The invention concerns sensor electronics provided in a door handle of a vehicle with a sensor control circuit that is provided on a circuit board and with a sensor electrode of a capacitive sensor for detection of the approach of an object to the door handle connected with the sensor control circuit, whereby the circuit board is provided inside the door handle.
Sensor electronics of the type previously mentioned are used, for example, in order to detect the approach of the hand of an operator (driver) to the outer door handle of the vehicle. When the approach of the hand of the operator is detected, control electronics provided in the vehicle initiate an inquiry by radio of an ID encoder (electronic key) carried by the operator, i.e., a transponder or radio transmission receiver that the operator carries (for example, in a clothing pocket or in a briefcase). This inquiry by radio is made, for example, with aid of transmission of a radio signal in a frequency range of, for example, 125 kHz, i.e., an LF frequency range, whereby a coil is used for emitting that, for example, can be provided inside the door handle. If the ID encoder is in the reception range of the transmission coil, it receives the radio signal, acknowledges a challenge to identify, and sends a response signal in a higher frequency range (for example, in the Megahertz frequency range), which includes a code identifying the ID encoder. The control device in the vehicle receives this response, checks the code, and then opens the door lock with the aid of the door handle activated by the operator. The sensor detecting the approach of the operator is utilized in particular so that an inquiry signal does not constantly have to be emitted by the transmitter coil. The inquiry signal is transmitted only when the approach of a body part of the operator is detected.
A capacitive approach sensor is usually used for detection of the approach of a body part of the operator to the door handle. A capacitive approach sensor of this type is, for example, described in publication EP 1 339 025 A1 or in publication EP 1 235 190. A basic principle of the sensor is, for example, described in publication U.S. Pat. No. 5,730,165 A.
In order to improve the sensitivity of a capacitive sensor having a sensor electrode or to extend the range of the sensor, it was proposed that a shielding metallic surface be provided between the sensor electrode and the solid metallic ground surface of the vehicle (there may also be a ground surface in a circuit inside the door handle), whereby the potential of this shielding metallic surface is tracked by means of a voltage tracking circuit (without the two electrodes being connected with each other). Active shielding of this type is, for example, described in publication EP 0 518 836 A1.
Based on this state of the art, the task of the invention is to create sensor electronics of the kind described above in a door handle of a vehicle, in which the sensitivity is improved, interference decreased, and a compact structure achieved.
According to the invention, this task is solved by sensor electronics provided in a door handle of a vehicle with the characteristics of Patent Claim 1. The sensor electronics have a sensor control circuit located on a circuit board that has a ground-metallization plane having a ground potential. The sensor electronics further include a sensor electrode of a capacitive sensor connected with the sensor control circuit for detection of the approach of an object to the door handle and shielding electronics provided between the sensor electronics and the ground metallization plane of the circuit board that tracks the potential of the shielding electrode with the potential of the sensor electrode. By sensor control circuit is meant any circuit configuration that on one hand includes circuits for evaluation of and relaying sensor output signals and on the other hand includes circuits for controlling sensors and/or other elements of the door electronics. The circuit board is provided on the inside of the door handle and the components of the sensor control circuit are mounted on an upper side of the circuit board. The circuit board has at least four metallization planes insulated from each other by insulating layers, whereby a first metallization plane provided on an upper surface includes wiring connections between the components of the sensor control circuit, a second metallization plane that is the ground-metallization plane, a third metallization plane that includes the shielding electrode, and a fourth metallization plane that includes the sensor electrode so that the access lines of the components of the sensor control circuit are provided on one side of the ground-metallization plane and the shielding electrode and the sensor electrode on the other side of the ground-metallization plane. Such an arrangement allows on the one hand creation of a shielded capacitive sensor electrode with a single circuit board structure and on the other hand connection of shielding between the sensor electrode and the switching device to reduce effects of currents flowing in the sensor control circuit or applied voltages in the sensor electrode. With aid of the invention the electromagnetically compatible function of all electrical means of the sensor electronics are assured, so that adherence to laws and guidelines regarding electromagnetic compatibility (EMC) is ensured.
Advantageous and practical embodiments and further development of the invention result from the corresponding dependent claims.
In a preferred embodiment the sensor control circuit includes a transmitter coil of a circuit for communication with a transportable ID encoder, i.e., for example, the aforementioned transmitter coil that transmits a wake-up signal in the LF frequency range (for example, 125 kHz) to the ID encoder. In this embodiment of the device according to the invention, in particular the insertion of the ground-metallization plane, increases the EMC security of the coil.
As regards the compact structure of the sensor electronics, further development of the invention foresees that the control circuit of the shielding electrode is a constituent of the sensor control circuit. For further increase of compactness it is of advantage if the conductor paths for the voltage supply are provided for the sensor control circuit on the first metallization plane.
In a further embodiment of the sensor electronics according to the invention at least one further metallization plane is provided between the first metallization plane and the ground-metallization plane, which has voltage supply leads and/or wiring connections between the components of the sensor control circuit.
It is especially preferred if the circuit board has a total thickness of between 1 mm and 3 mm, advantageously approx. 1.5 mm. An insulating layer with a thickness of 0.3 to 2 mm, advantageously approx. 0.5 mm, can be provided between the second metallization plane and the third metallization plane.
In a preferred embodiment of the invention the shielding electrode extends beyond the sensor electrode on all sides by at least 0.3 mm, advantageously by about 0.3 to 0.6 mm.
In a further embodiment of the invention it is foreseen that the metallization planes are formed of conducting layers, advantageously copper layers, of 35 μm to 70 μm.
Finally, the invention envisions further development whereby the circuit board is set adjacent to an outer wall of the door handle in such a way that the sensor electrode abuts to the outer wall.
It is clear that the above-named characteristics and those to be clarified below can be applied not only in the combination indicated but also in other combinations. The scope of the invention is defined only by means of the claims.
Further details, characteristics, and advantages of the object of the invention can be seen from the following description in combination with the drawing, in which a preferred exemplary embodiment of the invention is depicted.
The following are shown in the drawing:
Circuit board 1 has a first metallization plane 7 on its upper side 5. First metallization plane 7 includes wiring connections between the components of sensor control circuit 6, including voltage supply leads. Circuit board 1 further has a second metallization plane 8, which is a ground surface or a ground-metallization plane, carries a ground potential, and supplies sensor control circuit 6 with ground.
Circuit board 1 also includes a third metallization plane 9 and a fourth metallization plane 10. Fourth metallization plane 10 has at least one sensor electrode 11 of a capacitive sensor, that is spaced from the ground-metallization plane (second metallization plane 8). Sensor electrode 11 serves to detect the approach of an object to the door handle. In the depiction the object is a hand 12 of an operator that is located in the electrical field produced by sensor electrode 11. Sensor electrode 11 is connected by a lead (not shown) to sensor control circuit 6.
Sensor control circuit 6, which is also designated as activation electronics, contains evaluation electronics or a test circuit for determination of the capacity of sensor electrode 11 against the ground. Between sensor electrode 11 and the ground-metallization plane (second metallization plane 8) a given capacity can be measured that on the one hand is dependent on the form and arrangement of sensor electrode 11 against the ground-metallization plane and on the other hand both on the material between sensor electrode 11 and the ground-metallization plane and on the objects located in the vicinity of sensor electrode 11. If a voltage is applied between sensor electrode 11 and the ground-metallization plane, an electric field forms between sensor electrode 11 and the ground-metallization plane, which normally assumes its highest field strength where sensor electrode 11 has the least distance from the ground-metallization plane. The strongest electrical field would form directly between sensor electrode 11 and the ground-metallization plane and only a small part of the electrical field would extend into the surroundings. This would mean that changes of objects located in the vicinity would have only a relatively slight influence on the electrical field and thus on the capacity measured between sensor electrode 11 and the ground-metallization plane. In order to increase the sensitivity of the sensor electronics it was proposed that a shielding electrode be provided in third metallization plane 9 between sensor electrode 11 and the ground-metallization plane, i.e., between fourth metallization plane 10 and second metallization plane 8 A shielding electrode control circuit ensures that the potential of the shielding electrode is tracked with the potential of sensor electrode 11, whereby sensor electrode 11 is not directly connected with the shielding electrode. The shielding electrode with the corresponding shielding electrode control circuit then ensures that no strong electric field forms between sensor electrode 11 and the ground-metallization plane but the field extends instead primarily outside circuit board 1 (i.e., in front of the door handle). This leads in turn to stronger dependence of the field strength or the capacity of the total device on objects located in the field, which means higher sensitivity of the capacitive sensor that is then better suited as an approach sensor.
There are various methods to measure the capacity of the capacitive sensor. In most methods a variable voltage is applied between sensor electrode 11 and the ground-metallization plane, which means that the potential of the shielding electrode must continually be tracked with the potential of sensor electrode 11. The methods for measuring capacity and tracking the potential are known from the state of the art, for example, from publications EP 0 518 836 A1, DE 196 81 725 B4 or DE 10 2006 044 778 A1. The measuring principles and the technology of tracking the potential of shielding electrode 11 should for that reason not be described in more detail here.
Altogether the structure of circuit board 1 has four metallization planes 7, 8, 9, and 10 that are insulated from each other by insulating layers 13, 14, and 15, whereby the connecting leads of the components of sensor control circuit 6 are provided on one side of the ground-metallization plane and shielding electrode 6 and sensor electrode 11 on the other side of the ground-metallization plane.
The thicknesses of metallization planes 7, 8, 9, 10 and insulating layers 13, 14, 15, and the spacings of metallization planes 7, 8, 9, 10 from each other as shown in
In a preferred embodiment sensor control circuit 6 includes a transmitter coil of a circuit for communication with a transportable ID encoder.
In a further design of the depicted embodiment it is thinkable that the leads for voltage supply to sensor control circuit 6 are provided in first metallization plane 7.
Between first metallization plane 7 and the ground-metallization plane (i.e., second metallization plane 8) at least a further optional metallization plane can be provided, which has voltage supply leads and/or wiring connections between the components of sensor control circuit 6.
Altogether the invention provides sensor electronics that are integrated in a circuit board 1 with a thickness between 1 mm and 3 mm, whereby a total thickness of about 1.5 mm is preferred. Circuit board 1 can be located at outer wall 4 of the door handle in such a way that sensor electrode 8 abuts to the outer wall 4.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 002 566.9 | Apr 2009 | DE | national |