The invention relates to sensors having optical fibres in which there is monitoring of reflected light to indicate a parameter.
Fibre optic sensors have been reported to measure only refractive index (RI) (e.g. [1-11]) or simultaneous RI and temperature (e.g. [12-17]).
Prior art documents which describe approaches to use of optical fibres for sensors are:
The invention is directed towards providing a sensor which is more versatile.
According to the invention, there is provided a sensor comprising a light conductor having a grating, a cavity, a transparent cavity end wall, a light emitter for directing light through the conductor, a light detector for detecting reflected light, and a processor,
In one embodiment, the processor is adapted to use at least one output to compensate another.
In one embodiment, pressure and temperature are used to compensate for variation in refractive index.
In one embodiment, the light conductor is an optical fibre. Preferably, the cavity is formed by a cylindrical glass structure at the end of the fibre. In one embodiment, the glass structure is a capillary.
In one embodiment, the cavity end wall is formed by a glass diaphragm or fibre section. In one embodiment, the processor is adapted to perform low-pass filtering to quantify light reflected back from the end of the cavity. In one embodiment, the processor is adapted to use said data to estimate cavity length, and to in turn use this to determine pressure.
In one embodiment, the processor is adapted to perform band-pass filtering to quantify light reflected back from the outside surface of the cavity wall. In one embodiment, the processor is adapted to use said data to estimate refractive index, and to in turn use said estimation to determine properties of the medium outside said cavity end wall.
In one embodiment, a coating is present on the outer surface of the cavity end wall and the refractive index of said coating changes in response to the presence of a fluid. In one embodiment, the coating has a reflectance or fluorescence property which changes with light wavelength, having a peak in a spectrum, and the processor is adapted to analyse said spectrum.
In one embodiment, the processor is adapted to use a normalised band pass fringe visibility function to compensate for variations in refractive index arising from light source variations.
In one embodiment, the processor is adapted to determine data concerning a fluid external to the cavity wall which includes water, and/or oil and/or a gas.
In one embodiment, the processor is adapted to derive information from light reflected back from the outside surface of the cavity wall.
In one embodiment, the light conductor is completely composed of fused silica.
In one embodiment, the processor is adapted to compensate for light losses within the light conductor due to beam divergence.
Preferably, the grating is a single mode fibre Bragg grating
The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only with reference to the accompanying drawings in which:—
A schematic of a fibre optic pressure and temperature sensor 1 of the invention is illustrated in
As shown in
The interface 8 may in use be with a medium including a gas, a liquid, or a solid. In the example of a solid it may be used in a precipitation process.
As shown in
λB=2neffΛ (1)
where neff is the refractive index of the core material and Λ is the period of the grating. All other wavelengths propagate in normal matter through the fibre and are reflected at the glass/air interface of the SM fibre and at the air/glass as well as the glass/fluid interfaces of the 200 μm fibre. Both reflections transmit back into the SM fibre and generate light interference. The light interference can be described as [21]:
where A01, A12 and A23 are the amplitudes of the reflected light IR01, IR12 and IR23. n2 is the refractive index of the silica glass fiber, L1 is the length of the air cavity 5 between the FBG-SM fibre 2 end face 6 and inner surface 7 of the 200 μm glass fiber, L2 is the length of the 200 μm fibre 4 and λ is the optical wavelength. In Equation 2 the first and second cosine term describe the interference between the FBG-SM fibre 2 endface 6 and the inner 7 as well as outer 8 200 μm glass fiber 4 surfaces. The third cosine term is the interference between the inner 7 and outer 8 surfaces of the 200 μm fibre 4. Furthermore, light losses within the air cavity 5 occur due to Gaussian beam divergence [22]. For a weakly guided step-index SM fibre, the fundamental HE11 mode can be accurately approximated by a Gaussian distribution of a transverse and linearly polarised electric field [22]. As soon as the Gaussian beam propagates through the air cavity 5, its diameter increases and both the power density and the coupling coefficient decreases, which can be associated with losses within the cavity. The coupling coefficient η can be expressed as a function of longitudinal displacement as [23]:
Equation 4 describes the Gaussian beam radius after crossing the length L1 of the EFPI air cavity 5. w0 expresses the reference or mode field radius which can be calculated as [24]:
In Equation 5, b is the fibre core radius and V represents the normalised frequency. Therefore the amplitudes A01, A12 and A23 can be calculated as:
A
01
=r
01, (6)
A
12
=η·T·r
12, (7)
A
23
=η·T
2
·r
23, (8)
where r01 and r12 are the reflectivity coefficients of the glass/air 6 and air/glass 7 interfaces of the first air cavity 5. η, and T are the coupling coefficient of the air cavity and the transmission of the glass/air interface 6. The coupling coefficient of the glass cavity (200 μm fibre) has been neglected. The reflectivity coefficient r23 of the interface 8 between the refractive index of the 200 μm glass fibre nglass and the surrounding medium nfluid can be calculated as [19]:
Furthermore, when pressure is applied to the fibre optic sensor 1, the glass capillary 3 deforms and hence changes the EFPI cavity length L1. The sensitivity of the sensor 1 (SP) and hence the cavity length change ΔLP due to applied pressure ΔP can be expressed as [20]:
where μ is the Poisson's ratio of the glass capillary 3, E is the Young's modulus, LS is the effective length of the pressure sensor, ri and ro are the inner and outer radius of the glass capillary 3.
In addition, due to the thermal expansion of all glass components, the EFPI cavity 5 is also sensitive to temperature. The change of the EFPI cavity length ΔLT as a result of temperature can be calculated as [20]:
In Equation 11 αC and αF are the Coefficients of Thermal Expansion (CTE) of the glass capillary 3 and the SM fibre 2.
The shift of the Bragg wavelength due to temperature can be expressed as [18]:
where dneff/dT is the thermo-optic coefficient.
The fibre optic sensor was interrogated using an interrogation system 100 shown in
In order to obtain the RI at the outer surface of the 200 μm fibre and the applied pressure and temperature, the signal processing 200 as displayed in
The change of the temperature was determined directly from the obtained spectrum (201) by tracing (202) the Bragg wavelength. In contrast, the air cavity length change of the EFPI and the change of the RI at the outer surface of the 200 μm fibre were determined by filtering (203, 204) the obtained spectrum using a Low Pass (LP) and a Band Pass (BP) filter respectively. The cut-off frequency of the LP filter was set so that only the DC and the first cosine term in Equation 2 passed through the filter. In contrast, the cut-off frequencies of the BP filter were set so that only the third cosine term in Equation 2 passed through the filter.
The air cavity length 5 and hence the pressure and temperature information from the EFPI can be calculated (205) from the LP filtered spectrum using e.g. the following equation [25]:
where λ1 and λ2 are two wavelengths that are Δφ out of phase in the LP filtered spectrum.
The processing chain quantifies light reflected from the outer surface of the cavity wall 8 (the 200 μm OD fibre), or a coating on the cavity wall, and processes (206) said data to determine an indication of refractive index of a fluid or solid medium outside said cavity wall. The change of the RT at the outer surface of the 200 μm fibre is determined by analysing the amplitude of the BP filtered spectrum. One example would be the calculating the fringe visibility. The fringe visibility is defined as [19]:
where Imax and Imin are the maximum and minimum intensities of the optical interference, e.g. adjacent peak and valley points of the BP filtered spectrum.
Initially, the ability of the sensor was verified for measuring pressure and temperature simultaneously. For this, the pressure and temperature response of the fibre optic sensor were evaluated by measuring pressure at different temperatures. Pressure experiments were started at ambient pressure (labelled with 0 MPa) and increased incrementally to 30 MPa for four different temperatures (25° C., 40° C., 55° C. and 70° C.). The temperature was kept constant during each pressure experiment. The change of the EFPI cavity 5 length due to applied pressure and temperature are shown in
Following this, the ability to measure RI at different temperatures of the fibre optic sensor was verified. In this analysis, five different sodium chloride solutions were prepared. In Table 1 the concentrations of the five different sodium chloride solutions are illustrated. They were measured using a FRI Refractive Index Sensor from FISO Technologies Inc.
The change of the RI was measured by calculating the change of the amplitude of the third cosine term in Equation 2 using the fringe visibility. In
As shown in
As shown in
The fibre optic sensor can also be applied to measure low pressure in one example. The pressure range depends only on the diaphragm thickness. However, in other uses a wide variety from very low to very high pressure sensitivities can be achieved due to changes of the diaphragm thickness.
Measuring refractive index at the tip of the fibre sensor is just one example of a measurement which can be inferred. The invention can also be applied to measure other parameters simultaneously with pressure and temperature; e.g. hydrogen detection or some other phenomena which changes the optical properties at the end face 8. For H detection, for example, a hydrogen-sensitive coating could be sputtered at fibre end face 8. When exposed to hydrogen, the coating changes its reflectance and hence the fringe visibility of the BP filtered spectrum (e.g. http://www.materion-gmbh.de/ provides such coatings).
The 200 μm glass fibre can be replaced by a SM fibre. In this case, instead of splicing the 200 μm fibre at the end face of the glass capillary, the SM fibre may be inserted into the glass capillary.
Depending on the pressure range and resolution, the dimension of the glass capillary can be changed. Apart from the diaphragm, the capillary deforms as well. Instead of splicing a diaphragm to the capillary, a piece of a SM fibre can be spliced into the capillary to create an air cavity. Applying pressure the capillary deforms (not the diaphragm/fibre) to give a signal.
The signal processing method 200 shown in
From Equation 15 the cross-sensitivity of the fringe visibility of the RI sensor to air cavity 5 length changes ΔL1 and hence pressure and temperature changes can be calculated. In
For the sensor of the invention several other applications are feasible. Different fluids have different refractive indices and can be distinguished using a refractive index sensor. Therefore, the distinction between liquid and gas, for example, can be made based on refractive index measurements. As the refractive index of a fluid varies with temperature and pressure, the p/T/RI sensor allows for a direct compensation of these effects. Together with temperature and pressure, the refractive index allows for a complete description of a flowing two-phase fluid. Besides the distinction of the phase (liquid or gas) in contact with the sensor, changes in chemical composition of the fluid can be detected. For example, the salinity of water changes the refractive index. Therefore, the salinity of a fluid can be monitored using the p/T/RI sensor.
Using the capability of detecting the phase composition of a flowing multiphase fluid combined with the capability of detecting chemical changes within the fluid, the following applications are feasible:
The invention is not limited to the embodiments described but may be varied in construction and detail. For example, the cavity wall or diaphragm may have an external coating. The sensor may be adapted to determine data concerning a fluid external to the cavity wall which includes oil and/or gas. The system may be adapted for use in the geothermal sector, in the hydrogeology sector, or in laboratory settings. Also, the external interface may have a coating which has a reflectance or fluorescence property which changes with light wavelength, having a peak in a spectrum, and the processor is programmed to analyse across this spectrum to derive information about the external medium in contact with the coating.
Number | Date | Country | Kind |
---|---|---|---|
2012/0148 | Mar 2012 | IE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/055677 | 3/19/2013 | WO | 00 |