Serpentine robotic crawler

Information

  • Patent Grant
  • 8042630
  • Patent Number
    8,042,630
  • Date Filed
    Tuesday, June 22, 2010
    14 years ago
  • Date Issued
    Tuesday, October 25, 2011
    13 years ago
Abstract
A serpentine robotic crawler capable of multiple movement moves is disclosed. The serpentine robotic crawler includes a plurality of frame units, coupled together by at least one actuated linkage. Each frame unit includes a continuous track, enabling forward movement of the serpentine robotic crawler. The at least one actuated linkage has at least 7 degrees of movement freedom, enabling the serpentine robotic crawler to adopt a variety of poses.
Description
FIELD OF THE INVENTION

The present invention relates to small, unmanned ground robotic vehicles. More particularly, the present invention relates to a serpentine robotic crawler having multiple tracked frame units interconnected through a high-degree of freedom actuated linkage.


BACKGROUND OF THE INVENTION AND RELATED ART

Robotics is an active area of research, and many different types of robotic vehicles have been developed for various tasks. For example, unmanned aerial vehicles have been quite successful in military aerial reconnaissance. Less success has been achieved with unmanned ground vehicles, however, in part because the ground environment is significantly more difficult to traverse than the airborne environment.


Unmanned ground vehicles face many challenges when attempting mobility. Terrain can vary widely, including for example, loose and shifting materials, obstacles, vegetation, limited width or height openings, steps, and the like. A vehicle optimized for operation in one environment may perform poorly in other environments.


There are also tradeoffs associated with the size of vehicle. Large vehicles can handle some obstacles better, including for example steps, drops, gaps, and the like. On the other hand, large vehicles cannot easily negotiate narrow passages or crawl inside pipes, and are more easily deterred by vegetation. Large vehicles also tend to be more readily spotted, and thus are less desirable for discrete surveillance applications. In contrast, while small vehicles are more discrete, surmounting obstacles becomes a greater navigational challenge.


A variety of mobility configurations have been adapted to traverse difficult terrain. These options include legs, wheels, and tracks. Legged robots can be agile, but use complex control mechanisms to move and achieve stability. Wheeled vehicles can provide high mobility, but provide limited traction and require width in order to achieve stability.


Tracked vehicles are known and have traditionally been configured in a tank-like configuration. While tracked vehicles can provide a high degree of stability in some environments, tracked vehicles typically provide limited maneuverability with very small vehicles. Furthermore, known tracked vehicles are unable to accommodate a wide variety of obstacles, particularly when the terrain is narrow and the paths are tortuous and winding.


SUMMARY OF THE INVENTION

The present invention includes a serpentine robotic crawler which helps to overcome problems and deficiencies inherent in the prior art. In one embodiment, the serpentine robotic crawler includes a first frame and a second frame, each frame having a continuous track rotatably supported therein. The first and second frame are coupled by an actuated linkage arm. The linkage arm has a pair of wrist-like actuated linkage at each end, coupled to respective frames, and an elbow-like actuated joint between the wrist-like actuated linkages.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings merely depict exemplary embodiments of the present invention they are, therefore, not to be considered limiting of its scope. It will be readily appreciated that the components of the present invention, as generally described and illustrated in the figures herein, can be arranged and designed in a wide variety of different configurations. Nonetheless, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 illustrates a perspective view of a serpentine robotic crawler according to a an exemplary embodiment of the present invention;



FIG. 2 illustrates a perspective view of a wrist-like actuated linkage in accordance with an embodiment of the present invention;



FIG. 3 illustrates a perspective view of an elbow-like actuated linkage in accordance with an embodiment of the present invention;



FIG. 4 illustrates a perspective view of a wrist-like actuated linkage in accordance with an embodiment of the present invention;



FIG. 5 illustrates a perspective view of a frame having a substantially enclosed continuous track with an exposed bottom portion in accordance with an embodiment of the present invention;



FIG. 6 illustrates a perspective view of a frame having a continuous track with an exposed top portion and an exposed bottom portion in accordance with an embodiment of the present invention;



FIG. 7 illustrates a perspective view of a serpentine robotic crawler in a tank-like configuration in accordance with an embodiment of the present invention;



FIG. 8 illustrates a perspective view of a serpentine robotic crawler in a snake-like configuration in accordance with an embodiment of the present invention;



FIG. 9 illustrates a perspective view of a serpentine robotic crawler in an outside-climbing configuration in accordance with an embodiment of the present invention;



FIGS. 10(
a)-10(c) illustrate perspective views of a serpentine robotic crawler in different inside-climbing configurations in accordance with an embodiment of the present invention;



FIGS. 11(
a)-11(e) illustrate a top view of a sequence of movements of a serpentine robotic crawler righting itself in accordance with an embodiment of the present invention;



FIGS. 12(
a)-12(f) illustrate perspective views of various poses for a serpentine robotic crawler in accordance with an embodiment of the present invention;



FIG. 13 illustrates a schematic diagram of a control system in accordance with an embodiment of the present invention;



FIG. 14 illustrates a serpentine robotic crawler in accordance with an alternate embodiment of the present invention; and



FIG. 15 illustrates a serpentine robotic crawler in accordance with yet another alternate embodiment of the present invention.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present invention, to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.


The following detailed description and exemplary embodiments of the invention will be best understood by reference to the accompanying drawings, wherein the elements and features of the invention are designated by numerals throughout.


With reference to FIG. 1, shown is an illustration of a serpentine robotic crawler according to a first exemplary embodiment of the present invention. Specifically, FIG. 1 illustrates the serpentine robotic crawler 10 as including a first frame 12 and a second frame 14. Each frame includes a continuous track 16, 18 rotatably supported by the frame. The frames are coupled together by a multiple degree of freedom actuated linkage arm 20. The multiple degree of freedom linkage arm includes a first wrist-like actuated linkage 22 coupled to the first frame, a second wrist-like actuated linkage 24 coupled to the second frame, and an elbow-like actuated joint 26 coupled between the first and second wrist-like actuated linkage.


The wrist-like actuated linkages 22, 24, shown in further detail in FIG. 2, provide bending movement about two different lateral axes 28, 29 and rotational movement about a longitudinal axis 30. Longitudinal refers to a direction generally oriented along the actuated linkage, such that movement about a longitudinal axis corresponds to twisting or rotational movement. Lateral refers to a direction generally oriented perpendicularly or at an angle to the longitudinal axis, such that movement about a lateral axis corresponds to bending movement. The two different lateral axes can be, but are not limited to, being at right angles to each other. The elbow-like actuated joint, shown in further detail in FIG. 3, provides bending movement about a lateral axis 32.


The wrist-like actuated linkages 22, 24 can be configured in various ways. For example, the wrist-like actuated linkage can include a series coupled combination of a yaw bending joint, a pitch bending joint, and a rotational joint, with various arm linkages coupled between the joints and the frame. For example, as shown in FIG. 4, in accordance with an embodiment of the present invention, a wrist-like actuated linkage 40 can include a yaw arm 42 coupled to the frame 12,14 through a yaw bending joint 44 which provides yaw 46 bending about a lateral axis 28 orientated substantially vertically relative to the frame when the continuous track 16, 18 is in a nominal operating position and in contact with a substantially horizontal supporting surface. The wrist-like actuated linkage can also include a pitch arm 48 coupled to the yaw arm through a pitch bending joint 50 providing pitch 52 bending about a lateral axis 29 oriented substantially horizontally relative to the frame. The wrist-like actuated linkage can also include a rotary joint 54 providing roll 56 rotation about the longitudinal axis 30 of the pitch arm. References to vertical and horizontal refer to nominal directions relative to a substantially horizontal supporting surface on which the serpentine robotic crawler is operated and when the continuous track is in contact with the supporting surface. It will be appreciated that, when the serpentine robotic crawler is tipped over, the vertical direction relative to the serpentine robotic crawler is actually horizontal relative to the supporting surface.


Considering the frames 12, 14 and continuous tracks 16, 18 in further detail, the frame can be configured in various ways so that the continuous track is substantially enclosed so that only a bottom portion 60 is exposed as illustrated in FIG. 5, or so that the continuous track is partially enclosed so that a top portion 62 and bottom portion 60 of the continuous track 16, 18 are exposed as illustrated in FIG. 6. Note that, where both the top and bottom portion of the continuous track is exposed, the frame can be oriented with either side up and still provide locomotion. The benefits of this configuration will become more apparent as the operation of a serpentine robotic crawler is discussed further below. The frame can include a drive (not shown) coupled to the continuous track to drive the continuous track. Optionally, the drive can be configured to drive the continuous track in either direction (e.g., clockwise and counterclockwise) over a range of speeds. Various types of drives and coupling techniques for applying drive power to a continuous track are known and can be applied in embodiments of the present invention.


Referring back to FIG. 1, the combination of the high degree of freedom actuated linkage arm 20 with the dual single track frames 12, 14 makes the serpentine robotic crawler 10 capable of many different modes of movement as will now be described. Operating the serpentine robotic crawler can include articulating the actuated multi-degree of freedom linkage arm to establish a desired pose for the serpentine robotic crawler. Drive operation of the continuous tracks 16, 18 can be coordinated with articulation of the high degree of freedom actuated linkage arm to further control the pose and provide movement of the serpentine robotic crawler. When establishing a pose of the serpentine robotic crawler, torque and forces on the joints may be taken into account as discussed further herein.


A first pose will be referred to herein as the “tank” configuration, where the first frame 12 and second frame 14 are positioned side by side as illustrated in FIG. 7. The frames extend in the same direction from the actuated linkage arm 20, and can be, but need not be, parallel. The tank configuration provides lateral stability to the serpentine robotic crawler 10, for example when traversing a steep slope. The serpentine robotic crawler can be moved in a forward and reserve direction by driving the continuous tracks 16, 18 in the same direction, and turned by driving the continuous tracks in the opposite direction. In general, moving the serpentine robotic crawler in the tank-like configuration can involve applying different drive speeds (including opposite directions) to the continuous tracks.


A second pose, referred to herein as the “train” configuration, is where the first frame 12 and second frame 14 are aligned end-to-end as illustrated in FIG. 8. The frames can be, but need not be, parallel. The train configuration provides a smaller profile, allowing the serpentine robotic crawler 10 to enter small holes, pipes, tunnels, and the like. The train configuration also allows the serpentine robotic crawler to bridge gaps and holes. In the train configuration, forward and reverse motion is provided by driving the continuous tracks 16, 18. Note that, relative to the tank configuration, the direction sense of one of the continuous tracks is reversed. Turning of the serpentine robotic crawler can be provided by operation of the actuated linkage arm 20 to create an angle between the first frame and second frame.


The serpentine robotic crawler can also be configured for climbing the exterior of structure. As illustrated in FIG. 9, the serpentine robotic crawler 10 is wrapped around the structure 70 so that exposed portions 72, 74 of the continuous tracks face toward each other and contact opposite outer surfaces 76, 78 of the structure. The continuous tracks can be driven to move the serpentine robotic crawler up and down the structure. Many different structural geometries, including for example a pole, can be climbed in this outside-climbing configuration.


The serpentine robotic crawler can also be configured for climbing the interior of a structure. FIGS. 10(a) and 10(b) illustrate two different inside-climbing configurations. In an inside-climbing configuration, the serpentine robotic crawler 10 is configured so that exposed portions 72, 74 of the continuous tracks face away from each other and are in contact with opposite inner surfaces 80, 82 of the structure 70. The inside-climbing configuration can be useful for climbing pipes, chimneys, wall interiors, and the like.


It may also be possible for the serpentine robotic crawler to climb the interior of a structure 70 by facing exposed portions 72, 74 of the continuous tracks in the same direction, in contact with the same inner surface 80 of the structure, and placing a portion of the actuated linkage in contact with the opposite inner surface 82, as illustrated in FIG. 10(c).


Various articulated movements are also possible for the serpentine robotic crawler. For example, FIGS. 11(a)-11(e), illustrate one technique self-righting of an overturned serpentine robotic crawler in overhead view. The serpentine robotic crawler 10 is shown lying on its side in FIG. 11(a), with the exposed portions 72, 74 of the continuous track no longer in contact with the surface. In a first step, the actuated linkage 20 is activated to position the frames at an approximately 90-degree angle as shown in FIG. 11(b). This provides a stable configuration, at which point one of the wrist-like joints can be rotated to place one of exposed surfaces of a continuous track in contact with the surface as shown in FIG. 11(c). The other wrist-like joint is then rotated to similarly position the other frame as shown in FIG. 11(d). As this point, both continuous tracks are in contact with the surface. The linkage arm is then straightened so that the serpentine robotic crawler can continue on as shown in FIG. 11(e). Optionally, straightening the linkage arm can occur while the serpentine robotic crawler has begun moving forward. The serpentine robotic crawler can include systems such as track load sensors, inertial references, and the like to assist in determining and correcting its orientation. For example, commonly owned and co-pending U.S. Provisional Patent Application No. 60/858,805, entitled “Conformable Track Assembly for a Robotic Crawler”, filed Nov. 13, 2006 and incorporated herein by reference, describes a suspension system for an endless track which includes a deflector and a load-sensing element which can be used in embodiments of the present invention.


Other self-righting movement modes are also possible. For example, the serpentine robotic crawler 10 can be placed into an arched configuration by operating the actuated linkage arm 20 (as described further below) so the serpentine robotic crawler is substantially supported by only furthest apart ends of the tracks. This configuration can be unstable, allowing further actuation of the articulated linkage arm to cause the serpentine robotic crawler to tip over.


A serpentine robotic crawler in accordance with embodiments of the present invention is capable of a large number of poses and movement modes not possible with more conventional wheeled or tracked vehicles. Additional poses the serpentine robotic crawler 10 can adopt are illustrated in FIG. 12(a)-12(f). For example, the actuated linkage 20 can position the frames 12, 14 at an angle relative to each other. The serpentine robotic crawler can thus be arched in an up (FIG. 12(a)), down (FIG. 12(b)), left (FIG. 12(c)), or right (FIG. 12(d)) direction. Arching up and down can help to navigate uneven portions of terrain, such as dips and bumps. Arching left and right can help in turning and avoiding obstacles.


Another pose can be referred to as a zag configuration, where the frames are oriented in parallel lines but offset and extending in opposite directions from the actuated linkage arm, as shown in FIG. 12(e). Similar to the tank configuration, the zag configuration can provide additional stability to the serpentine robotic crawler.


While the various poses have been described in a static sense, it will be understood that the serpentine robotic crawler can dynamically vary its pose as it is operated. Moreover, modified versions of the above poses may also prove useful, depending on the environment in which the serpentine robotic crawler operates.


As discussed above, various dynamic movement modes are possible. While the foregoing discussion has principle focused on operation of the endless tracks to provide propulsion, it will be appreciated that operation of the actuated linkage can also assist in propulsion. For example, sudden jerky movements of the actuated linkage can help to provide traction or to free the serpentine robotic crawler when entangled. As another example, the spatial orientation of the tracks can be periodically or continuously adjusted by the actuated linkage to conform to a surface being traveled over. For example, FIG. 12(f) illustrates a twisted configuration.


Returning to the discussion of the articulated multi-degree of freedom linkage arm 20, various other configurations are also possible for embodiments of a serpentine robotic crawler. In general, the linkage arm includes at least seven actuated joints providing motion about seven different axes (although some of these axes may be aligned with each other at times). These joints can be uni-axial, bi-axial, or tri-axial joints. The linkage arm can include a series coupled combination of any of the following:


7 uni-axial joints


3 three uni-axial joints and 2 bi-axial joints


1 uni-axial joint and 2 tri-axial joints


2 bi-axial joints and 1 tri-axial joint


For example, the linkage arm can include a series combination of five actuated uni-axial bending joints and two actuated uni-axial rotary joints, wherein the bending joints provide at least two different joint axes. For example, four bending joints can be symmetrically disposed about a fifth bending joint located in the center of the linkage, two bending joints on each side of the center. The rotary joints can also be symmetrically disposed about the center. For example, the rotary joints can be located adjacent to the fifth (centered) bending joint (e.g., as illustrated in FIG. 7), located between the symmetrically disposed bending joints, or located adjacent to the frames.


Alternately, bi-axial joints, which provide the same degrees of freedom as two uni-axial joints in series, or tri-axial joints, which provide the same degrees of freedom as three uni-axial joints in series, can also be used. A bi-axial joint can, for example, provide bending in two axes. These axes can, but need not be, orthogonal. A tri-axial joint can, for example, provide bending in two lateral axes and rotation about a third longitudinal axis.


Joints need not be limited to revolute joints which provide bending or rotational movement. Prismatic joints which provide translational movement can also be included. Joints may incorporate both revolute and prismatic features to provide, for example, eccentric motions.


Control of the serpentine robotic vehicle 10 will now be discussed in further detail. As noted above, movement and pose of the serpentine robotic vehicle can be controlled through articulation of the actuated multiple degree of freedom linkage arm 20 and rotation of the continuous tracks 16, 18. Accordingly, as shown in schematic form in FIG. 13, the serpentine robotic crawler can include a control subsystem 90. The control subsystem is in communication with each of the actuated joints 92 of the linkage arm 20 to control the pose of the serpentine robotic crawler. The control system can also be in communication with the drive units 94, which are coupled to the first and second continuous track, to control the speed and direction of continuous track rotation to control movement of the serpentine robotic crawler. The control system can also include a communication network 96 configured to exchange communication between the control subsystem, the joints in the linkage arm, and the drive units.


Various implementations of the communications network are possible. For example, various communications protocols are known which allow a large number of nodes to communicate on a limited number of wires, including for example RS-485, RHAMIS, USB, Ethernet, and the like. Alternately, the communications network can include wireless components. For example, the communication network can include a wireless portion providing communication between the serpentine robotic crawler and a control system located remotely from the serpentine robotic crawler.


Various implementations of the control subsystem are possible. For example, in one embodiment, the control system can use a master replica for control of the serpentine robotic crawler. In a master replica control system, a master replica is located remotely from the serpentine robotic crawler. The master replica contains the same joints as the serpentine robotic crawler, and is manually manipulated into the desired poses. Sensors located at the joints sense the position of the joints, and these positions are communicated to the serpentine robotic crawler which actuates its joints to attempt to establish the same pose. Optionally, the joints in the serpentine robotic crawler can include force sensors, torque sensors, or both, allowing the force and/or torque on the joints to be measured. The joint forces and/or torques can optionally be communicated back to the replica master, providing force feedback into the control system. Various force feedback control systems are known which can be applied to embodiments of the present invention.


The control system may be integrated into the serpentine robotic crawler thereby allowing the crawler to operate autonomously. For example, the crawler may operate autonomously for an extended period of time. In an embodiment, the control system can include distributed joint and track controllers which locally control one or more closely associated joints. Distributed joint and track controllers can communicate with a master controller located within the crawler or located externally from the crawler.


In another embodiment, control of the serpentine robotic crawler can include control of a first frame, with other frames slaved to the first frame. For example, an operator can control the orientation and movement of the first frame. The other frames then follow the first frame. One particular control scheme can include automatically steering the other frames in following the first frame so as to minimize forces imposed on the actuated linkage arm.


As another example, control of the serpentine robotic crawler can include use of a joystick. For example, a two-dimensional joystick can be used to control a pose of the robot, for example by controlling motion of the actuated linkage via the joystick. Movement of the two-degrees of motion in the joystick can be translated into complex movements of the multi-degree of freedom actuated linkage via predefined primitives. As a particular example, movement of the joystick to the left or right can arch the serpentine robotic crawler to the left or right, with sustained holding of the joystick moving the serpentine robotic crawler between a tank-like configuration and a snake-like configuration. As another particular example, movement of the joystick to the front or back can arch the serpentine robotic crawler up or down, with sustained holding of the joystick forward or backward placing the serpentine robotic crawler into an inside- or outside-climbing configuration. Of course, a variety of mappings from a joystick to movements can be defined, as will be appreciated. Interface between an operator and the control system can be provided via a menu driven interface operational on a personal computer, laptop, personal data assistant, and the like, as is known.


The control system can also be configured to provide a degree of compliance in the joints. For example, forces applied to the joints by the environment of the flexible robotic crawler can be sensed and communicated to the control system. When certain force thresholds are exceeded, the joints can be allowed to move. For example, joints can include breakaway clutches, implemented either via mechanical systems, electronic systems, or hybrid electro-mechanical systems. Force limit thresholds can be made adjustable to provide variable compliance to the serpentine robotic crawler. For example, high thresholds to provide a stiff posture may prove useful in pushing through certain types of obstructions. Alternately, low thresholds may prove useful in bending around other types of obstructions.


As another example, the control system can be implemented using a processing system. Various movement primitives can be preprogrammed, including for example primitives to assume certain poses (e.g., tank, zag, arched, train, or climbing configurations), and primitives for movement (e.g., forward, backwards). Control can include feedback from joint force sensors and environmental sensors. Hybrid human and automated control can be combined. For example, high-level manual commands/primitives can be implemented using automated low-level feedback loops that execute the commands/primitives. Control function can be divided into subsystems, including for example, pose control, compliance control, movement control, force control, and hybrid combinations thereof.


An alternate configuration of a serpentine robotic crawler is illustrated in FIG. 14 in accordance with an embodiment of the present invention. The serpentine robotic crawler 100 includes a plurality of frame units 102, each having a continuous track rotatably supported therein. For example, the continuous track can have one or more exposed surfaces, as discussed above. At least one actuated multi-degree of freedom linkage arm 104 is coupled between the frame units. For example, with N frame units, N 1 linkage arms are used to intercouple the frames into a multi-frame train. The actuated multi-degree of freedom linkage arm includes at least seven joint axes, for example as described above. Optionally, the actuated multi-degree of freedom linkage arm can be removably connected between the frame units, to allow the multi-frame train to be reconfigured, for example into a number of individual frames, pairs of frames, or shorter multi-frame trains.


A serpentine robotic crawler can also include various sensors or tools positioned on the actuated multi-degree of freedom linkage arm and or the frame. For example, as illustrated in FIG. 15, a serpentine robotic crawler 110 can have cameras 116 disposed on one 112 of the frames. As another example, cameras can be disposed on both the leading and the trailing frame. For example, a front camera can be used primarily for scanning the environment, and a rear camera can be used for observing the pose of the serpentine robotic crawler for control purposes. Other sensors, including for example, radar, lidar, infrared detectors, temperature sensors, chemical sensors, force sensors, motion detectors, microphones, antennas, and the like can be disposed on the serpentine robotic crawler. As another example, tools, including for example, light sources, clamps, grippers, manipulators, cutters, drills, material samplers, and the like can also be disposed on the serpentine robotic crawler. As another example, the serpentine robotic crawler can include articulated arms disposed on the frame. Commonly owned and co-pending U.S. Provisional Patent Application No. 60/858,915, entitled “Tracked Robotic Vehicle with Articulated Arms,” filed Nov. 13, 2006, describes a serpentine robotic crawler having articulated arms, and is herein incorporated by reference.


Summarizing and reiterating to some extent, serpentine robotic crawlers in accordance with embodiments of the present invention can be deployed in a variety of applications and environments. For example, and not by way of limitation, applications can include search and rescue, military operations, and industrial operations. The serpentine robotic crawler can help to avoid the need to expose humans to hazardous environments, such as unstable buildings, military conflict situations, and chemically, biologically, or nuclear contaminated environments. The configurational flexibility of the serpentine robotic crawler provides multiple movement modes. For example, movement in a tank-like configuration can provide high stability. Movement in a snake-like configuration can provide access through narrow passages or pipes. Climbing the outside of structures, e.g., a pole, and climbing the inside of structures, e.g., inside a pipe, are also possible.


The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.


More specifically, while illustrative exemplary embodiments of the invention have been described herein, the present invention is not limited to these embodiments, but includes any and all embodiments having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.

Claims
  • 1. A serpentine robotic crawler comprising: a first frame having a first continuous track rotatably supported by the first frame;a second frame having a second continuous track rotatably supported by the second frame; anda linkage arm coupling the first and second frames together in tandem and being actuated about at least one lateral axis and at least two longitudinal axes, which longitudinal axes are oriented by the actuated bending movement of the linkage arm about the at least one lateral axis.
  • 2. The robotic crawler of claim 1, wherein the linkage arm comprises: a first actuated rotary joint operable with the first frame to provide a first longitudinal axis;a second actuated rotary joint operable with the second frame to provide a second longitudinal axis;an actuated bending joint operable between each of the first and second rotary joints to provide controlled bending about the lateral axis.
  • 3. The robotic crawler of claim 2, wherein the linkage arm further comprises at least one additional actuated bending joint operable with each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.
  • 4. The robotic crawler of claim 2, wherein the linkage arm further comprises an additional pair of actuated bending joints positioned between the first and second actuated rotary joints and each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.
  • 5. The robotic crawler of claim 4, wherein the lateral axes of each additional pair of actuated bending joints are at substantially right angles to each other.
  • 6. The robotic crawler of claim 2, wherein each of the first and second frames further comprises a drive coupled to the continuous track.
  • 7. The robotic crawler of claim 6, further comprising a control subsystem in communication with each drive and with each rotary and bending joint in the linkage arm and configured to selectively actuate each drive, rotary joint and bending joint to control the pose of robotic crawler.
  • 8. A serpentine robotic crawler comprising: at least two frame units each having a continuous track rotatably supported thereon; andat least one multi-degree of freedom actuated linkage arm coupled between the frame units, the linkage arm comprising: at least three actuated bending joints, each providing bending about a lateral axis; andat least two actuated rotary joints, each providing rotation about a longitudinal axis,wherein the linkage arm comprises a series-coupled combination of at least five actuated joints.
  • 9. The robotic crawler of claim 8, wherein the linkage arm further comprises at least one additional actuated bending joint operable with each of the frame units, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.
  • 10. A serpentine robotic crawler comprising: a first frame having a first continuous track rotatably supported by the first frame;a first actuated linkage coupled to the first frame wherein the first actuated linkage provides rotational movement about a longitudinal axis;an elbow-like actuated joint coupled to the first actuated linkage wherein the elbow-like actuated joint provides bending movement about a lateral axis;a second actuated linkage coupled to the elbow-like actuated joint wherein the second actuated linkage provides rotational movement about a longitudinal axis; anda second frame coupled to the second actuated linkage and having a second continuous track rotatably supported by the second frame.
  • 11. The robotic crawler of claim 10, further comprising at least one additional elbow-like actuated joint coupled between each of the first and second actuated linkages and the first and second frames, wherein each additional elbow-like joint provides bending movement about an additional lateral axis.
  • 12. A method of operating a serpentine robotic crawler comprising: obtaining a first frame and a second frame, each frame having a drivable continuous track, the first and second frames being coupled together with an actuated multi-degree of freedom linkage arm having a series-coupled combination of actuated joints, the linkage arm comprising: at least two actuated rotary joints, each providing rotation of one of the first and second frames about a longitudinal axis; andat least one actuated bending joint that provides bending about a lateral axis; andarticulating the actuated multi-degree of freedom linkage to establish a desired pose for the serpentine robotic crawler, wherein the longitudinal axes are oriented by the actuated manipulation of the linkage arm about the lateral axis.
  • 13. The method of claim 12, further providing at least one additional actuated bending joint operable with each of the first and second frames, respectively, with each additional bending joint providing controlled bending about an additional lateral axis.
  • 14. A method of operating a serpentine robotic crawler comprising: providing a first frame and a second frame, each frame having a drivable continuous track;coupling the first frame to the second frame with an actuated multi-degree of freedom linkage arm that actuates about at least one lateral axis and at least two longitudinal axes, wherein the actuated multi-degree of freedom linkage arm comprises a series-coupled combination of at least seven actuated joints to form the serpentine robotic crawler; andarticulating the actuated multi-degree of freedom linkage arm to establish a desired pose for the serpentine robotic crawler.
  • 15. The method of claim 14 further comprising coordinating drive operation of the drivable continuous tracks with articulation of the actuated multi-degree of freedom linkage arm to further control the pose of the serpentine robotic crawler.
  • 16. The method of claim 15 further comprising positioning the first frame and the second frame in a tank-like configuration where the first frame and the second frame are side-by-side and extend in a same direction relative to the actuated multi-degree of freedom linkage arm.
  • 17. The method of claim 15 further comprising positioning the first frame and the second frame in a train-like configuration where the first frame and the second frame are aligned end to end.
  • 18. The method of claim 15 further comprising positioning the first frame and the second frame in a outside-climbing configuration where the first frame and the second frame are oriented with exposed portions of the continuous tracks facing toward each other and in contact with opposite outer surfaces of a structure to be climbed.
  • 19. The method of claim 15 further comprising positioning the first frame and the second frame in an inside-climbing configuration where the first frame and the second frame are oriented with exposed portions of the continuous tracks facing away from each other and in contact with opposite inner surfaces of a structure to be climbed.
  • 20. The method of claim 15 further comprising positioning the first frame and the second frame in a zag configuration where the first frame and the second frame are side-by-side and extend in opposite directions relative to the actuated multi-degree of freedom linkage arm.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/985,323, filed Nov. 13, 2007, and entitled “Serpentine Robotic Crawler”, which claims the benefit of U.S. Provisional Patent Application No. 60/858,917, filed Nov. 13, 2006, each of which is incorporated by reference in its entirety herein.

US Referenced Citations (290)
Number Name Date Kind
1107874 Appleby Aug 1914 A
1112460 Leavitt Oct 1914 A
1515756 Roy Nov 1924 A
1975726 Martinage Oct 1934 A
2025999 Myers Dec 1935 A
2082920 Aulmont Jun 1937 A
2129557 Beach Sep 1938 A
2311475 Schmeiser Feb 1943 A
2312072 Broadwater Feb 1943 A
2329582 Bishop Sep 1943 A
2345763 Mayne Apr 1944 A
2701169 Cannon Feb 1955 A
2850147 Hill Sep 1958 A
2933143 Robinson Apr 1960 A
2967737 Moore Jan 1961 A
3037571 Zelle Jun 1962 A
3060972 Sheldon Oct 1962 A
3166138 Dunn, Jr. Jan 1965 A
3190286 Stokes Jun 1965 A
3215219 Forsyth et al. Nov 1965 A
3223462 Dalrymple Dec 1965 A
3266059 Stelle Aug 1966 A
3284964 Saito Nov 1966 A
3311424 Taylor Mar 1967 A
3362492 Hansen Jan 1968 A
3387896 Sobota Jun 1968 A
3489236 Goodwin Jan 1970 A
3497083 Anderson Feb 1970 A
3565198 Ames Feb 1971 A
3572325 Bazell Mar 1971 A
3609804 Morrison Oct 1971 A
3650343 Helsell Mar 1972 A
3700115 Johnson Oct 1972 A
3707218 Payne Dec 1972 A
3712481 Harwood Jan 1973 A
3715146 Robertson Feb 1973 A
3757635 Hickerson Sep 1973 A
3808078 Snellman Apr 1974 A
3820616 Juergens Jun 1974 A
3841424 Purcell Oct 1974 A
3864983 Jacobsen Feb 1975 A
3933214 Guibord Jan 1976 A
3934664 Pohjola Jan 1976 A
3974907 Shaw Aug 1976 A
4051914 Pohjola Oct 1977 A
4059315 Jolliffe Nov 1977 A
4068905 Black Jan 1978 A
4107948 Maolaug Aug 1978 A
4109971 Black Aug 1978 A
4132279 Van der Lende Jan 1979 A
4218101 Thompson Aug 1980 A
4260053 Onodera Apr 1981 A
4332317 Bahre Jun 1982 A
4332424 Thompson Jun 1982 A
4339031 Densmore Jul 1982 A
4393728 Larson Jul 1983 A
4396233 Slaght Aug 1983 A
4453611 Stacy, Jr. Jun 1984 A
4483407 Iwamoto et al. Nov 1984 A
4489826 Dubson Dec 1984 A
4494417 Larson Jan 1985 A
4551061 Olenick Nov 1985 A
4589460 Albee May 1986 A
4621965 Wilcock Nov 1986 A
4636137 Lemelson Jan 1987 A
4646906 Wilcox, Jr. Mar 1987 A
4661039 Brenhold Apr 1987 A
4700693 Lia Oct 1987 A
4706506 Lestelle Nov 1987 A
4712969 Kimura Dec 1987 A
4714125 Stacy, Jr. Dec 1987 A
4727949 Rea Mar 1988 A
4736826 White et al. Apr 1988 A
4752105 Barnard Jun 1988 A
4756662 Tanie Jul 1988 A
4765795 Rebman Aug 1988 A
4784042 Paynter Nov 1988 A
4796607 Allred, III Jan 1989 A
4806066 Rhodes Feb 1989 A
4815319 Clement Mar 1989 A
4815911 Bengtsson Mar 1989 A
4818175 Kimura Apr 1989 A
4828339 Thomas May 1989 A
4848179 Ubhayakar Jul 1989 A
4862808 Hedgcoxe Sep 1989 A
4878451 Siren Nov 1989 A
4900218 Sutherland Feb 1990 A
4909341 Rippingale et al. Mar 1990 A
4924153 Toru et al. May 1990 A
4932491 Collins, Jr. Jun 1990 A
4932831 White et al. Jun 1990 A
4936639 Pohjola Jun 1990 A
4997790 Woo Mar 1991 A
5018591 Price May 1991 A
5021798 Ubhayakar Jun 1991 A
5022812 Coughlan Jun 1991 A
5046914 Holland et al. Sep 1991 A
5080000 Bubic Jan 1992 A
5130631 Gordon Jul 1992 A
5142932 Moya Sep 1992 A
5174168 Takagi Dec 1992 A
5174405 Carra Dec 1992 A
5186526 Pennington Feb 1993 A
5199771 James Apr 1993 A
5205612 Sugden et al. Apr 1993 A
5214858 Pepper Jun 1993 A
5219264 McClure et al. Jun 1993 A
5252870 Jacobsen Oct 1993 A
5297443 Wentz Mar 1994 A
5317952 Immega Jun 1994 A
5337732 Grundfest Aug 1994 A
5350033 Kraft Sep 1994 A
5354124 James Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5386741 Rennex Feb 1995 A
5413454 Movsesian May 1995 A
5426336 Jacobsen Jun 1995 A
5428713 Matsumaru Jun 1995 A
5435405 Schempf et al. Jul 1995 A
5440916 Stone et al. Aug 1995 A
5443354 Stone et al. Aug 1995 A
5451135 Schempf Sep 1995 A
5465525 Mifune Nov 1995 A
5466056 James Nov 1995 A
5469756 Feiten Nov 1995 A
5516249 Brimhall May 1996 A
5551545 Gelfman Sep 1996 A
5556370 Maynard Sep 1996 A
5562843 Yasumoto Oct 1996 A
5567110 Sutherland Oct 1996 A
5570992 Lemelson Nov 1996 A
5573316 Wankowski Nov 1996 A
5588688 Jacobsen Dec 1996 A
5672044 Lemelson Sep 1997 A
5697285 Nappi Dec 1997 A
5712961 Matsuo Jan 1998 A
5749828 Solomon May 1998 A
5770913 Mizzi Jun 1998 A
5816769 bauer Oct 1998 A
5821666 Matsumoto Oct 1998 A
5842381 Feiten Dec 1998 A
RE36025 Suzuki Jan 1999 E
5878783 Smart Mar 1999 A
5888235 Jacobsen Mar 1999 A
5902254 Magram May 1999 A
5906591 Dario May 1999 A
5984032 Gremillion Nov 1999 A
5996346 Maynard Dec 1999 A
6016385 Yee Jan 2000 A
6030057 Fikse Feb 2000 A
6056237 Woodland May 2000 A
6107795 Smart Aug 2000 A
6109705 Courtemanche Aug 2000 A
6113343 Goldenberg et al. Sep 2000 A
6132133 Muro et al. Oct 2000 A
6138604 Anderson Oct 2000 A
6162171 Ng Dec 2000 A
6186604 Fikse Feb 2001 B1
6203126 Harguth Mar 2001 B1
6260501 Agnew Jul 2001 B1
6263989 Won Jul 2001 B1
6264293 Musselman Jul 2001 B1
6264294 Musselman et al. Jul 2001 B1
6281489 Tubel et al. Aug 2001 B1
7843431 Robbins et al. Nov 2001 B2
6325749 Inokuchi et al. Dec 2001 B1
6333631 Das et al. Dec 2001 B1
6339993 Comello Jan 2002 B1
6380889 Herrmann et al. Apr 2002 B1
6394204 Haringer May 2002 B1
6405798 Barrett et al. Jun 2002 B1
6408224 Okamoto Jun 2002 B1
6411055 Fujita Jun 2002 B1
6422509 Yim Jul 2002 B1
6430475 Okamoto Aug 2002 B2
6431296 Won Aug 2002 B1
6446718 Barrett et al. Sep 2002 B1
6450104 Grant et al. Sep 2002 B1
6484083 Hayward Nov 2002 B1
6488306 Shirey et al. Dec 2002 B1
6505896 Boivin Jan 2003 B1
6512345 Borenstein Jan 2003 B2
6523629 Buttz et al. Feb 2003 B1
6529806 Licht Mar 2003 B1
6540310 Cartwright Apr 2003 B1
6557954 Hattori May 2003 B1
6563084 Bandy May 2003 B1
6574958 MacGregor Jun 2003 B1
6576406 Jacobsen et al. Jun 2003 B1
6595812 Haney Jul 2003 B1
6610007 Tartaglia et al. Aug 2003 B2
6619146 Kerrebrock Sep 2003 B2
6651804 Thomas Nov 2003 B2
6652164 Stiepel et al. Nov 2003 B2
6668951 Won Dec 2003 B2
6708068 Sakaue Mar 2004 B1
6715575 Karpik Apr 2004 B2
6772673 Seto Aug 2004 B2
6773327 Felice Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6799815 Krishnan Oct 2004 B2
6820653 Schempf et al. Nov 2004 B1
6831436 Gonzalez Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6837318 Craig Jan 2005 B1
6840588 Deland Jan 2005 B2
6866671 Tierney Mar 2005 B2
6870343 Borenstein et al. Mar 2005 B2
6917176 Schempf et al. Jul 2005 B2
6923693 Borgen Aug 2005 B2
6936003 Iddan Aug 2005 B2
6959231 Maeda Oct 2005 B2
7020701 Gelvin et al. Mar 2006 B1
7040426 Berg May 2006 B1
7044245 Anhalt et al. May 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7090637 Danitz Aug 2006 B2
7137465 Kerrebrock Nov 2006 B1
7144057 Young et al. Dec 2006 B1
7171279 Buckingham et al. Jan 2007 B2
7188473 Asada Mar 2007 B1
7188568 Stout Mar 2007 B2
7228203 Koselka et al. Jun 2007 B2
7235046 Anhalt et al. Jun 2007 B2
7331436 Pack et al. Feb 2008 B1
7387179 Anhalt et al. Jun 2008 B2
7415321 Okazaki et al. Aug 2008 B2
7546912 Pack et al. Jun 2009 B1
7600592 Goldenberg et al. Oct 2009 B2
7645110 Ogawa et al. Jan 2010 B2
7654348 Ohm et al. Feb 2010 B2
7775312 Maggio Aug 2010 B2
7860614 Reger Dec 2010 B1
20010037163 Allard Nov 2001 A1
20020128714 Manasas et al. Sep 2002 A1
20020140392 Borenstein Oct 2002 A1
20030000747 Sugiyama Jan 2003 A1
20030069474 Couvillon, Jr. Apr 2003 A1
20030097080 Esashi May 2003 A1
20030110938 Seto Jun 2003 A1
20030223844 Schiele Dec 2003 A1
20040030571 Solomon Feb 2004 A1
20040099175 Perrot et al. May 2004 A1
20040103740 Townsend Jun 2004 A1
20040168837 Michaud Sep 2004 A1
20040216931 Won Nov 2004 A1
20040216932 Giovanetti Nov 2004 A1
20050007055 Borenstein et al. Jan 2005 A1
20050027412 Hobson Feb 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050107669 Couvillon, Jr. May 2005 A1
20050166413 Crampton Aug 2005 A1
20050168068 Courtemanche et al. Aug 2005 A1
20050168070 Dandurand Aug 2005 A1
20050225162 Gibbins Oct 2005 A1
20050235898 Hobson Oct 2005 A1
20050235899 Yamamoto Oct 2005 A1
20050288819 de Guzman Dec 2005 A1
20060000137 Valdivia y Alvarado Jan 2006 A1
20060005733 Rastegar et al. Jan 2006 A1
20060010702 Roth Jan 2006 A1
20060070775 Anhalt Apr 2006 A1
20060156851 Jacobsen Jul 2006 A1
20060225928 Nelson Oct 2006 A1
20060229773 Peretz Oct 2006 A1
20070029117 Goldenberg et al. Feb 2007 A1
20070156286 Yamauchi Jul 2007 A1
20070193790 Goldenberg et al. Aug 2007 A1
20070260378 Clodfelter Nov 2007 A1
20080115687 Gal et al. May 2008 A1
20080136254 Jacobsen Jun 2008 A1
20080164079 Jacobsen Jul 2008 A1
20080167752 Jacobsen Jul 2008 A1
20080168070 Naphade Jul 2008 A1
20080215185 Jacobsen Sep 2008 A1
20080217993 Jacobsen Sep 2008 A1
20080272647 Hirose et al. Nov 2008 A9
20080281231 Jacobsen et al. Nov 2008 A1
20080281468 Jacobsen et al. Nov 2008 A1
20080284244 Hirose et al. Nov 2008 A1
20090025988 Jacobsen et al. Jan 2009 A1
20090030562 Jacobsen et al. Jan 2009 A1
20090035097 Loane Feb 2009 A1
20090171151 Choset et al. Jul 2009 A1
20100030377 Unsworth Feb 2010 A1
20100174422 Jacobsen et al. Jul 2010 A1
20100201185 Jacobsen et al. Aug 2010 A1
20100201187 Jacobsen Aug 2010 A1
20100317244 Jacobsen et al. Dec 2010 A1
20100318242 Jacobsen et al. Dec 2010 A1
Foreign Referenced Citations (46)
Number Date Country
2512299 Sep 2004 CA
1603068 Apr 2005 CN
2774717 Apr 2006 CN
1970373 May 2007 CN
3025840 Feb 1982 DE
3626238 Feb 1988 DE
19617852 Oct 1997 DE
19714464 Oct 1997 DE
19704080 Aug 1998 DE
10018075 Jan 2001 DE
102004010089 Sep 2005 DE
0105418 Apr 1984 EP
0818283 Jan 1998 EP
0924034 Jun 1999 EP
1444043 Aug 2004 EP
1510896 Mar 2005 EP
1832501 Sep 2007 EP
1832502 Sep 2007 EP
2638813 May 1990 FR
2850350 Jul 2004 FR
1199729 Jul 1970 GB
52 57625 May 1977 JP
58-89480 May 1983 JP
60015275 Jan 1985 JP
60047771 Mar 1985 JP
60060516 Apr 1985 JP
60139576 Jul 1985 JP
61001581 Jan 1986 JP
61089182 May 1986 JP
63306988 Dec 1988 JP
04092784 Mar 1992 JP
05147560 Jun 1993 JP
06-115465 Apr 1994 JP
03535508 Jun 2004 JP
2005111595 Apr 2005 JP
WO 9726039 Jul 1997 WO
WO 0010073 Feb 2000 WO
WO 0216995 Feb 2002 WO
WO 0330727 Apr 2003 WO
WO 0337515 May 2003 WO
WO 2005018428 Mar 2005 WO
WO 2006068080 Jun 2006 WO
WO 2008049050 Apr 2008 WO
WO 2008076194 Jun 2008 WO
WO 2008135978 Nov 2008 WO
WO 2009009673 Jan 2009 WO
Related Publications (1)
Number Date Country
20100258365 A1 Oct 2010 US
Provisional Applications (1)
Number Date Country
60858917 Nov 2006 US
Continuations (1)
Number Date Country
Parent 11985323 Nov 2007 US
Child 12820881 US