1. Field of the Invention
This invention relates in general to sensor interface systems such as for sensors for detection of shipping container contents to detect and identify hazardous materials within containers, such as radiation and/or neutron emitting materials, explosives, and special materials such as highly enriched uranium, and further to identify the normally occurring radiological materials within containers.
2. Description of Related Art
Current attempts at providing radiation, neutron, explosives, and special materials, detection systems to verify shipping containers, such as those that have been mounted on the gantry crane arms, have a limited time to identify the isotopes present. Radiation sensor systems for detecting and identifying radiological materials held within shipping containers may not have the exposure time required to specifically identify all of the isotope types that may be present. The limited time to detect and identify the isotopes present may affect the ability to evaluate the validity of the contents. The limited time for interval provided by current shipping container detection systems, such as for use with gantry cranes, detrimentally affect the commercial viability of radiation, neutron, explosives, and special materials, detection systems and cause the containers to be manually interrogated which results in negative impacts to the flow of commerce.
Therefore a need exists to overcome the problems with the prior art as discussed above.
According to an embodiment of the present invention, a security system detects gamma and neutron radiation and hazardous materials inside shipping containers. The system detects and identifies radiation, explosives, and unauthorized hazardous materials within a shipping container. The sensors are configured as nodes on a network. The system collects data, such as radiation data, from one or more sensors. The system spectrally analyzes the collected radiation data. The system identifies one or more isotopes based on the spectrally analyzed radiation data. A central monitoring station can monitor radiation data and other data received from the sensors. Communication of sensor data can be done using TCP/IP communication over a data network.
In order to verify whether radioactive materials are concealed within a shipping container, isotope sensing and identification systems can be deployed in association with a container, such as with a crane assembly used to lift shipping and transfer containers. An isotope sensing and identification system would consist of one or more gamma and neutron detectors that provide detailed radiation spectral data to an information processing system performing spectral analysis for the detection and identification of isotope(s) that are present in the containers.
By identifying the specific isotope(s) that are present, according to one embodiment, it allows a security system to identify the types of goods or materials that the isotopes represent.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. It is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one of ordinary skill in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention.
The terms “a” or “an”, as used herein, are defined as one, or more than one. The term “plurality”, as used herein, is defined as two, or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language). The term “coupled”, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The terms “program”, “computer program”, “software application”, and the like as used herein, are defined as a sequence of instructions designed for execution on a computer system. A program, computer program, or software application may include a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system. A data storage means, as defined herein, includes many different types of computer readable media that allow a computer to read data therefrom and that maintain the data stored for the computer to be able to read the data again. Such data storage means can include, for example, non-volatile memory, such as ROM, Flash memory, battery backed-up RAM, Disk drive memory, CD-ROM, DVD, and other permanent storage media. However, even volatile storage such as RAM, buffers, cache memory, and network circuits are contemplated to serve as such data storage means according to different embodiments of the present invention.
The present invention, according to an embodiment, overcomes problems with the prior art by providing a multi-stage radiation verification process for the contents of a shipping container. The radiation sensor data collected at each stage of the verification process is used to enable detection and identification of the specific isotopes that are present in a container under examination.
A noninvasive container contents detection and verification system, according to an embodiment of the present invention, operates without having to enter the cavity of a container under examination. The system can include multiple radiation sensor systems that use integrated digital sensors for Gamma and neutron detection, and with a spectral analysis capability to identify the specific isotope(s) of materials in containers. The multi-stage system provides for monitoring and tracking of targeted containers that are delivered to a secondary verification station. The multi-stage system provides for network connections between the spreader bar position and the secondary verification position to enable information integration. Such a multi-stage system can also include detection and identification of explosives and special materials in containers. These special materials may include highly enriched uranium.
An embodiment of the invention includes radiation sensors deployed on the spreader bar of a gantry crane to provide radiation detection and isotope identification for the contents of the shipping container. The spreader bar is connected to the shipping container for approximately 30 seconds as the container is moved to or from the vessel at a port. The multi-stage radiation verification system enables radiation detection and analysis of the contents within the shipping container within the normal 30 seconds while the spreader bar is connected to the shipping container. The multi-stage system also allows for an extended time-period for the spreader bar to stay connected to the shipping container when radiological materials have been detected that the initial 30 second analysis does not allow adequate time for the identification of the isotopes present. In addition, the multi-stage radiation verification system uses a secondary sensor position for continued analysis of the shipping container if additional time is needed beyond the extended time provided at the spreader bar. The shipping container may be tracked as it moves from the spreader bar position to the secondary position. An example of tracking and monitoring devices include CCTV cameras and wireless tracking technologies such as radio frequency identification devices.
According to an embodiment of the present invention, a crane arm assembly mounted sensor system may comprise a node within a distributed network of radiation sensor positions. An example of such a system is described in U.S. Patent Application No. 60/759,373, Filed on Jan. 17, 2006, and entitled “Distributed Sensor Network With Common Platform For CBRNE Devices”, the entire teachings of which being incorporated by reference.
According to an embodiment of the present invention, a crane arm (spreader bar) mounted radiation sensor system, as described in patent application Ser. No. 11/363,594 filed on Feb. 27, 2006 is used for the detection and first stage of isotope identification for detected radiological material within a shipping container.
A sensor concentrator unit may be used to connect multiple sensors in a group and enable efficient connection to the central processor for spectral analysis. This configuration could utilize a sensor interface unit (SIU) that is comprised of an integrated multi-channel analyzer, high voltage power supply, voltage system and communications interface. This SIU configuration uses a concentrator unit to combine multiple sensors into a concentrated communications channel for connection to the central processor. The communications concentrator provides individual IP addressed for each sensor group. An example of the concentrator unit is a device that provides multiple USB ports for sensor connection and concentrates the USB ports into an Ethernet connection for backhaul.
An embedded processor unit may be used to connect multiple sensors in a group and enable efficient connection to the central processor for spectral analysis. This configuration could utilize a sensor interface unit (SIU) that is comprised of an integrated multi-channel analyzer, high voltage power supply, voltage system and communications interface. This SIU configuration is connected to an embedded processor supporting multiple sensors and providing one or more communications channel(s) for connection to the central processor. The embedded processor provides individual IP addressed for each sensor.
According to another embodiment of the present invention, the time that the spreader bar is connected to the shipping container may be extended to enable further analysis and radiological data acquisition.
According to another embodiment of the present invention, the time that the spreader bar is connected to the shipping container may be extended to enable further analysis and radiological data acquisition.
According to another embodiment of the present invention, a secondary radiation verification system could be deployed as another node of the radiation verification system to enable further analysis and radiological data acquisition.
According to another embodiment of the present invention, the targeted shipping container may be tracked and or monitored as it moves to the secondary radiation verification system.
Described now is an example of a multi-stage radiation detection and identification system with one node mounted on a spreader bar of a crane assembly and another node deployed as a secondary radiation verification position. An example of a process for operation of the system is also discussed.
A radiation detection and identification system deployed on a crane arm (or spreader bar) 102, such as illustrated in
Referring to
With reference to
The data collection system 310 is modular in design and can be used specifically for radiation detection and identification, or for data collection for explosives and special materials detection and identification.
The data collection system 310 is communicatively coupled with a local controller and monitor system 312. The local system 312 comprises an information processing system that includes a computer, memory, storage, and a user interface 314 such a display on a monitor and a keyboard, or other user input/output device. In this example, the local system 312 also includes a multi-channel analyzer 330 and a spectral analyzer 340.
The multi-channel analyzer (MCA) 330 comprises a device composed of many single channel analyzers (SCA). The single channel analyzer interrogates analog signals received from the individual radiation detectors 301, 302, and determines whether the specific energy range of the received signal is equal to the range identified by the single channel. If the energy received is within the SCA the SCA counter is updated. Over time, the SCA counts are accumulated. At a specific time interval, a multi-channel analyzer 330 includes a number of SCA counts, which result in the creation of a histogram. The histogram represents the spectral image of the radiation that is present. The MCA 330, according to one example, uses analog to digital converters combined with computer memory that is equivalent to thousands of SCAB and counters and is dramatically more powerful and cheaper.
The histogram is used by the spectral analysis system 340 to identify isotopes that are present in materials contained in the container under examination. One of the functions performed by the information processing system 312 is spectral analysis, performed by the spectral analyzer 340, to identify the one or more isotopes, explosives or special materials contained in a container under examination. With respect to radiation detection, the spectral analyzer 340 compares one or more spectral images of the radiation present to known isotopes that are represented by one or more spectral images 350 stored in the isotope database 322. By capturing multiple variations of spectral data for each isotope there are numerous images that can be compared to one or more spectral images of the radiation present. The isotope database 322 holds the one or more spectral images 350 of each isotope to be identified. These multiple spectral images represent various levels of acquisition of spectral radiation data so isotopes can be compared and identified using various amounts of spectral data available from the one or more sensors. Whether there are small amounts (or large amounts) of data acquired from the sensor, the spectral analysis system 340 compares the acquired radiation data from the sensor to one or more spectral images for each isotope to be identified. This significantly enhances the reliability and efficiency of matching acquired spectral image data from the sensor to spectral image data of each possible isotope to be identified. Once the one or more possible isotopes are determined present in the radiation detected by the sensor(s), the information processing system 312 can compare the isotope mix against possible materials, goods, and/or products, that may be present in the container under examination. Additionally, a manifest database 315 includes a detailed description of the contents of each container that is to be examined. The manifest 315 can be referred to by the information processing system 312 to determine whether the possible materials, goods, and/or products, contained in the container match the expected authorized materials, goods, and/or products, described in the manifest for the particular container under examination. This matching process, according to an embodiment of the present invention, is significantly more efficient and reliable than any container contents monitoring process in the past.
The spectral analysis system 340, according to an embodiment, includes an information processing system and software that analyzes the data collected and identifies the isotopes that are present. The spectral analysis software consists of more that one method to provide multi-confirmation of the isotopes identified. Should more than one isotope be present, the system identifies the ratio of each isotope present. Examples of methods that can be used for spectral analysis such as in the spectral analysis software according to an embodiment of a container contents verification system, include: 1) a margin setting method as described in U.S. Pat. No. 6,847,731; and 2) a LINSCAN method (a linear analysis of spectra method) as described in U.S. Provisional Patent Application No. 60/759,331, filed on Jan. 17, 2006, by inventor David L. Frank, and entitled “Method For Determination Of Constituents Present From Radiation Spectra And, If Available, Neutron And Alpha Occurrences”; the collective entire teachings of which being herein incorporated by reference.
With respect to analysis of collected data pertaining to explosives and/or special materials, the spectral analyzer 340 and the information processing system 312 compare identified possible explosives and/or special materials to the manifest 315 by converting the stored manifest data relating to the shipping container under examination to expected explosives and/or radiological materials and then by comparing the identified possible explosives and/or special materials with the expected explosives and/or radiological materials. If the system determines that there is no match to the manifest for the container then the identified possible explosives and/or special materials are unauthorized. The system can then provide information to system supervisory personnel to alert them to the alarm condition and to take appropriate action.
Removal of Background Radiation Effects
Dynamic Background
The background radiation at a seaport and more specifically the changing background associated with a moving container across land, sea, vessels and at different heights, poses a specific challenge to radiation detection and isotope identification. According to one embodiment of the present invention, this issue is addressed through the use of a dynamic background method used to compensate for the changing background effects. This method applies continuous background updates against the main background data. Different weights and intervals can be varied for the background updates to achieve the appropriate dynamic background for the specific application. An example formula is provided below, and also shown in
As shown in
As shown in
According to an alternative embodiment of the present invention, a multiple background analysis approach can be used to remove varying background effects on the collected data. In one example, a GPS detector is mechanically coupled to the structure supporting the moving sensors, such as the crane spreader bar, and provides continuous location data (of the spreader bar) to an information processing system that is processing the collected data. The location of the spreader bar, for example, can indicate the type of background environment that is being experienced by the sensors at the spreader bar. The GPS detector operates in a well known manner and can provide both geographic location information and elevation information. Knowing the elevation of the spreader bar above, say, ground or sea level, can indicate the type of background effects that are experienced by the sensors at the spreader bar. The elevation information, and/or the geographic location information, can be, for example, compared against an expected map of structures and background environments in proximity to the spreader bar. These expected background environments correspond to background effects that can, for example, be subtracted from the collected data to provide better and more reliable data for analysis leading to better and more reliable radiation detection and isotope identification. Alternative location detection devices, including mechanical devices and/or electrical devices and/or manual data entry, can be used by the system to track changing backgrounds and corresponding background effects on collected data.
Another use of the elevation information and the geographic location information by an information processing system is for controlling the triggers and effects of devices used to collect the radiation data. For example, a neutron pulse may be generated by a neutron pulse device that is included in the sensor system deployed at the spreader bar or on the gantry crane to provide an active analysis whereby gamma feedback following the neutron pulse can identify shielded radiological materials such as highly enriched uranium, explosives or illicit drugs, inside containers. However, a particular system implementation may limit the activation of the neutron pulse device to particular geographic areas and/or elevations above ground and/or sea level. For example, a neutron pulse device can be controlled to remain inactive while the crane and/or spreader bar are in close proximity to a crane operator's cabin or to a protected area such as one normally occupied by people. The flexibility and dynamic adjustment to different operational environments while enhancing the speed and reliability of data analysis, as discussed above, is a significant advantage of the present inventive system that was not available in the past.
The user interface 314 allows service or supervisory personnel to operate the local system 312 and to monitor the status of radiation detection and identification of isotopes and/or the detection of RF signals by the collection of sensor units 301, 302 and 303 deployed on the frame structure, such as on the crane arm assembly (or spreader bar).
The user interface 314, for example, can present to a user a representation of the collected received returning signals, or the identified possible explosives and/or special materials in the shipping container under examination, or any system identified unauthorized explosives and/or special materials contained within the shipping container under examination, or any combination thereof.
The data collection system can also be communicatively coupled with a remote control and monitoring system 318 such as via a network 316. The remote system 318 comprises an information processing system that has a computer, memory, storage, and a user interface 320 such as a display on a monitor and a keyboard, or other user input/output device. The network 316 comprises any number of local area networks and/or wide area networks. It can include wired and/or wireless communication networks. This network communication technology is well known in the art. The user interface 320 allows remotely located service or supervisory personnel to operate the local system 312 and to monitor the status of shipping container verification by the collection of sensor units 301, 302 and 303 deployed on the frame structure, such as on the crane arm assembly (or spreader bar). The central monitoring system can display the position of the shipping container as it is moved to the secondary position through the use of CCTV cameras (350) or shipping container tracking systems (355).
A neutron pulse device can be included in the sensor system deployed on the spreader bar or on the gantry crane to provide an active analysis whereby gamma feedback identifies shielded radiological materials such as highly enriched uranium, explosives or illicit drugs.
Referring to
Referring to
Referring to
By operating the system remotely, such as from a central monitoring location, a larger number of sites can be safely monitored by a limited number of supervisory personnel. Besides monitoring container handling operations such as from crane arm assemblies, as illustrated in the example of
Additionally, the system monitoring function can be combined to monitor more than radiation and explosives. Other types of hazardous elements can be monitored in combination with the radiation detection by combining appropriate sensors and detectors for these other types of hazardous elements with the radiation sensor units and monitoring system according to alternative embodiments of the present invention.
The preferred embodiments of the present invention can be realized in hardware, software, or a combination of hardware and software. A system according to a preferred embodiment of the present invention can be realized in a centralized fashion in one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system—or other apparatus adapted for carrying out the methods described herein—is suited. A typical combination of hardware and software could be a general purpose computer system with a computer program that, when being loaded and executed, controls the computer system such that it carries out the methods described herein.
An embodiment according to present invention can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which—when loaded in a computer system—is able to carry out these methods. Computer program means or computer program in the present context mean any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following a) conversion to another language, code or, notation; and b) reproduction in a different material form.
Each computer system may include one or more computers and at least a computer readable medium allowing a computer to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium. The computer readable medium may include non-volatile memory, such as ROM, Flash memory, Disk drive memory, CD-ROM, and other permanent storage. Additionally, a computer readable medium may include, for example, volatile storage such as RAM, buffers, cache memory, and network circuits. Furthermore, the computer readable medium may comprise computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network, that allow a computer to read such computer readable information.
Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 11/931,370, filed on Oct. 31, 2007, which is a continuation of U.S. patent application Ser. No. 11/564,193, filed on Nov. 28, 2006, which is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/759,332, filed on Jan. 17, 2006, by inventor David L. FRANK, and entitled “Sensor Interface Unit And Method For Automated Support Functions For CBRNE Sensors”; and further which is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/759,331, filed on Jan. 17, 2006, by inventor David L. FRANK, and entitled “Method For Determination Of Constituents Present From Radiation Spectra And, If Available, Neutron And Alpha Occurrences”; and further which is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/759,373, filed on Jan. 17, 2006, by inventor David L. FRANK, and entitled “Distributed Sensor Network with Common Platform for CBRNE Devices; and further which is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/759,375, filed on Jan. 17, 2006, by inventor David L. FRANK, and entitled Advanced Container Verification System; and furthermore which is a continuation-in-part of, and claims priority from, prior co-pending U.S. patent application Ser. No. 11/291,574, filed on Dec. 1, 2005, which is a continuation-in-part of, and claims priority from, prior U.S. patent application Ser. No. 10/280,255, filed on Oct. 25, 2002, now U.S. Pat. No. 7,005,982 issued Feb. 28, 2006, that was based on prior U.S. Provisional Patent Application No. 60/347,997, filed on Oct. 26, 2001, and which further is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/631,865, filed on Dec. 1, 2004, and which furthermore is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/655,245, filed on Feb. 23, 2005, and which furthermore is based on, and claims priority from, prior U.S. Provisional Patent Application No. 60/849,350, filed on Oct. 4, 2006, and which furthermore is based on, and claims priority from, prior U.S. patent application Ser. No. 11/363,594 filed on Feb. 27, 2006, now U.S. Pat. No. 7,142,109 issued Nov. 28, 2006; the collective entire disclosure of the above-identified applications being hereby incorporated by reference. This application claims priority to co-pending U.S. patent application Ser. No. 12/472,707, filed on May 27, 2009, which is based on and claims priority to provisional U.S. Patent Application No. 61/128,947, entitled “Floating Intelligent Perimeter Sensor”, filed on May 27, 2008, and is also a continuation-in-part of and claims priority from, prior co-pending U.S. patent application Ser. No. 11/564,193 entitled “Multi-Stage System for Verification of Container Contents”, filed on Nov. 28, 2006, which is a continuation-in-part of, and claims priority from, prior co-pending U.S. patent application Ser. No. 11/291,574, filed on Dec. 1, 2005, which is a continuation-in-part of, and claims priority from, prior U.S. patent application Ser. No. 10/280,255, filed on Oct. 25, 2002, now U.S. Pat. No. 7,005,982 issued on Feb. 28, 2006, and that was based on prior U.S. Provisional Patent Application No. 60/347,997, filed on Oct. 26, 2001; and this application is also a continuation-in-part of and claims priority from, prior co-pending U.S. patent application Ser. No. 11/852,835 entitled “Distributed Sensor Network With A Common Processing Platform For CBMRNE Devices And Novel Applications”, filed on Nov. 28, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/624,089 filed on Jan. 17, 2007, entitled “System Integration Module For CBRNE Sensors”, now U.S. Pat. No. 7,269,527; the collective entire disclosure of which being hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3872287 | Koeman | Mar 1975 | A |
4158773 | Novak | Jun 1979 | A |
4535246 | Shani | Aug 1985 | A |
4799828 | Georgii | Jan 1989 | A |
5056958 | Campbell | Oct 1991 | A |
5241573 | Thacker | Aug 1993 | A |
5298756 | McCollum et al. | Mar 1994 | A |
5308986 | Walker | May 1994 | A |
5434415 | Terada et al. | Jul 1995 | A |
5633508 | Schleppenbach | May 1997 | A |
5665970 | Kronenberg et al. | Sep 1997 | A |
5838759 | Armistead | Nov 1998 | A |
5866907 | Drukier et al. | Feb 1999 | A |
6011266 | Bell | Jan 2000 | A |
6370222 | Cornick, Jr. | Apr 2002 | B1 |
6407390 | Rozsa | Jun 2002 | B1 |
6433335 | Kronenberg et al. | Aug 2002 | B1 |
6479826 | Klann et al. | Nov 2002 | B1 |
6515285 | Marshall et al. | Feb 2003 | B1 |
6545281 | McGregor et al. | Apr 2003 | B1 |
6845873 | Chattey | Jan 2005 | B1 |
6891470 | Bohinc, Jr. | May 2005 | B2 |
6937692 | Johnson et al. | Aug 2005 | B2 |
6980483 | McDonald | Dec 2005 | B2 |
6998617 | D'Emilio et al. | Feb 2006 | B2 |
7026944 | Alioto et al. | Apr 2006 | B2 |
7030755 | Bohinc, Jr. | Apr 2006 | B2 |
7064336 | Archer et al. | Jun 2006 | B2 |
7115875 | Worstell | Oct 2006 | B1 |
7116235 | Alioto et al. | Oct 2006 | B2 |
7142109 | Frank | Nov 2006 | B1 |
7151447 | Willms et al. | Dec 2006 | B1 |
7164138 | McGregor et al. | Jan 2007 | B2 |
7183554 | Gallagher et al. | Feb 2007 | B2 |
7269527 | Frank | Sep 2007 | B1 |
7324921 | Sugahara et al. | Jan 2008 | B2 |
7356115 | Ford et al. | Apr 2008 | B2 |
7391028 | Rubenstein | Jun 2008 | B1 |
7411198 | Holland et al. | Aug 2008 | B1 |
7550738 | DeVito | Jun 2009 | B1 |
7592601 | Frank | Sep 2009 | B2 |
7759649 | Frank | Jul 2010 | B2 |
7851766 | Frank | Dec 2010 | B2 |
20020175291 | Reeder et al. | Nov 2002 | A1 |
20030108150 | Franke | Jun 2003 | A1 |
20030144800 | Davis et al. | Jul 2003 | A1 |
20030165211 | Grodzins et al. | Sep 2003 | A1 |
20030201394 | Peoples | Oct 2003 | A1 |
20040018060 | Knezek et al. | Jan 2004 | A1 |
20040119591 | Peeters | Jun 2004 | A1 |
20040126895 | Overbeck et al. | Jul 2004 | A1 |
20040148137 | Zerwekh et al. | Jul 2004 | A1 |
20050001728 | Appelt et al. | Jan 2005 | A1 |
20050011849 | Chattey | Jan 2005 | A1 |
20050023477 | Archer et al. | Feb 2005 | A1 |
20050082485 | Torii | Apr 2005 | A1 |
20050135535 | Wallace | Jun 2005 | A1 |
20050156734 | Zerwekh et al. | Jul 2005 | A1 |
20050205793 | Bohinc, Jr. | Sep 2005 | A1 |
20050220247 | Ruddy et al. | Oct 2005 | A1 |
20050224719 | Polichar et al. | Oct 2005 | A1 |
20050258372 | McGregor et al. | Nov 2005 | A1 |
20050275545 | Alioto et al. | Dec 2005 | A1 |
20060097171 | Balchunas et al. | May 2006 | A1 |
20060138331 | Guillebaud et al. | Jun 2006 | A1 |
20060141615 | Lu | Jun 2006 | A1 |
20060284094 | Inbar | Dec 2006 | A1 |
20070001123 | Andrews et al. | Jan 2007 | A1 |
20070290136 | Ivan | Dec 2007 | A1 |
20080023631 | Majors et al. | Jan 2008 | A1 |
20090014662 | Suhami | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
55050178 | Apr 1980 | JP |
58223775 | Dec 1983 | JP |
1144768 | Feb 1999 | JP |
2008111677 | May 2008 | JP |
1019927004134 | Dec 1992 | KR |
200191370 | Aug 2000 | KR |
1020050071663 | Jul 2005 | KR |
9800681 | Jan 1998 | WO |
2004027727 | Apr 2004 | WO |
2006085999 | Aug 2006 | WO |
2007065004 | Jun 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110015886 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60759332 | Jan 2006 | US | |
60759331 | Jan 2006 | US | |
60759373 | Jan 2006 | US | |
60759375 | Jan 2006 | US | |
60347997 | Oct 2001 | US | |
60631865 | Dec 2004 | US | |
60655245 | Feb 2005 | US | |
60849350 | Oct 2006 | US | |
61128947 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11931370 | Oct 2007 | US |
Child | 12840102 | US | |
Parent | 11564193 | Nov 2006 | US |
Child | 11931370 | US | |
Parent | 11363594 | Feb 2006 | US |
Child | 11931370 | US | |
Parent | 12472707 | May 2009 | US |
Child | 11363594 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11291574 | Dec 2005 | US |
Child | 11564193 | US | |
Parent | 10280255 | Oct 2002 | US |
Child | 11291574 | US | |
Parent | 11931370 | US | |
Child | 11291574 | US | |
Parent | 11564193 | Nov 2006 | US |
Child | 12472707 | US | |
Parent | 11852835 | Nov 2006 | US |
Child | 11564193 | US | |
Parent | 11624089 | Jan 2007 | US |
Child | 11852835 | US | |
Parent | 11852835 | Nov 2006 | US |
Child | 11624089 | US | |
Parent | 11624089 | Jan 2007 | US |
Child | 11852835 | US |