatically following plural areas is described by reference to a flowchart shown in
Subsequently to Step 1101, a process for acquiring light-receiving position data is executed (Step 1102). In the measurement area set in Step 1101, for example, data on one line of the horizontal lines X in the measurement area set in Step 1101 are measured while being thinned out in the displacement measuring direction, to acquire a prescribed concentration distribution (luminance distribution).
Thereafter, the presence or absence of a light-receiving data area is determined (Step 1103). When the light-receiving data area is present, the presence or absence of a plurality of light-receiving data areas is determined (Step 1104). When a plurality of light-receiving data areas are present, a high-speed measurement process is executed in each area (area having irradiated-light images) (Step 1105). Namely, a thinning-out measurement is executed over data arranged at prescribed intervals in the displacement measuring direction.
Following Step 1106, following-type measurement areas are set corresponding respectively to the rear face irradiated-light image 1 and the front face irradiated-light image 2. A detailed measurement process is executed across all the lines in the following-type measurement areas (Step 1107), and target measurement results (e.g. displacement, sensitivity, peak value, etc.) are outputted (Step 1108). Following Step 1108, the process is returned to Step 1102.
It is to be noted that in Step 1104, when the light-receiving data area is not plural, a following area measurement process for measuring one following-type measurement area to be set according to one light-receiving data area is executed (Step 1109), and the measurement results are outputted (Step 1110).
Further, in Step 1103, when no light-receiving data area is present, a measurement area is set other than the normal measurement area set in Step 1101, and a process for confirming a light-receiving position is executed for acquiring a light-receiving position data (Step 1111). Subsequently, the presence or absence of the light-receiving data area is determined (Step 1112). When the light-receiving data area is present, the process is returned to Step 1104, whereas when no light-receiving data area is present, a measurement-error output is executed (Step 1113), and then process is returned to Step 1102.
According to the above embodiment, even when the glass plate, whose thickness is the object to be measured, is displaced to the side closer/farther to the sensor head portion 2, a measurement area may be allowed to follow the glass plate in the displacement direction so as to prevent the sensor device from becoming impossible to perform measurement.
Further, it goes without saying that even with the use of a one-dimensional image pickup element, the same achievement is possible by the same replacement as above described.
As thus described, according to the displacement sensor of the present embodiment, the position of the irradiated-light image is detected from the distribution of light-receiving signals in the normal measurement area, and based upon the detected results, the following-type measurement area is set which includes the irradiated-light image and is narrower than the normal measurement area. A target displacement is measured with the area to be measured restricted to the following-type measurement area. Therefore, for example, even when positions of objects to be measured vary on a line, data is fetched from not all but part of the measurement area according to the positional variations, as an area necessary for measurement. Accordingly, as compared to the conventional technique, the time required for reading out or processing data is short due to the small measurement area, thereby making it possible to speed up sensor response.
Number | Date | Country | Kind |
---|---|---|---|
2004-072198 | Mar 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20020154318 | Matsunaga et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
WO 0157471 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050213112 A1 | Sep 2005 | US |