The present invention relates to Waste Heat Recovery (WHR) systems coupled with waste heat from an internal combustion engine and, more specifically, to an apparatus and method for improved flexibility in the recovery of waste heat from the working fluid of a WHR.
Waste heat recovery systems can make available for use energy in exhaust gases and other heat sources that would otherwise be lost. When incorporated in a vehicle with an internal combustion engine, waste heat recovery systems add certain advantages. For example, and not limitation, the waste heat recovery system call be designed to recover heat from exhaust gas or the EGR (exhaust gas recirculation) system, which reduces the cooling load on the engine cooling system. In addition, a waste heat recovery system can extract useful energy from the exhaust gas exiting the tail pipe or exhaust stack, which would otherwise be lost to the environment.
The amount of waste heat recovered can vary according to a number of conditions, including, for example, engine load and engine running time.
By way of example, shortly after start up or during low RPM operation less waste heat may be available for recovery than after a vehicle has warmed up or during intermediate to high RPM operation. Those of ordinary skill in the art will appreciate that a working fluid used in WHR must be heated to a minimal threshold before useful energy can be efficiently generated from the working fluid. A system designed only to efficiently make available energy during intermediate or high engine load or wasted heat operation or after a vehicle has warmed up may not be very efficient at making energy available during low engine load operation or shortly after start up.
By way of another example, after a vehicle has warmed up and during intermediate to high engine load operation a large amount of waste heat may available for recovery than shortly after start up or during low engine load operation. Those of ordinary skill in the art will appreciate that after the working fluid is heated and used make available energy in WHR that it must often times be cooled and condensed before being able to be reheated to make available more energy. A system designed only most efficiently make available energy shortly after start up or during low engine load operation may heat the working fluid to an excessive degree during high engine load operation and thus increase the duration of cooling and condensing cycle without increasing the amount of energy made available.
The present invention provides a method and apparatus for improved flexibility in the recovery of waste heat from the working fluid of a WHR.
According to one embodiment of the present invention, a waste heat recovery system includes a first heating line, a second heating line, a valve section, at least one temperature sensor, and one or more electronics. The first heating line is in a working fluid circuit and includes a first heat exchanger operatively connected to transfer heat energy to a working fluid. The second heating line is in the working fluid circuit and includes a second heat exchanger operatively connected to transfer heat to the working fluid. The valve section is in the working fluid circuit and is operatively connected to the first heating line and second heating line and selectively controllable to provide a first configuration in which the first heat exchanger and second heat exchangers are operatively connected to the working fluid circuit in parallel and a second configuration in which the first heat exchanger and second heat exchanger are operatively connected to the working fluid circuit in series. The at least one temperature sensor is operatively connected to monitor the temperature of at least one of the working fluid and the exhaust gas flow and generate an output signal representative of the temperature of at least one of the working fluid and the exhaust gas flow. The one or more electronics are operatively connected to receive the output signal from the at least one temperature sensor and responsive thereto control the configuration of the valve section.
According to another embodiment of the present invention, a waste heat recovery system includes a pump, an expander, a condenser, a first heating line, a second heating line, a valve section, at least one temperature sensor, and one or more electronics. The pump is in in a working fluid circuit and operatively connected to pump working fluid in the working fluid circuit. The expander is in the working fluid circuit and operatively connected to receive working fluid. The condenser is in the working fluid circuit operatively connected to receive the working fluid from the expander. The first heating line is in the working fluid circuit and includes a first heat exchanger operatively connected to transfer heat energy to a working fluid. The second heating line is in the working fluid circuit and includes a second heat exchanger operatively connected to transfer heat to the working fluid. The valve section is in the working fluid circuit and is operatively connected to the first heating line and second heating line and selectively controllable to provide a first configuration in which the first heat exchanger and second heat exchangers are operatively connected to the working fluid circuit in parallel and a second configuration in which the first heat exchanger and second heat exchanger are operatively connected to the working fluid circuit in series. The at least one temperature sensor is operatively connected to monitor the temperature of at least one of the working fluid and the exhaust gas flow and generate an output signal representative of the temperature of at least one of the working fluid and the exhaust gas flow. The one or more electronics are operatively connected to receive the output signal from the at least one temperature sensor and responsive thereto control the configuration of the valve section.
According to yet another aspect of the present embodiment, a method for recovering waste heat in a waste heat recovery system provided with a working fluid circuit, a pump for pumping working fluid in the working fluid circuit, an expander for receiving the working fluid, a condenser for receiving the working fluid from the expander a first heating line in a working fluid circuit including a first heat exchanger operatively connected to transfer heat energy to a working fluid, and a second heating line in the working fluid circuit including a second heat exchanger operatively connected to transfer heat to the working fluid, includes the steps of selectively controlling a valve section connected to the working fluid circuit, the first heating line, and the second heating line to provide the valve section with a first configuration in which the first heat exchanger and second heat exchangers are connected to the working fluid circuit in parallel and a second configuration in which the first heat exchanger and second heat exchanger are connected to the working fluid circuit in series, using at least one temperature sensor to monitor the temperature of at least one of the working fluid and the exhaust gas flow and generate an output signal representative of the temperature of at least one of the working fluid and the exhaust gas flow, and using one or more electronics to receive the output signal from the at least one temperature sensor and control the configuration of the valve section in response thereto.
An expander 14 in the working fluid circuit 12 is operatively connected to receive working fluid. Those of ordinary skill in the art will appreciate that the expander is operatively connected to be driven by working fluid to convert heat energy in the working fluid into mechanical energy, such as torque, or electricity. Those of ordinary skill in the art will appreciate that an output shaft (not shown) of the expander 14 may be connected to drive an electrical generator (not shown) or connected to the provide torque to the engine (not shown). The expander may be any device capable of recovering heat energy from a working fluid and outputting mechanical power, including, but not limited to a turbine, a scroll expander, or a thermoelectric converter.
A condenser 20 in the working fluid circuit 12 is operatively connected to receive working fluid that exits the expander 14. Those of ordinary skill in the art will appreciate that the condenser 20 cools and condenses the working fluid. A condenser cooler loop (not shown) is connected for carrying away from the condenser 20 heat transferred from the working fluid to a cooling fluid. The condenser cooler loop (not shown) may conveniently connect to the vehicle cooling system, i.e., the radiator, or another cooling system.
A pump 24 in the working fluid circuit 12 is operatively connected to pump the working fluid in the working fluid circuit 12, such as, for example, from a working fluid reservoir 27 to the heating side of the working fluid circuit 12 where the working fluid is heated.
The heating side of the working fluid circuit 12 includes a first heating line 30 and a second heating line 40. The first heating line 30 includes a first heat exchanger 36 operatively connected to transfer heat from a heat source, as at 37, to the working fluid, as at 38, located in first heat exchanger 36. The second heating line 40 includes a second heat exchanger 46 is operatively connected to transfer heat from heat source, as at 47, to the working fluid, as at 47, located in the second heat exchanger 46. The heat sources may be any heat generating or handling system associated with a vehicle having an internal combustion engine, including the engine exhaust, engine coolant system, the exhaust gas recirculation (EGR) cooler, charge air cooler, engine oil cooler, or some combination of these.
According to one aspect of the present embodiment, the waste heat recovery system 10 is provided with a valve section 50 in the working fluid circuit 12 operatively connected to the first and second heating lines 30, 40. According to another aspect of the present embodiment, the valve section 50 is configured to operate the first and second heat exchangers 36, 46 in series or in parallel. As
As shown in
As shown in
Also shown in
The present embodiment may provide a number of advantages, including reduced heat rejection requirements for the condensing circuit low load capabilities for operating conditions with less available waste heat, and improved high load capability with improved management of maximum working fluid temperature and peak thermodynamic efficiency of the systems. The present embodiment combines the advantages of parallel and series systems, with minimal hardware modifications.
The present description depicts specific examples to teach those skilled in the art how to make and use the best mode of the invention. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. The detailed descriptions of the above embodiments are not exhaustive descriptions of all embodiments contemplated by the inventors to be within the scope of the invention. By way of example, and not limitation, additional pre-heaters, recuperation devices, and heat exchangers may be integrated into the system. Those skilled in the art will appreciate variations from these examples and the illustrated embodiments fall within the scope of the invention.
Persons skilled in the art will recognize that certain elements of the above-described embodiments may variously be combined or eliminated to create further embodiments, and such further embodiments fall within the scope and teachings of the invention. It will also be apparent to those of ordinary skill in the art that the above-described embodiments may be combined in whole or in part to create additional embodiments within the scope and teachings of the invention. Thus, although specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. Accordingly, the scope of the invention is determined from the appended claims and equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/070643 | 12/19/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/098848 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4911110 | Isoda et al. | Mar 1990 | A |
6810952 | Ben Fredj et al. | Nov 2004 | B2 |
7458217 | Kalina | Dec 2008 | B2 |
7842121 | Sanderson et al. | Nov 2010 | B2 |
7866157 | Ernst et al. | Jan 2011 | B2 |
20110005477 | Terashima et al. | Jan 2011 | A1 |
20110226001 | Kannoo et al. | Sep 2011 | A1 |
20110284201 | Soenmez | Nov 2011 | A1 |
20110308253 | Ritter | Dec 2011 | A1 |
20120292008 | Goldberg | Nov 2012 | A1 |
20130255931 | Arnett | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2012140921 | Jul 2012 | JP |
2009119185 | Oct 2009 | WO |
Entry |
---|
1st JP Office Action mailed Aug. 2, 2016 for corresponding Japan application No. 2015-549329 translated. |
International Search Report (Mar. 12, 2013) for corresponding International App. PCT/US2012/070643. |
Written Opinion (Mar. 12, 2013) for corresponding International App. PCT/US2012/070643. |
Cummins Supertruck Program, “Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks” David Koeberlein, May 17, 2012 http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit—review—2012/adv—combustion/ace057—koeberlein—2012—o.pdf. |
Number | Date | Country | |
---|---|---|---|
20150308372 A1 | Oct 2015 | US |