The present application is directed to the separation of carbon dioxide from ethane, wherein the liquid acid gas stream is composed primarily of hydrogen sulphide and carbon dioxide.
Natural gas reservoirs may often contain high levels of acid gases, such as CO2. In these cases, a cryogenic process may provide an efficacious way to separate the acid gases from the methane. The cryogenic process could include a simple bulk fractionation, a Ryan-Holmes process, or a more complex cryogenic fractionation process. The cryogenic processes separate methane from CO2 by condensation and fractionation, and can produce the acid gas in a liquid phase for efficient disposal via pumping. However, in the cryogenic processes heavier hydrocarbons are separated with the CO2 in a single liquid stream. Often, the CO2 will be immediately reinjected for disposal, where the mixture will not cause any problems.
In some locations, a natural gas reservoir contains high levels of CO2. It is advantageous in these cases to use a cryogenic process to separate the CO2 from the methane. The cryogenic process could be simple bulk fractionation, a Ryan-Holmes, or a Controlled Freeze Zone (CFZ™) process. These processes separate methane from CO2 by condensation I fractionation, and can provide the CO2 as a liquid for efficient disposal. However, in these processes all hydrocarbons heavier than methane (C2+ or “ethane plus”) are also condensed and separated with the CO2. Normally, the CO2 will be reinjected for disposal, but the hydrocarbons are valuable and it is preferred that they be recovered for sale.
Separation of the heavier hydrocarbons can be performed by fractionation. However, ethane forms an azeotropic mixture with CO2, as discussed with respect to
Since the vapor and liquid compositions are equal at some point (70% CO2 at 4,137 kPa and 60% CO2 at 689.5 kPa), complete separation by fractionation cannot be achieved without some additional factor. Current practice for CO2 I ethane separation includes various methods. For example, a heavy component (lean oil) can be added, which preferentially absorbs the ethane. This is called “extractive distillation.” As another example, two-pressure fractionation can be used to exploit the small difference in the azeotropic composition between different pressures, for example, using two fractionators to fractionate at both 4,137 kPa and 689.5 kPa. This requires very large recycle stream, large fractionation systems, and is very energy intensive. Methods to exploit other physical and chemical properties (not dependent on vapor-liquid equilibria) can be used in conjunction with fractionation to achieve separation. These methods may include the use of amines in a chemical reaction with CO2, gas permeation membranes, or molecular sieves.
For example, U.S. Pat. No. 4,246,015, to Styring, discloses a method for separating carbon dioxide and ethane based on washing ethane from frozen carbon dioxide. The separation is accomplished by freezing the carbon dioxide in a carbon dioxide and ethane mixture and washing the ethane from the solid carbon dioxide with a liquid hydrocarbon having at least three carbon atoms. The freezing process may be preceded by distillation of a carbon dioxide-ethane mixture to form an azeotropic mixture. A subsequent distillation may be used to separate the wash hydrocarbon from the carbon dioxide. In addition, if desired, the ethane-wash hydrocarbon mixture may be similarly separated in a subsequent distillation stage.
U.S. Patent Application Publication No. 2002/0189443, by McGuire, discloses a method of removing carbon dioxide or hydrogen sulfide from a high pressure mixture with methane. The high pressure gas is expanded through a flow channel having a convergent section followed by a divergent section with an intervening throat which functions as an aerodynamic expander. The flow channel is operated at temperatures low enough to result in the formation of solid carbon dioxide and solid hydrogen sulfide particles, which increases the efficiency of carbon dioxide and hydrogen sulfide removal.
International Patent Publication No. WO/2008/095258, by Hart, discloses a method for decreasing the concentration on carbon dioxide in a natural gas feed stream containing ethane and C3+ hydrocarbons. The process involves cooling the natural gas feed stream under a first set of conditions to produce a liquid stream of carbon dioxide, ethane and C3+ hydrocarbons and a gas stream having a reduced carbon dioxide concentration. The liquid stream is separated from the gas stream, and C3+ hydrocarbons may be separated from the liquid stream. The gas stream is then cooled under a second set of conditions to produce a sweetened natural gas stream and a second liquid containing liquid carbon dioxide and/or carbon dioxide solids. The sweetened natural gas stream is separated from the second liquid.
International Patent Publication No. WO/2008/084945, by Prast, discloses a method and assembly for removing and solidifying carbon dioxide from a fluid stream. The assembly has a cyclonic fluid separator with a tubular throat portion arranged between a converging fluid inlet section and a diverging fluid outlet section and a swirl creating device. The separation vessel has a tubular section positioned on and in connection with a collecting tank. A fluid stream with carbon dioxide is injected into the separation assembly. A swirling motion is imparted to the fluid stream so as to induce outward movement. The swirling fluid stream is then expanded such that components of carbon dioxide in a meta-stable state within the fluid stream are formed. Subsequently, the outward fluid stream with the components of carbon dioxide is extracted from the cyclonic fluid separator and provided as a mixture to the separation vessel. The mixture is then guided through the tubular section towards the collecting tank, while providing processing conditions such that solid carbon dioxide is formed. Finally, solidified carbon dioxide is extracted.
Each of these methods presents a drawback. For example, using a lean oil contaminates the ethane, and requires large amounts of heat, for regenerating the lean oil. Further, large lean oil circulation rates are needed and the technique does not allow complete ethane recovery. Two-pressure fractionation systems require very large recycle streams and equipment sizes, increasing costs. Techniques that use amines, membranes, and mole sieves all release the CO2 as a vapor at low pressure, increasing the cost of disposal. Finally, the expander separation devices generate the CO2 as a solid. Thus, there is a need for a better method of separating CO2 and ethane.
An embodiment described herein provides a method for separating a mixed ethane and CO2 stream. The method includes generating a liquid stream comprising ethane and CO2 and passing the liquid stream through a flash valve into an accumulation vessel, forming a gas that is enhanced in ethane, and forming solid CO2. The solid CO2 is accumulated in the accumulation vessel, and the gas is removed from the top of the accumulation vessel.
Another embodiment provides a system for separating a mixed stream of CO2 and ethane. The system includes a flash valve configured to isoenthalpically flash the mixed stream forming solid CO2 and a vapor stream enhanced in ethane, and an accumulation vessel configured to capture the solid CO2.
Another embodiment provides a method for purifying a natural gas stream. The method includes dehydrating the natural gas stream and cryogenically separating the natural gas stream into a methane rich fraction, a natural gas liquids fraction, and an azeotropic stream in a cryogenic purification system. The azeotropic stream is flashed to form solid CO2 and an ethane enriched vapor stream. The solid CO2 is removed from the ethane enriched vapor stream in an accumulation vessel and the ethane enriched vapor stream is purified to form a liquid ethane product.
The advantages of the present techniques are better understood by referring to the following detailed description and the attached drawings, in which:
In the following detailed description section, specific embodiments of the present techniques are described. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present techniques, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the techniques are not limited to the specific embodiments described below, but rather, include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. To the extent a term used herein is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Further, the present techniques are not limited by the usage of the terms shown below, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.
“Acid gases” are contaminants that are often encountered in natural gas streams. Typically, these gases include carbon dioxide (CO2) and hydrogen sulfide (H2S), although any number of other contaminants may also form acids. Acid gases are commonly removed by contacting the gas stream with an absorbent, such as an amine, which may react with the acid gas. When the absorbent becomes acid-gas “rich,” a desorption step can be used to separate the acid gases from the absorbent. The “lean” absorbent is then typically recycled for further absorption. As used herein a “liquid acid gas stream” is a stream of acid gases that are condensed into the liquid phase, for example, including CO2 dissolved in H2S and vice-versa.
An “azeotrope” or “azeotropic mixture” is a system of two or more components in which the liquid composition and vapor composition are equal at a certain pressure and temperature. In practice, this means that the components of an azeotropic mixture are constant-boiling at that pressure and temperature and generally cannot be separated during a phase change.
As used herein, a “column” is a separation vessel in which a counter current flow is used to isolate materials on the basis of differing properties. In an absorbent column, a physical solvent is injected into the top, while a mixture of gases to be separated is flowed through the bottom. As the gases flow upwards through the falling stream of absorbent, one gas species is preferentially absorbed, lowering its concentration in the vapor stream exiting the top of the column. In a fractionation column, liquid and vapor phases are counter-currently contacted to effect separation of a fluid mixture based on boiling points or vapor pressure differences. The high vapor pressure, or lower boiling, component will tend to concentrate in the vapor phase whereas the low vapor pressure, or higher boiling, component will tend to concentrate in the liquid phase.
“Cold box” refers to an insulated enclosure which encompasses sets of process equipment such as heat exchangers, columns, and phase separators. Such sets of process equipment may form the whole or part of a given process.
“Compressor” refers to a device for compressing a working gas, including gas-vapor mixtures or exhaust gases. Compressors can include pumps, compressor turbines, reciprocating compressors, piston compressors, rotary vane or screw compressors, and devices and combinations capable of compressing a working gas.
“Cryogenic distillation” has been used to separate carbon dioxide from methane since the relative volatility between methane and carbon dioxide is reasonably high. The overhead vapor is enriched with methane and the bottoms product is enriched with carbon dioxide and other heavier hydrocarbons. Cryogenic distillation processing requires the proper combination of pressure and temperature to achieve the desired product recovery.
The term “gas” is used interchangeably with “vapor,” and means a substance or mixture of substances in the gaseous state as distinguished from the liquid or solid state. Likewise, the term “liquid” means a substance or mixture of substances in the liquid state as distinguished from the gas or solid state.
“Heat exchanger” refers to any equipment arrangement adapted to allow the passage of heat energy from one or more streams to other streams. The heat exchange may be either direct (e.g., with the streams in direct contact) or indirect (e.g. with the streams separated by a mechanical barrier). The streams exchanging heat energy may be one or more lines of refrigerant, heating, or cooling utilities, one or more feed streams, or one or more product streams. Examples include a shell-and-tube heat exchanger, a cryogenic spool-wound heat exchanger, or a brazed aluminum-plate fin type, among others.
A “hydrocarbon” is an organic compound that primarily includes the elements hydrogen and carbon, although nitrogen, sulfur, oxygen, metals, or any number of other elements may be present in small amounts. As used herein, hydrocarbons generally refer to organic materials that are harvested from hydrocarbon containing sub-surface rock layers, termed reservoirs. For example, natural gas is normally composed primarily of the hydrocarbon methane.
The term “natural gas” refers to a multi-component gas obtained from a crude oil well (associated gas) or from a subterranean gas-bearing formation (non-associated gas). The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (C1) as a significant component. Raw natural gas will also typically contain ethane (C2), higher molecular weight hydrocarbons, one or more acid gases (such as carbon dioxide, hydrogen sulfide, carbonyl sulfide, carbon disulfide, and mercaptans), and minor amounts of contaminants such as water, helium, nitrogen, iron sulfide, wax, and crude oil.
“Pressure” is the force exerted per unit area by the gas on the walls of the volume. Pressure can be shown as pounds per square inch (psi). “Atmospheric pressure” refers to the local pressure of the air. “Absolute pressure” (psia) refers to the sum of the atmospheric pressure (14.7 psia at standard conditions) plus the gauge pressure (psig). “Gauge pressure” (psig) refers to the pressure measured by a gauge, which indicates only the pressure exceeding the local atmospheric pressure (i.e., a gauge pressure of 0 psig corresponds to an absolute pressure of 14.7 psia). The term “vapor pressure” has the usual thermodynamic meaning. For a pure component in an enclosed system at a given pressure, the component vapor pressure is essentially equal to the total pressure in the system.
A “separation vessel” is a vessel wherein an incoming feed is separated into individual vapor and liquid fractions. A separation vessel may include a flash drum in which a stream is flashed to form vapor and liquid components. The vapor component is removed from an upper outlet, while the liquid component is removed from a lower outlet.
“Substantial” when used in reference to a quantity or amount of a material, or a specific characteristic thereof, refers to an amount that is sufficient to provide an effect that the material or characteristic was intended to provide. The exact degree of deviation allowable may in some cases depend on the specific context.
Overview
Methods and systems described herein use the heat of vaporization of ethane to freeze entrained CO2 to a solid form, allowing a substantially complete separation of the components. The process works by taking a liquid mixture of CO2 and ethane, chilling it as much as possible without forming solid CO2, and, then, reducing the mixture's pressure by flashing it into a solids-accumulation vessel. The pressure of the flash is selected to vaporize all the ethane by heat liberated from the freezing CO2 (heat of fusion). Solid CO2 deposits in the vessel, while the vapor stream, now enriched in ethane above the azeotrope, can be distilled by using conventional fractionation for partial ethane recovery. The distillation overhead stream (at the azeotropic composition again) is chilled and recycled back to the feed, as liquid CO2 I Ethane. The process may be further understood with respect to
In the system 400, one or more production wells 407 can be used to produce a raw natural gas stream 408. The raw natural gas stream 408 may include a substantial amount of carbon dioxide, ethane, and other components. In some embodiments, the raw natural gas stream 408 may have a low-BTU content, e.g., between about 500 and 950 BTUs per standard cubic foot.
The raw natural gas stream 408 can be fed to a dehydration unit 410 in which water vapor may be removed using glycol dehydration, desiccants, or a Pressure Swing Adsorption (PSA) unit, among other processes. The dehydration unit 410 is not limited to the arrangement shown, but may be included at any number of points in the system 400, or eliminated if not needed. Generally, dehydration is used to prepare the natural gas for cryogenic separation by removing water, which could freeze and plug the systems.
The dehydrated stream 412 may be fed to a purification system 414, which may use any number of processes to remove contaminates, including natural gas liquids (NGL) 416, carbon dioxide, and other acid gases. The purification system 414 may include a cryogenic distillation unit, for example, using a Ryan-Holmes process. Other cryogenic distillation techniques may be used, such as the controlled freeze zone (CFZ™) technology available from Exxon Mobil. Both of these cryogenic processes can generate an azeotropic stream 418 that includes ethane and CO2, as well as other compounds. In various embodiments, any number of other techniques that generate a liquid acid gas stream may also be used for purification, such as a warm gas processing system. In addition to removing the azeotropic stream 418, the purification system 414 may also remove at least a portion of the higher carbon number hydrocarbons, e.g., C2 and higher, for example, by fractionation. The higher carbon number hydrocarbons may be combined to form a NGL stream 416, among others, which may also be marketed as a product. However, as discussed above, the formation of the azeotrope will cause a portion of ethane will remain in the azeotropic stream 418 as a mixture with the CO2.
The azeotropic stream 418 from the purification may be further processed to generate the CO2 stream 402, which may be used for enhanced oil recovery, commercial sales, or other purposes. The processing is performed in a separation system 420 that flashes the azeotropic stream 418 to generate an ethane stream 422, which can be combined back into the natural gas liquids 416 or added to the gas stream 404.
After purification, the gas stream 404 may be a mixture of methane and various inert gases, such as nitrogen and helium, and may include the ethane stream 422. This gas stream 404 can be directly used, for example, as a low BTU natural gas stream to power an electric power generation system 406. Other operations, such as the separation of a helium enriched stream, may also be performed prior to the usage. An electrical generation plant 406 may provide other, higher value, products for sale, including electrical power 424 to a power grid, heat 426 for other processes, or both. In some embodiments, the electrical generation plant 406 may purchase the gas stream 404 from a pipeline associated with the producer. The techniques described herein are not limited to electric power generation using low BTU streams, but may be used with any purification process in which the separation of ethane from carbon dioxide may be useful.
The system 400 described herein has a number of advantages over current technologies. For example, it produces a liquid carbon dioxide stream for easy injection, while producing a clean vapor ethane stream for sale. Further, the system 400 integrates heat demands and cooling sources to decrease the need for external refrigeration in the separation system 420. The process is based on solidifying the CO2 and flashing the ethane. Since the azeotropic stream 418 is in the liquid phase, the vaporization of the azeotropic stream 418 can be used to drive the process, with the heat of vaporization of the ethane cooling the CO2, and the heat of solidification from the CO2 driving the vaporization of the ethane. Additional cooling or heating may be provided to balance the energy transfer.
The purification system 414 can include any number of processes that produce a liquid acid gas stream, including, for example, the Ryan-Holmes process, a bulk fractionation process, or a controlled freeze zone plant. The separation system 420 can be retrofitted onto an existing purification system 414 to have all or part of the liquid acid gas stream produced by these processes re-directed to the separation system 420 to extract higher value ethane from CO2 mixtures. One example of a cryogenic separation process that may be used is shown in
Cryogenic Separation Forming a Liquid Acid Gas Stream
The overhead stream 526 from the cryogenic fractionation column 508 will include the methane from the natural gas feed 504, as well as other low boiling point or non-condensable gases, such as nitrogen and helium. Additional separation systems 528, including columns, cold boxes, and the like, may be used to generate a CH4 product stream 530 at a chosen purity level. A portion 530 of the overhead stream 526 may be fed to a pump 531 to be reinjected into the cryogenic fractionation column 508 as a reflux stream 534.
The bottoms stream 536 from the cryogenic fractionation column 508 can be separated into two streams. A reboiler stream 538 is heated and returned to the cryogenic fractionation column 508 to provide heating. An outlet stream 540 is removed from the bottoms stream 536 for disposal. In embodiments, this outlet stream 540 forms the azeotropic stream 502 used for the generation of the separated ethane and CO2 streams, as described with respect to
Separation of CO2 from an Azeotropic Stream
The separation system 600 can be substantially heat-integrated, minimizing external heat or power requirements. A separation of a methane stream 606 from the ethane stream 604 is performed at the same time as the separation of ethane and CO2. This separation eliminates a need for an additional demethanizer downstream. The methane stream 606 is returned to the CFZ or bulk fractionation column, for example, being combined with the natural gas stream 504 discussed with respect to
The separation system 600 begins when the azeotropic stream 502 is blended with a liquids stream 608 from a methane separator 610. The mixing element 611 can be a static mixer, or merely a pipe joint coupling the two streams 502 and 608. In this example, the CO2 content of the azeotropic stream 502 is about 70%, which is very close to the azeotropic composition at 4,137 kPa (600 psia). In embodiments in which the CO2 content is lower, the azeotropic stream 502 can be directed to the ethane fractionator 612, e.g., mixed with the fractionator feed stream 614, to remove as much ethane as possible by conventional fractionation, prior to solid CO2 formation. In embodiments in which the CO2 content of the azeotropic stream 502 is greater than 70%, another fractionator could be included upstream of the separation system 600 to generate the azeotropic stream 502 as an overhead product by removing as much CO2 as possible prior to using the subject technology. In both cases, the final concentration of the CO2 and ethane in the azeotropic stream 502 after separation is limited by the azeotrope, e.g., to around 70% CO2 and 30% ethane at 4,137 kPa (600 psia).
From the mixing element 611, a combined feed stream 616 is passed through an isoenthalpic expansion element 618, such as a Joule-Thompson valve. The expanded stream 620 is chilled as a result of the flashing, causing the CO2 to solidify as the ethane and some CO2 vaporizes. The expanded stream 620 is passed into one of two solid accumulation vessels 622 or 624. In this example, the inlet valve 626 to and outlet valve 628 from the first solid accumulation vessel 630 are open, allowing the CO2 solids to be captured in the vessel, while the ethane rich vapor stream 632 exits from the top of the vessel.
The ethane rich vapor stream 632 is compressed in a raw ethane compressor 634. The compressed feed stream 636 is cooled in an ethane fractionator feed cooler 638 to form the fractionator feed stream 614. The fractionator feed stream 614 is injected into a column 640 in the ethane fractionator 612. A bottom stream 642 from the column 640 is heated in a reboiler 644, before being returned to the column 640 as a heated stream 646. A portion of the bottom stream 642 is taken from the reboiler 644 as the ethane stream 604.
The overhead stream 648 from the column 640 is sent to a reflux condenser and reflux accumulator tank 650. A liquid stream is taken from the bottom of the reflux accumulator tank 650 and injected into the top of the column 640 as a reflux stream 652. The vapor stream from the top of reflux accumulator tank 650 is removed as a CO2/ethane recycle stream 654. The CO2/ethane recycle stream 654 is chilled in a recycle condenser 656, forming a liquid recycle stream 658. The liquid recycle stream 658 is flashed in the methane separator 610. As discussed, the liquid stream 608 from the methane separator 610 is combined with the azeotropic mixture 502. The gas from the top of the methane separator 610 forms the methane stream 606, which can be returned to the cryogenic separation process.
During operations, the first solid accumulation vessel 622 fills with solid CO2. When enough solid CO2 has accumulated in the first solid accumulation vessel 630, the flashing liquid can be sent to a second solid accumulation vessel 624 by opening the inlet valve 660 and outlet valve 662 on the second solid accumulation vessel 624 and closing the inlet valve 626 to vessel 622. The first solid accumulation vessel 622 can be heated by an internal heating coil 664, sublimating some CO2 to displace any remaining hydrocarbons. Once the hydrocarbons are displaced, the outlet valve 628 on the first solid accumulation vessel 622 can then be closed, allowing the pressure to rise until the CO2 can melt, forming liquid CO2. When the CO2 has finished melting, the drainage valve 666 at the bottom of the first solid accumulation vessel 622 can be opened to allow the CO2 stream 602 to be drained for sales or disposal. Once the second solid accumulation vessel 624 has a sufficient amount of CO2, the process can be repeated. After hydrocarbons are purged, the vessel is isolated, and the CO2 is melted, a drainage valve 668 can be opened to drain the CO2 stream 602 from the second solid accumulation vessel 624.
The energy balance of the process is shown in Table 2. The numbers in column 2 correspond to the circled numbers in
Method for Separating CO2 and Ethane
The process continues for the full flash vessel at block 714, where heat is added to sublime a small portion of the CO2, e.g., about less than about 5%, to release any trapped hydrocarbons. After the sublimation, at block 716, the vessel is blocked in and the temperature and pressure are allowed to rise until the CO2 melts. The vessel is drained and the liquid CO2 is provided as a product at block 718. The empty flash vessel is then placed in standby at block 720, and process flow for the empty vessel returns to block 710 to wait for the current accumulation vessel to fill, as indicated by an arrow 722.
The ethane that is flashed off to create the solid CO2 at block 706 is combined with the sublimed CO2 and hydrocarbon from block 714, as indicated by arrows 724. At block 726, the combined stream is compressed and chilled to form a raw liquid ethane stream. At block 728, the raw liquid ethane stream is stripped to remove a contaminated stream that contains methane and CO2 from the ethane. The purified ethane stream is provided as a product at block 730. Methane is separated from the contaminated stream as a gas at block 732, and, at block 734. The remaining material, which includes ethane and CO2, is returned to block 704 to be combined with the azeotropic stream for flashing in the flash vessel, as indicated by an arrow 736.
Embodiments
Embodiments as described herein may include any combinations of the elements in the following numbered paragraphs:
1. A method for separating a mixed ethane and CO2 stream, including:
2. The method of paragraph 1, including cryogenically separating the liquid stream from a natural gas feed stream.
3. The method of paragraphs 1 or 2, including switching to a second accumulation vessel when the accumulation vessel is substantially filled with solid CO2.
4. The method of paragraph 3, including heating the solid CO2 in the accumulation vessel to sublime a fraction of the CO2, removing at least a portion of hydrocarbons trapped in the solid CO2.
5. The method of paragraphs 1, 2, or 3, including
6. The method of paragraph 5, including:
7. The method of any of paragraphs 1-3, or 5, including:
8. The method of paragraph 7, including returning the methane to a separate purification unit.
9. The method of any of paragraphs 1-3, 5, or 7, including fractionating the liquid stream prior the flash valve to remove excess CO2 and form an azeotropic mixture.
10. The method any of paragraphs 1-3, 5, 7, or 9, including fractionating the liquid stream prior to the flash valve to remove excess ethane and form an azeotropic mixture.
11. A system for separating a mixed stream of CO2 and ethane, including:
12. The system of paragraph 11, including a cryogenic separation system configured to form the mixed stream from a natural gas feed.
13. The system of paragraphs 11 or 12, including a compressor and a chiller configured to recondense the vapor stream forming a raw ethane stream.
14. The system of paragraph 13, including a fractionator configured to separate a contaminated ethane stream including ethane and CO2 from the raw ethane stream.
15. The system of paragraph 14, wherein the fractionator is configured to isolate a liquid ethane product stream.
16. The system of paragraph 14, including a flash vessel configured to separate methane from the contaminated ethane stream.
17. The system of any of paragraphs 11-13, including a plurality of accumulation vessels, wherein each sequential accumulation vessel is configured to begin accumulating solid CO2 when a previous accumulation vessel is substantially filled with CO2.
18. The system of any of paragraphs 11-13, or 17, including a heater configured to warm solid CO2 in the accumulation vessel and drive off trapped hydrocarbon.
19. The system of any of paragraphs 11-13, 17, or 18, wherein the accumulation vessel is configured to reach a temperature and pressure that allows the solid CO2 to melt, forming a liquid CO2 product stream.
20. The system of any of paragraphs 11-13, or 17-19, wherein the accumulation vessel is configured to form liquid CO2 from the solid CO2.
21. A method for purifying a natural gas stream including:
22. The method of paragraph 21, including:
While the present techniques may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. However, it should again be understood that the techniques is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application is a divisional of U.S. patent application Ser. No. 14/376,359 filed on Aug. 1, 2014, which is the National Stage entry under 35 U.S.C. 371 of International Application No. PCT/US2013/029927 that published as WO2013/142100 and was filed on Mar. 8, 2013, which claims the benefit of and priority from U.S. Provisional Application No. 61/613,606, filed on Mar. 21, 2012, each of which is incorporated by reference, in its entirety, for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2327134 | Schuftan | Aug 1943 | A |
2621216 | White | Dec 1952 | A |
2843219 | Habgood | Jul 1958 | A |
2863527 | Herbert | Dec 1958 | A |
2960837 | Swenson et al. | Nov 1960 | A |
3050950 | Karwat et al. | Aug 1962 | A |
3109726 | Karwat | Nov 1963 | A |
3349571 | Nebgen | Oct 1967 | A |
3393527 | Swensen et al. | Jul 1968 | A |
3400512 | McKay | Sep 1968 | A |
3421984 | Jensen et al. | Jan 1969 | A |
3683634 | Streich | Aug 1972 | A |
3705625 | Whitten et al. | Dec 1972 | A |
3767766 | Tjoa et al. | Oct 1973 | A |
3824080 | Smith et al. | Jul 1974 | A |
3842615 | Reigel et al. | Oct 1974 | A |
3848427 | Loofbourow | Nov 1974 | A |
3895101 | Tsuruta | Jul 1975 | A |
3929635 | Burks et al. | Dec 1975 | A |
3933001 | Muska | Jan 1976 | A |
4246015 | Styring | Jan 1981 | A |
4270937 | Adler | Jun 1981 | A |
4280559 | Best | Jul 1981 | A |
4281518 | Muller et al. | Aug 1981 | A |
4318723 | Holmes et al. | Mar 1982 | A |
4319964 | Katz et al. | Mar 1982 | A |
4336233 | Appl et al. | Jun 1982 | A |
4344485 | Butler | Aug 1982 | A |
4351655 | Styring, Jr. | Sep 1982 | A |
4370156 | Goddin et al. | Jan 1983 | A |
4382912 | Madgavkar et al. | May 1983 | A |
4383841 | Ryan et al. | May 1983 | A |
4405585 | Sartori et al. | Sep 1983 | A |
4417449 | Hegarty et al. | Nov 1983 | A |
4417909 | Weltmer | Nov 1983 | A |
4421535 | Mehra | Dec 1983 | A |
4441900 | Swallow | Apr 1984 | A |
4459142 | Goddin | Jul 1984 | A |
4462814 | Holmes et al. | Jul 1984 | A |
4511382 | Valencia et al. | Apr 1985 | A |
4512782 | Bauer et al. | Apr 1985 | A |
4533372 | Valencia et al. | Aug 1985 | A |
4551158 | Wagner et al. | Nov 1985 | A |
4563202 | Yao et al. | Jan 1986 | A |
4592766 | Kumman et al. | Jun 1986 | A |
4602477 | Lucadamo | Jul 1986 | A |
4609388 | Adler et al. | Sep 1986 | A |
4636334 | Skinner et al. | Jan 1987 | A |
4695672 | Bunting | Sep 1987 | A |
4697642 | Vogel | Oct 1987 | A |
4710213 | Sapper et al. | Dec 1987 | A |
4717408 | Hopewell | Jan 1988 | A |
4720294 | Lucadamo et al. | Jan 1988 | A |
4747858 | Gottier | May 1988 | A |
4761167 | Nicholas et al. | Aug 1988 | A |
4762543 | Pantermuehl et al. | Aug 1988 | A |
4769054 | Steigman | Sep 1988 | A |
4822393 | Markbreiter et al. | Apr 1989 | A |
4831206 | Zarchy | May 1989 | A |
4923493 | Valencia et al. | May 1990 | A |
4927498 | Rushmere | May 1990 | A |
4935043 | Blanc et al. | Jun 1990 | A |
4954220 | Rushmere | Sep 1990 | A |
4972676 | Sakai | Nov 1990 | A |
4976849 | Soldati | Dec 1990 | A |
5011521 | Gottier | Apr 1991 | A |
5062270 | Haut et al. | Nov 1991 | A |
5120338 | Potts et al. | Jun 1992 | A |
5137550 | Hegarty et al. | Aug 1992 | A |
5152927 | Rivers | Oct 1992 | A |
5233837 | Callahan | Aug 1993 | A |
5240472 | Sircar | Aug 1993 | A |
5247087 | Rivers | Sep 1993 | A |
5265428 | Valencia et al. | Nov 1993 | A |
5335504 | Durr et al. | Aug 1994 | A |
5345771 | Dinsmore | Sep 1994 | A |
5567396 | Perry et al. | Oct 1996 | A |
5620144 | Strock et al. | Apr 1997 | A |
5643460 | Marble et al. | Jul 1997 | A |
5681360 | Siwajaek et al. | Oct 1997 | A |
5700311 | Spencer | Dec 1997 | A |
5720929 | Minkkinen et al. | Feb 1998 | A |
5819555 | Engdahl | Oct 1998 | A |
5820837 | Marjanovich et al. | Oct 1998 | A |
5899274 | Frauenfeld et al. | May 1999 | A |
5956971 | Cole et al. | Sep 1999 | A |
5964985 | Wootten | Oct 1999 | A |
5983663 | Sterner | Nov 1999 | A |
6053007 | Victory et al. | Apr 2000 | A |
6082133 | Barclay et al. | Jul 2000 | A |
6082373 | Sakurai et al. | Jul 2000 | A |
6162262 | Minkkinen et al. | Dec 2000 | A |
6223557 | Cole | May 2001 | B1 |
6240744 | Agrawal et al. | Jun 2001 | B1 |
6267358 | Gohara et al. | Jul 2001 | B1 |
6270557 | Millet et al. | Aug 2001 | B1 |
6274112 | Moffett et al. | Aug 2001 | B1 |
6336334 | Minkkinen et al. | Jan 2002 | B1 |
6374634 | Gallarda et al. | Apr 2002 | B2 |
6401486 | Lee et al. | Jun 2002 | B1 |
6416729 | DeBerry et al. | Jul 2002 | B1 |
6442969 | Rojey et al. | Sep 2002 | B1 |
6500982 | Hale et al. | Dec 2002 | B1 |
6505683 | Minkkinen et al. | Jan 2003 | B2 |
6516631 | Trebble | Feb 2003 | B1 |
6517801 | Watson et al. | Feb 2003 | B2 |
6539747 | Minta et al. | Apr 2003 | B2 |
6565629 | Hayashida et al. | May 2003 | B1 |
6605138 | Frondorf | Aug 2003 | B2 |
6631626 | Hahn | Oct 2003 | B1 |
6632266 | Thomas et al. | Oct 2003 | B2 |
6662872 | Gutek et al. | Dec 2003 | B2 |
6708759 | Leaute et al. | Mar 2004 | B2 |
6711914 | Lecomte | Mar 2004 | B2 |
6735979 | Lecomte et al. | May 2004 | B2 |
6755251 | Thomas et al. | Jun 2004 | B2 |
6755965 | Pironti et al. | Jun 2004 | B2 |
6818194 | DeBerry et al. | Nov 2004 | B2 |
6946017 | Leppin et al. | Sep 2005 | B2 |
6958111 | Rust et al. | Oct 2005 | B2 |
6962061 | Wilding et al. | Nov 2005 | B2 |
7001490 | Wostbrock et al. | Feb 2006 | B2 |
7004985 | Wallace et al. | Feb 2006 | B2 |
7066986 | Haben et al. | Jun 2006 | B2 |
7073348 | Clodic et al. | Jul 2006 | B2 |
7121115 | Lemaire et al. | Oct 2006 | B2 |
7128150 | Thomas et al. | Oct 2006 | B2 |
7128276 | Nilsen et al. | Oct 2006 | B2 |
7152431 | Amin et al. | Dec 2006 | B2 |
7211128 | Thomas et al. | May 2007 | B2 |
7211701 | Muller et al. | May 2007 | B2 |
7219512 | Wilding et al. | May 2007 | B1 |
7285225 | Copeland et al. | Oct 2007 | B2 |
7325415 | Amin et al. | Feb 2008 | B2 |
7424808 | Mak | Sep 2008 | B2 |
7437889 | Roberts et al. | Oct 2008 | B2 |
7442231 | Landrum | Oct 2008 | B2 |
7442233 | Mitariten | Oct 2008 | B2 |
7493779 | Amin | Feb 2009 | B2 |
7536873 | Nohlen | May 2009 | B2 |
7550064 | Bassler et al. | Jun 2009 | B2 |
7575624 | Cartwright et al. | Aug 2009 | B2 |
7597746 | Mak et al. | Oct 2009 | B2 |
7635408 | Mak et al. | Dec 2009 | B2 |
7637984 | Adamopoulos | Dec 2009 | B2 |
7637987 | Mak | Dec 2009 | B2 |
7641717 | Gal | Jan 2010 | B2 |
7662215 | Sparling et al. | Feb 2010 | B2 |
7691239 | Kister et al. | Apr 2010 | B2 |
7722289 | Leone et al. | May 2010 | B2 |
7729976 | Hill et al. | Jun 2010 | B2 |
7770872 | Delatour | Aug 2010 | B2 |
7795483 | Kulprathipanja et al. | Sep 2010 | B2 |
7806965 | Stinson | Oct 2010 | B2 |
7814975 | Hagen et al. | Oct 2010 | B2 |
7879135 | Ravikumar | Feb 2011 | B2 |
7901583 | McColl et al. | Mar 2011 | B2 |
7955496 | Iqbal et al. | Jun 2011 | B2 |
8002498 | Leone et al. | Aug 2011 | B2 |
8020408 | Howard et al. | Sep 2011 | B2 |
8133764 | Dirks et al. | Mar 2012 | B2 |
8303685 | Schubert et al. | Nov 2012 | B2 |
8308849 | Gal | Nov 2012 | B2 |
8312738 | Singh et al. | Nov 2012 | B2 |
8372169 | Tsangaris et al. | Feb 2013 | B2 |
8388832 | Moffett et al. | Mar 2013 | B2 |
8428835 | Habert et al. | Apr 2013 | B2 |
8475572 | Prast et al. | Jul 2013 | B2 |
8529662 | Kelley et al. | Sep 2013 | B2 |
20020174687 | Cai | Nov 2002 | A1 |
20020189443 | McGuire | Dec 2002 | A1 |
20030181772 | Meyer et al. | Sep 2003 | A1 |
20040035148 | Whitlock | Feb 2004 | A1 |
20060144079 | Amin | Jul 2006 | A1 |
20060207946 | McColl et al. | Sep 2006 | A1 |
20060239879 | Lallemand et al. | Oct 2006 | A1 |
20070056317 | Amin et al. | Mar 2007 | A1 |
20070144943 | Lemaire et al. | Jun 2007 | A1 |
20070277674 | Hirano et al. | Dec 2007 | A1 |
20080034789 | Fieler et al. | Feb 2008 | A1 |
20080091316 | Szczublewski | Apr 2008 | A1 |
20080092589 | Trainer et al. | Apr 2008 | A1 |
20080307827 | Hino et al. | Dec 2008 | A1 |
20090023605 | Lebl et al. | Jan 2009 | A1 |
20090220406 | Rahman | Sep 2009 | A1 |
20090266107 | Singh et al. | Oct 2009 | A1 |
20100011809 | Mak | Jan 2010 | A1 |
20100018248 | Fieler et al. | Jan 2010 | A1 |
20100024472 | Amin et al. | Feb 2010 | A1 |
20100107687 | Andrian et al. | May 2010 | A1 |
20100132405 | Nilsen | Jun 2010 | A1 |
20100147022 | Hart et al. | Jun 2010 | A1 |
20100187181 | Sortwell | Jul 2010 | A1 |
20100310439 | Brok et al. | Dec 2010 | A1 |
20110132034 | Beaumont et al. | Jun 2011 | A1 |
20110154856 | Andrian et al. | Jun 2011 | A1 |
20110168019 | Northrop et al. | Jul 2011 | A1 |
20110192190 | Andrian et al. | Aug 2011 | A1 |
20110265512 | Bearden et al. | Nov 2011 | A1 |
20120006055 | Van Santen et al. | Jan 2012 | A1 |
20120031143 | Van Santem et al. | Feb 2012 | A1 |
20120031144 | Northrop et al. | Feb 2012 | A1 |
20120079852 | Northrop et al. | Apr 2012 | A1 |
20120125043 | Cullinane et al. | May 2012 | A1 |
20120204599 | Northrop et al. | Aug 2012 | A1 |
20130074541 | Kaminsky et al. | Mar 2013 | A1 |
20130098105 | Northrop | Apr 2013 | A1 |
20130192296 | Betting et al. | Aug 2013 | A1 |
20140137599 | Oelfke et al. | May 2014 | A1 |
20150158796 | Valencia et al. | Jun 2015 | A1 |
20150159939 | Valencia et al. | Jun 2015 | A1 |
20150159940 | Valencia et al. | Jun 2015 | A1 |
20150159941 | Valencia et al. | Jun 2015 | A1 |
20150159942 | Valencia et al. | Jun 2015 | A1 |
20150159943 | Valencia et al. | Jun 2015 | A1 |
20150159944 | Valencia et al. | Jun 2015 | A1 |
20150159945 | Valencia et al. | Jun 2015 | A1 |
20150159946 | Valencia et al. | Jun 2015 | A1 |
20150159947 | Valencia et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
3 149 847 | Jul 1983 | DE |
0 133 208 | Feb 1985 | EP |
0 508 244 | Oct 1992 | EP |
1 338 557 | Mar 2005 | EP |
WO 2002032536 | Apr 2002 | WO |
WO 2002039038 | May 2002 | WO |
WO 2004047956 | Jun 2004 | WO |
WO 2008034789 | Mar 2008 | WO |
WO 2008095258 | Aug 2008 | WO |
WO 2008152030 | Dec 2008 | WO |
WO 2009023605 | Feb 2009 | WO |
WO 2009029353 | Mar 2009 | WO |
WO 2009087206 | Jul 2009 | WO |
WO 2010023238 | Mar 2010 | WO |
WO 2010052299 | May 2010 | WO |
WO 2010136442 | Dec 2010 | WO |
WO 2011026170 | Mar 2011 | WO |
WO 2011090553 | Jul 2011 | WO |
WO 2013095828 | Jun 2013 | WO |
Entry |
---|
Aaron, D. et al. (2005) “Separation of CO2 from Flue Gas: A Review,” Separation Science and Technology, 40, pp. 321-348. |
Amin, R. (2003) “Advanced Mini Natural Gas Liquefier,” LNG Journal, Mar.-Apr. 2003, pp. 20-23. |
Black, S. (2006) “Chilled Ammonia Process for CO2 Capture,” Alstom Position Paper, Nov. 2006, 6 pgs. |
Ciulla, Vincent (2007) “How the Engine Works,” About.com, Mar. 21, 2007, [retrieved from the internet on Aug. 17, 2012]. <URL: http://autorepair.about.com/cs/generalinfo/a/aa060500a.html>. |
“Cryogenics” Science Clarified, May 2, 2006 [retrieved from the internet on Aug. 17, 2012]. <URL: http://www.scienceclarified.com/Co-Di/Cryogenics.html>. |
Denton, R. D. et al. (1985) “Integrated Low Temperature Processing of Sour Natural Gas,” Gas Processors Assoc., 64th Ann. Conv., pp. 92-96. |
Guccione, E. (1963) “New Approach to Recovery of Helium from Natural Gas,” Chem. Engr., Sep. 30, 1963, pp. 76-78. |
Hassan, S. M. N. (2005) “Techno-Economic Study of CO2 Capture Process for Cement Plants,” University of Waterloo—Thesis. |
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” SPE 17757, SPE Gas Tech. Symp.—Dallas, TX, pp. 435-443. |
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” OSEA 88197, 7th Offshore So. East Asia Conf., Singapore, Feb. 1988, pp. 840-848. |
Haut, R. C. et al. (1989) “Development and Application of the Controlled Freeze Zone Process,” SPE Production Engineering, Aug. 1989, pp. 265-271. |
Im, U. K. et al. (1971) “Heterogeneous Phase Behavior of Carbon Dioxide in n-Hexane and n-Heptane at Low Temperatures,” Jrnl. of Chem. Engineering Data, v.16.4, pp. 412-415. |
Mitariten, M. et al. (2007) “The SorbeadTM Quick-Cycle Process for Simultaneous Removal of Water, Heavy Hydrocarbons and Mercaptans from Natural Gas,” Laurance Reid Gas Conditioning Conf., Feb. 25-27, 2007. |
Northrop, P. Scott et al. (2004) “Cryogenic Sour Gas Process Attractive for Acid Gas Injection Applications,” 83rd Ann. Gas Processors Assoc. Convention, New Orleans, LA., pp. 1-8 (XP007912217). |
Pagcatipunan, C. et al. (2005) “Maximize the Performance of Spray Nozzle Systems,” CEP Magazine, Dec. 2005, pp. 38-44. |
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B, v.101, pp. 614-622. |
Rubin, E. S. et al. (2002) “A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control,” U.S. Dept. of Energy, Oct. 2002, DOE/DE-FC26-00NT40935, 26 pages. |
Spero, C. (2007) “Callide Oxyfuel Project,” CS Energy, cLET Seminar, Jul. 12, 2007, 9 pages. |
Thomas, E. R. et al. (1987) “Conceptual Studies Using the Controlled Freeze Zone (CFZ) Process,” AlChE Summer Nat'l Mtg., Aug. 16-19, 1987. |
Thomas, E. R. et al. (1988) “Conceptual Studies for CO2/Natural Gas Separation Using the Control Freeze Zone (CFZ) Process,” Gas Separation and Purification, v. 2, pp. 84-89. |
Valencia, J. A. et al. (2008) “Controlled Freeze ZoneTM Technology for Enabling Processing of High CO2 and H2S Gas Reserves,” SPE-IPTC 12708, Kuala Lumpur, IN, v.4.1, Jan. 2008, pp. 2358-2363. |
Victory, D. J. et al. (1987) “The CFZ Process: Direct Methane-Carbon Dioxide Fractionation,” 66th Ann. GPA Convention, Mar. 16-18, Denver, CO. |
Wilson, R.W. et al. (1968) “Helium: Its Extraction and Purification,” Journ. Petrol. Tech., v. 20, pp. 341-344. |
Number | Date | Country | |
---|---|---|---|
20180224203 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61613606 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14376359 | US | |
Child | 15944323 | US |