A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.”
As shown in
A fiber Bragg grating channel 126 is disposed along at least a portion of the treatment bed 112 near the top surface 114. As seen in the detail, the fiber Bragg grating channel 126 includes a fiber optic waveguide 12 that defines a plurality of spaced-apart Bragg-type gratings 14a-e. (While only five Bragg-type gratings are shown for the sake of clarity, it should be understood that many embodiments would employ more Bragg-type gratings—possibly substantially more—or even fewer Bragg-type gratings.) Each Bragg-type grating is configured so as to be able to reflect a different wavelength of light. In the example shown, Bragg-type grating 14a is configured to reflect wavelength λ1, Bragg-type grating 14b is configured to reflect wavelength λ2, Bragg-type grating 14c is configured to reflect wavelength λ3, Bragg-type grating 14d is configured to reflect wavelength λ4, and Bragg-type grating 14e is configured to reflect wavelength λ5.
A multi-wavelength broadband light source 122, or a swept fiber laser, generates a plurality of beams of different wavelengths that are injected into the fiber Bragg grating channel 126 through an optical coupler 124. An optical detector 132 is also in optical communication with the fiber Bragg grating channel 126 through the optical coupler 124. The detector receives a portion of the reflected optical beams 128 and a signal 130 regarding the sent optical beams from the light source 122. The detector 132 detects reflections of light from at least one of the Bragg-type gratings 14a-e and generates a signal 136 indicative of that amount of time that each beam spends traveling from the light source 122 to a selected Bragg-type grating 14 and back to the detector 132. A computer 134, which is in communication with the detector 132, is programmed to calculate at least one anatomical characteristic based on a characteristic of at least one of the reflection of light beams.
When the fiber Bragg grating channel 126 is manipulated, the optical path of a light beam passing therethrough changes. For example, if a portion of the fiber Bragg grating channel 126 is bent, the optical path of a light beam passing therethrough is longer than if the fiber Bragg grating channel 126 were in an unbent state. Similarly, if a portion of the fiber Bragg grating channel 126 changes temperature, then the index of refraction of the portion may also be changed, thereby changing the amount of time that a light beam would take to pass through the portion. By measuring the amount of time that a beam of light of a given wavelength takes to travel from the light source to a predetermined fiber Bragg-type grating 14 to the optical detector 132, one can determine the length of the optical path that the beam of light travels. By comparing the optical paths of different portions of the fiber Bragg grating channel 126, corresponding to the portions between different pairs of fiber Bragg-type gratings 14, information about the optical path between any two Bragg-type gratings can be derived from a plurality of reflected signals. By combining the information about different portions, one can derive an understanding of such parameters regarding the patient as topographic characteristics (e.g., the shape of the contours of the patient's back) and metabolic characteristics (e.g., localized temperature differences) of the patient 30.
In one experimental embodiment, the optical detector 132 employed was a model S1425 Optical Sensing Interrogator, available from Micron Optics Inc., 1852 Century Place NE, Atlanta, Ga. 30345. Also, custom fiber Bragg gratings can be obtained from O/E Land, Inc., 4321 Garand, Saint-Laurent, Quebec, Canada H4R 2B4.
A patient 30 is shown lying on a treatment bed 112 in
As shown in
As shown in
The embodiments shown in
The above described embodiments, while including the preferred embodiment and the best mode of the invention known to the inventor at the time of filing, are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.
This application claims priority on U.S. Provisional Patent Application Ser. No. 60/747,065, filed on May 11, 2006, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60747065 | May 2006 | US |