Serpentine robotic crawler

Information

  • Patent Grant
  • 8393422
  • Patent Number
    8,393,422
  • Date Filed
    Friday, May 25, 2012
    12 years ago
  • Date Issued
    Tuesday, March 12, 2013
    11 years ago
Abstract
A serpentine robotic crawler is disclosed. The robotic crawler can include a first frame having a first continuous track rotatably supported by the first frame, a second frame having a second continuous track rotatably supported by the second frame, and a linkage arm coupling the first and second frames together in tandem. The linkage arm can be movable about a first lateral axis associated with the first frame, a second lateral axis associated with the second frame, and at least two longitudinal axes. The longitudinal axes can be oriented by movement of the linkage arm about the first lateral axis and/or the second lateral axis. Movement about the first lateral axis and the second lateral axis can facilitate or provide exposure of leading and trailing ends of each continuous track.
Description
BACKGROUND

Robotics is an active area of research, and many different types of robotic vehicles have been developed for various tasks. For example, unmanned aerial vehicles have been quite successful in military aerial reconnaissance. Less success has been achieved with unmanned ground vehicles, however, in part because the ground environment is significantly more difficult to traverse than the airborne environment.


Unmanned ground vehicles face many challenges when attempting mobility. Terrain can vary widely, including for example, loose and shifting materials, obstacles, vegetation, limited width or height openings, steps, and the like. A vehicle optimized for operation in one environment may perform poorly in other environments.


There are also tradeoffs associated with the size of vehicle. Large vehicles can handle some obstacles better, including for example steps, drops, gaps, and the like. On the other hand, large vehicles cannot easily negotiate narrow passages or crawl inside pipes, and are more easily deterred by vegetation. Large vehicles also tend to be more readily spotted, and thus can be less desirable, such as for discrete surveillance applications. In contrast, while small vehicles are more discrete, surmounting obstacles becomes a greater navigational challenge.


A variety of mobility configurations have been adapted to traverse difficult terrain. These options include legs, wheels, and tracks. Legged robots can be agile, but use complex control mechanisms to move and achieve stability. Wheeled vehicles can provide high mobility, but provide limited traction and require width in order to achieve stability.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:



FIG. 1A is an example illustration of a serpentine robotic crawler in accordance with an example of the present disclosure.



FIG. 1B is the serpentine robotic crawler of FIG. 1A, with a linkage arm moved to expose ends of continuous tracks in a tank configuration.



FIG. 2A is an example illustration of a serpentine robotic crawler in accordance with another example of the present disclosure.



FIG. 2B is the serpentine robotic crawler of FIG. 2A, with a linkage arm moved to expose ends of continuous tracks in a train configuration.



FIG. 3 is an example illustration of a serpentine robotic crawler in accordance with yet another example of the present disclosure.



FIG. 4A is an example illustration of a serpentine robotic crawler in an outside-climbing configuration in accordance with an example of the present disclosure.



FIGS. 4B and 4C are example illustrations of a serpentine robotic crawler in different inside-climbing configurations in accordance with examples of the present disclosure.



FIGS. 5A-5P illustrate perspective views of various poses for a serpentine robotic crawler in accordance with examples of the present disclosure.



FIG. 6 is a schematic diagram of a control system in accordance with an example of the present disclosure.





Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.


DETAILED DESCRIPTION

As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.


An initial overview of technology embodiments is provided below and then specific technology embodiments are described in further detail later. This initial summary is intended to aid readers in understanding the technology more quickly but is not intended to identify key features or essential features of the technology nor is it intended to limit the scope of the claimed subject matter.


Tracked vehicles are known and have traditionally been configured in a tank-like configuration. While tracked vehicles can provide a high degree of stability in some environments, tracked vehicles typically provide limited maneuverability with very small vehicles. Furthermore, many known tracked vehicles are unable to accommodate a wide variety of obstacles, particularly when the terrain is narrow and the paths are tortuous and winding. Additionally, linkages or couplings between tracks of a vehicle can come into contact with obstacles and can even become lodged on the obstacles, thus hindering movement of the vehicle.


Accordingly, a serpentine robotic crawler is disclosed that allows movement of a linkage arm. In one aspect, the linkage arm can be moved to expose leading and/or trailing ends of the track to increase the ability of the tracked vehicle to overcome obstacles. In some exemplary embodiments, the serpentine robotic crawler can include a first frame having a first continuous track rotatably supported by the first frame, a second frame having a second continuous track rotatably supported by the second frame, and a linkage arm coupling the first and second frames together in tandem. The linkage arm can have a first elbow-like joint formed by an interface between the first frame and a first linkage member, a second elbow-like joint formed by an interface between the second frame and a second linkage member, a first wrist-like actuated linkage coupled to the first linkage member, a second wrist-like actuated linkage coupled to the second linkage member, and an actuated third elbow-like joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage. The first wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The second wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The third elbow-like joint can provide bending movement about a lateral axis. The first linkage member can be positionable via first elbow-like joint to locate the first wrist-like actuated linkage out of plane from the first frame. The second linkage member can be positionable via second elbow-like joint to locate the second wrist-like actuated linkage out of plane from the second frame.


Other exemplary embodiments of a serpentine robotic crawler are also disclosed that can include a first frame having a first continuous track rotatably supported by the first frame, a second frame having a second continuous track rotatably supported by the second frame, and a linkage arm coupling the first and second frames together in tandem. The linkage arm can also be movable about a first lateral axis associated with the first frame, a second lateral axis associated with the second frame, and at least two longitudinal axes, which longitudinal axes can be oriented or moved by movement of the linkage arm about at least one of the first lateral axis and the second lateral axis. Movement about the first lateral axis and the second lateral axis can allow for or facilitate exposure of leading and trailing ends of each continuous track.


Additionally, still other exemplary embodiments of a serpentine robotic crawler are disclosed that can include a first frame having a first continuous track rotatably supported by the first frame, a second frame having a second continuous track rotatably supported by the second frame, and a linkage arm coupling the first and second frames together in tandem. The linkage arm can have a first wrist-like actuated linkage coupled to the first frame, a second wrist-like actuated linkage coupled to the second frame, and an elbow-like actuated joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage. The first wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The second wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The elbow-like actuated joint can provide bending movement about a lateral axis. The first wrist-like actuated linkage can be located or positioned out of plane from the first frame and the second wrist-like actuated linkage can be located or positioned out of plane from the second frame, wherein these are in a fixed or non-movable position relative to the respective frames.


One exemplary embodiment of a serpentine robotic crawler is illustrated in FIGS. 1A and 1B. The serpentine robotic crawler 100 can include a first frame 111 and a second frame 112. The first frame 111 can have a first continuous track 113 rotatably supported by the first frame 111 and the second frame 112 can have a second continuous track 114 rotatably supported by the second frame 112. The serpentine robotic crawler 100 can also include a linkage arm 120 coupling the first and second frames 111, 112 together in tandem. The linkage arm 120 can be movable about several axes. For example, the linkage arm 120 can be movable about a first lateral axis 101 (extending through the first elbow-like joint 121) associated with the first frame 111, a second lateral axis 102 (extending through the second elbow-like joint 122) associated with the second frame 112, and at least two longitudinal axes 103, 104. The longitudinal axes 103, 104 can be oriented by movement of the linkage arm 120 about at least one of the first lateral axis 101 and the second lateral axis 102. Movement of the linkage arm 120 about the first lateral axis 101 and the second lateral axis 102 can allow exposure or greater exposure of the ends 115, 116 of each continuous track, which can be leading or trailing ends, depending on the direction of travel.


For example, as illustrated in FIG. 1A, the linkage arm 120 may be positioned to obscure or cover the ends 115, 116 of the first and second continuous tracks 113, 114, respectively. As illustrated in FIG. 1B, movement of the linkage arm 120 about the first lateral axis 101 and/or the second lateral axis 102 can uncover, or expose, at least one of the ends 115, 116 of the continuous tracks 113, 114. With the linkage arm 120 moved out of the way, relative to the configuration illustrated in FIG. 1A, the ends of the tracks can engage obstacles, which can increase the locomotion capabilities of the serpentine robotic crawler, such as its ability to maneuver over uneven terrain. Positioning the linkage arm 120 in an elevated position, as shown in FIG. 1B, moving continuous tracks 113, 114 can contact obstacles, as opposed to the obstacles contacting a stationary structure of the serpentine robotic crawler 100, such as a portion of the linkage arm 120. Moving tracks can therefore be the dominant structure in contact with a terrain surface. The configuration illustrated in FIG. 1B can minimize the likelihood of the linkage arm 120 being “hung up” or “high-centered” on obstacles.


As discussed further herein, movement of the linkage arm 120 about the first lateral axis 101 and/or the second lateral axis 102 can provide for a multitude of different configurations or poses of the serpentine robotic crawler 100. Furthermore, the linkage arm 120 can include movement about one or more of axes 105, 106, 107, 108, 109. These axes can provide for additional poses of the serpentine robotic crawler 100, which can further enhance maneuverability of the serpentine robotic crawler 100.


In one aspect, the linkage arm 120 can have a first elbow-like joint 121 formed by an interface between the first frame 111 and a first linkage member 151. Similarly, the linkage arm 120 can have a second elbow-like joint 122 formed by an interface between the second frame 112 and a second linkage member 152. The first and second elbow-like joints 121, 122 can provide for rotation of the first and second linkage members 151 and 152 about axes 101, 102, respectively. The linkage arm 120 can also include a first wrist-like linkage 141 coupled to the first linkage member 151. The first wrist-like linkage 141 can include joints 123, 125, 127 that can provide rotational movement about longitudinal axis 103 and bending movement about two different lateral axes 105, 107, respectively. In one aspect, the two different lateral axes 105, 107 can be at a substantially right angle to one another. Similarly, the linkage arm 120 can also include a second wrist-like linkage 142 coupled to the linkage member 152. The second wrist-like linkage 142 can include joints 124, 126, 128 that provide rotational movement about a longitudinal axis 104 and bending movement about two different lateral axes 106, 108, respectively. In one aspect, the two different lateral axes 106, 108 can be at a substantially right angle to one another.


Additionally, the linkage arm 120 can include a third elbow-like joint 129 formed by a coupling of the first wrist-like linkage 141 and the second wrist-like linkage 142. The third elbow-like joint 129 can provide bending movement about lateral axis 109. In one aspect, the first linkage member 151, via the first elbow-like joint 121, can be positionable to allow the first wrist-like linkage 141 to be out of plane from the first frame 111. Similarly, the second linkage member 152, via the second elbow-like joint 122, can be positionable to allow the second wrist-like actuated linkage 142 to be out of plane from the second frame 112.


In one aspect, the first lateral axis 101 and thus, the first elbow-like joint 121 can be located between the ends 115, 117 of the first continuous track 113. This can allow the movement about the first lateral axis 101 to effectively position the linkage arm 120 to expose the end 115 of the first continuous track 113. In a specific aspect, the first lateral axis 101 of the first elbow-like joint 121 can be coaxial with a drive wheel 131 for the first continuous track 113. The same can be the case for the location of the second lateral axis 102, as well. In another aspect, respective movement of the first and second linkage members 151 and 152 about the first lateral axis 101 and the second lateral axis 102 can be actuated. Alternatively, respective movement of the first and second linkage members 151 and 152 about the first lateral axis 101 and the second lateral axis 102 can be passive. Additionally, a range of motion of the first and second linkage members 151 and 152 about the first lateral axis 101 can be physically limited, such as by a mechanical stop 133, to prevent contact between at least a portion of the linkage arm 120 (such as linkage member 151) and the first continuous track 113. A similar range of motion limiter can also prevent contact between at least a portion of the linkage arm 120 (such as linkage member 152) and the second continuous track 114.


It should be recognized that the joints and/or linkages discussed herein can be actuated or passive, in any combination. In one aspect, a passive joint or linkage can be manipulated or movable to a selectively fixed position and held in place, for example, by incorporating an adjustable fastener. In another aspect, a passive joint or linkage can include a dampener and/or a spring to control various aspects (e.g., those related to movement) of the joint or linkage.


With respect to the linkage arm 120, various other configurations are also possible for embodiments of a serpentine robotic crawler. In general, the linkage arm 120 can include at least nine actuated joints providing motion about nine different axes (although some of these axes may be aligned with each other at times). These joints can be uni-axial, bi-axial, or tri-axial joints. The linkage arm can include a series coupled combination of any of the following:

    • 9 uni-axial joints
    • 5 uni-axial joints and 2 bi-axial joints
    • 3 uni-axial joint and 2 tri-axial joints
    • 2 uni-axial joints, 2 bi-axial joints, and 1 tri-axial joint


For example, a linkage arm can include a series combination of seven uni-axial bending joints and two uni-axial rotary joints. For example, six bending joints can be symmetrically disposed about a seventh bending joint located in the center of the linkage, three bending joints on each side of the center. The rotary joints can also be symmetrically disposed about the center. For example, the rotary joints can be located adjacent to the seventh (centered) bending joint (e.g., as illustrated in FIG. 1A), located between the symmetrically disposed bending joints, or located adjacent to the frames.


Alternately, bi-axial joints, which provide the same degrees of freedom as two uni-axial joints in series, or tri-axial joints, which provide the same degrees of freedom as three uni-axial joints in series, can also be used. A bi-axial joint can, for example, provide bending in two axes. These axes can, but need not be, orthogonal. A tri-axial joint can, for example, provide bending in two lateral axes and rotation about a third longitudinal axis.


Joints need not be limited to revolute joints which provide bending or rotational movement. Prismatic joints which provide translational movement can also be included. Joints may incorporate both revolute and prismatic features to provide, for example, eccentric motions.


In one aspect, each of the first and second frames 111, 112 can include a drive coupled to the first and second continuous tracks, respectively, as illustrated by drive 134 of the second frame 112. In a particular aspect, the first elbow-like joint 121 and/or the second elbow-like joint 122 can be actuatable by one of the drives. In other words, the same drive that causes movement of a continuous track can also cause movement of an associated joint. In another aspect, the first elbow-like joint 121 and/or the second elbow-like joint 122 can be actuated to manipulate or move linkage members 151 and 152, respectively, by a dedicated drive that is distinct from the drive used to cause movement of the continuous tracks. A drive for a continuous track can be configured to drive the continuous track in either direction (e.g., clockwise and counterclockwise) over a range of speeds. As will be recognized by those skilled in the art, various types of drives and coupling techniques for applying drive power to a continuous track can be applied in embodiments of the present invention.


The combination of a multi-degree of freedom linkage arm 120 with the tracked frames 111, 112 can make the serpentine robotic crawler 100 capable of many different modes of movement. Operating the serpentine robotic crawler 100 can include articulating the linkage arm 120 to establish a desired pose for the serpentine robotic crawler 100. Drive operation of the continuous tracks 113, 114 can be coordinated with articulation of the linkage arm 120 to further control the pose and provide movement of the serpentine robotic crawler 100. When establishing a pose of the serpentine robotic crawler 100, torque and forces on the joints may be taken into account, as discussed further herein.


A first pose of the serpentine robotic crawler 100 will be referred to herein as the “tank” configuration, as illustrated in FIGS. 1A and 1B, where the first frame 111 and second frame 112 are positioned in a side by side or substantially side by side arrangement. The frames 111, 112 extend in the same direction from the linkage arm 120, and can be, but need not be, parallel, or even in the same elevation plane. The tank configuration provides lateral stability to the serpentine robotic crawler 100, for example when traversing a steep slope. In the tank configuration, the serpentine robotic crawler 100 can be controlled using “skid steer” techniques. For example, the serpentine robotic crawler 100 can be moved in a forward and reserve direction by driving the continuous tracks 113, 114 in the same direction, and turned by driving the continuous tracks 113, 114 in opposite directions. In general, moving the serpentine robotic crawler 100 in the tank-like configuration can involve applying different drive speeds (including opposite directions) to the continuous tracks 113, 114.


A second pose of a serpentine robotic crawler 200 will be referred to herein as the “train” configuration, as illustrated in FIGS. 2A and 2B, where the first frame 211 and second frame 212 are extending in generally opposite directions. As illustrated in FIGS. 2A and 2B, the first and second frames 211, 212 are substantially aligned with one another in a direction of travel, however, the frames may be laterally offset from one another, as described below. The frames 211, 212 can be, but need not be, parallel, or in the same elevation plane. The train configuration can provide a smaller profile than the tank configuration, allowing the serpentine robotic crawler 200 to enter small holes, pipes, tunnels, and the like. The train configuration can also allow the serpentine robotic crawler 200 to bridge gaps and holes. In the train configuration, forward and reverse motion is provided by driving the continuous tracks 213, 214 in the same direction. Note that, relative to the tank configuration, the direction sense of one of the continuous tracks is reversed. Turning of the serpentine robotic crawler 200 can be provided by operation of the linkage arm 220 to create an angle between the first frame 211 and second frame 212.


The serpentine robotic crawler 200 is similar in many respects to the serpentine robotic crawler 100 illustrated in FIGS. 1A-1B, discussed above. However, unlike the serpentine robotic crawler 100, axes of rotation of first elbow-like joint 221 and second elbow-like joint 222 of the linkage arm 120 of serpentine robotic crawler 200 are not coaxial with drive wheel axes 231, 232 for the first continuous track 213 and the second continuous track 214, respectively. Rather, they are located at a position that is further inward toward the center of the frames 211, 212, respectively, as shown in FIG. 2B.


As illustrated in FIG. 2A, the linkage arm 220 may be positioned to obscure or cover the ends 215, 216 of the first and second continuous tracks 213, 214, respectively, when in the train configuration. For example, linkage member 251 can be positioned directly in front of the end 215 of the first continuous track, obscuring the end 215 of the continuous track. As illustrated in FIG. 2B, movement of the first linkage arm 251 about and by manipulation of the first elbow-like joint 221 and/or the second linkage arm 252 and the second elbow-like joint 222 of the linkage arm 220 can uncover, or expose, at least one of the ends 215, 216 of the continuous tracks 213, 214. For example, manipulation of the first elbow-like joint 221 can cause linkage member 251 to be moved or rotated from the end 215 of the continuous track to uncover or expose the end 215 of the continuous track. With the linkage arm 220 moved out of the way, the ends of the tracks can engage obstacles, which can increase the ability of the serpentine robotic crawler 200 to maneuver over uneven terrain, relative to the configuration illustrated in FIG. 2A. Although not discussed specifically, the same can be carried out with respect to the second elbow-like joint 222 and the second frame 212. The configuration illustrated in FIG. 2B can minimize the likelihood of the linkage arm 220 being “hung up” or “high-centered” on obstacles. Thus, in one aspect, the first elbow-like joint 221 can be manipulated to allow the first wrist-like linkage 241 to be out of plane from the first frame 211. Similarly, the second elbow-like joint 222 can be manipulated to allow the second wrist-like actuated linkage 242 to be out of plane from the second frame 212.


With reference to FIG. 3, illustrated is a serpentine robotic crawler 300, in accordance with another example of the present disclosure. The serpentine robotic crawler 300 is similar in many respects to the serpentine robotic crawlers 100, 200 illustrated in FIGS. 1A-2B, discussed above. With regard to serpentine robotic crawler 300, however, first wrist-like linkage 341 is positioned out of plane from the first frame 311 without a linkage or joint. Similarly, second wrist-like linkage 342 is positioned out of plane from the second frame 312 without a linkage or joint. In this case, the first and second wrist-like linkages 341, 342 are positioned out of plane by brackets 343, 344, respectively, coupling the first and second wrist-like linages 341, 342 to their respective frames 311, 312. In one aspect, a portion of the brackets 343, 344 can be configured to extend upward from the frames 311, 312 to permanently position linkage arm 320 to expose at least one of the ends 315, 316 of the continuous tracks 313, 314. With the linkage arm 320 positioned out of the way, the ends 315, 316 of the tracks 313, 314 can engage obstacles, which can enhance the ability of the serpentine robotic crawler 300 to maneuver over uneven terrain, and can minimize the likelihood of the linkage arm 320 being “hung up” or “high-centered” on obstacles, similarly as provided by serpentine robotic crawlers 100, 200.


The serpentine robotic crawler can also be configured for climbing the exterior of various structures. As illustrated in FIG. 4A, the serpentine robotic crawler 400 is wrapped around structure 470 so that contact portions of the continuous tracks 413, 414 face toward each other and contact opposite outer surfaces of the structure 470. The continuous tracks 413, 414 can be driven to move the serpentine robotic crawler 400 up and down the structure 470. A wide variety of structural geometries including a pole, for example, can be climbed in this outside-climbing configuration.


The serpentine robotic crawler 400 can also be configured for climbing the interior of a structure. FIGS. 4B and 4C illustrate two different inside-climbing configurations. In an inside-climbing configuration, the serpentine robotic crawler 400 can be configured so that contact portions of the continuous tracks 413, 414 face away from each other and are in contact with opposite inner surfaces of structure 472. In FIG. 4B, the serpentine robotic crawler 400 is in a modified tank configuration, with first and second frames 411, 412 extending in the same direction. In FIG. 4C, the serpentine robotic crawler 400 is in a modified train configuration, with first and second frames 411, 412 extending in opposite directions. The inside-climbing configuration can be useful for climbing pipes, chimneys, wall interiors, and the like.


As illustrated in FIGS. 5A-5P, various articulated movements and poses are possible for a serpentine robotic crawler 500 in accordance with embodiments of the present disclosure. In this exemplary embodiment, the robotic crawler 500 comprises moveable first and second linkage members similar to those described above with reference to FIGS. 1A and 1B, and 2A and 2B. In a tank configuration, for example, FIG. 5A illustrates positioning a linkage arm 520 over the first and second frames 511, 512. Such positioning of the linkage arm 520 can be useful to shift or adjust the center of gravity of the serpentine robotic crawler 500, which can aid in traversing a sloped terrain or obstacle. FIGS. 5B-5D illustrate how the first and second frames 511, 512 of the serpentine robotic crawler 500 can be used as feet to walk forward/backward (FIGS. 5B and 5C) or to sidestep (FIG. 5D) onto an obstacle, for example. FIGS. 5E and 5F illustrate how the first and second frames 511, 512 of the serpentine robotic crawler 500 can be independently raised in any direction to assist in overcoming obstacles. This can be done in the tank configuration (FIG. 5E) or in the train configuration (FIG. 5F). FIGS. 5G and 5H illustrate how the first and second frames 511, 512 of the serpentine robotic crawler 500 can be angled laterally, together or independently, to control the center of gravity of the serpentine robotic crawler 500 and/or to maintain traction on a surface. For example, FIG. 5G illustrates angling the first and second frames 511, 512 laterally to position the first and second frames 511, 512 on edge. This can increase pressure on a surface to enhance traction. FIG. 5H illustrates the first frame 511 on a surface that is at an angle relative to a support surface of the second frame 512. Traction and balance can therefore be maintained on uneven surfaces. FIGS. 5I and 5J illustrate how the first and second frames 511, 512 of the serpentine robotic crawler 500 can be “toed in” or “toed out,” depending on the direction of travel, which can minimize track signature in soft terrain.


Additionally, in a train configuration, for example, FIG. 5K illustrates a “zag” configuration, where the first and second frames 511, 512 of the serpentine robotic crawler 500 are oriented in parallel, but are offset and extending in opposite directions from the linkage arm 520. Similar to the tank configuration, the zag configuration can provide additional lateral stability to the serpentine robotic crawler 500. FIG. 5L illustrates a zag configuration, where the linkage arm 520 of the serpentine robotic crawler 500 has been raised to provide increased obstacle clearance and reduce the likelihood of high-centering. FIG. 5M illustrates how ends of the first and second frames 511, 512 of the serpentine robotic crawler 500 can be independently raised or lowered when in a zag configuration to assist in overcoming obstacles. FIG. 5N illustrates a train configuration where the first and second frames 511, 512 of the serpentine robotic crawler 500 are extending in substantially opposite directions, but are not parallel. This pose can be evident when turning the serpentine robotic crawler 500 in a train configuration. FIG. 5O illustrates a train configuration where the first and second frames 511, 512 of the serpentine robotic crawler 500 are extending in substantially the same direction and are substantially parallel. This pose can reduce the overall length of the serpentine robotic crawler 500 in a train configuration. FIG. 5P illustrates the serpentine robotic crawler 500 climbing a wall in a train configuration.


It should be understood that the various poses of the serpentine robotic crawler 500 described above can be viewed in a static sense or in a dynamic sense, where the serpentine robotic crawler 500 dynamically varies its pose as it is operated. Moreover, modified versions of the above poses may also prove useful, depending on the environment in which the serpentine robotic crawler 500 operates. It should also be appreciated that operation of the linkage arm 520 can also assist in propulsion. For example, sudden jerky movements of the linkage arm 520 can help to provide traction or to free the serpentine robotic crawler 500 when entangled. As another example, the spatial orientation of the tracks can be periodically or continuously adjusted by the linkage arm 520 to conform to a surface being traveled over.


Control of a serpentine robotic crawler will now be discussed in further detail. As noted above, movement and pose of the serpentine robotic crawler can be controlled through articulation of a multiple degree of freedom linkage arm and rotation of continuous tracks. Accordingly, as shown in schematic form in FIG. 6, a control system 650 of a serpentine robotic crawler can include a control subsystem 652. The control subsystem 652 can be in communication with each of the actuated joints 621 of linkage arm 620 to control the pose of the serpentine robotic crawler. The control subsystem 652 can also be in communication with the drive units 633, 634, which are coupled to the first and second continuous tracks 613, 614, to control the speed and direction of continuous track rotation to control movement of the serpentine robotic crawler. A communication network 654 can be configured to exchange communication between the control subsystem 652, the joints 621 in the linkage arm 620, and the drive units 633, 634. Thus, the control subsystem 652 can be in communication with each drive unit 633, 634 and with each actuated joint 621 in the linkage arm 620 and can be configured to selectively actuate each drive 633, 634 and actuated joint 621 to control the pose of the serpentine robotic crawler.


Various implementations of the communications network are possible. For example, various communications protocols are known which allow a large number of nodes to communicate on a limited number of wires, including for example RS-485, RHAMIS, USB, Ethernet, and the like. Alternately, the communications network can include wireless components. For example, the communication network can include a wireless portion providing communication between the serpentine robotic crawler and a control system located remotely from the serpentine robotic crawler.


Various implementations of the control subsystem are possible. For example, in one embodiment, the control system can use a replica master for control of the serpentine robotic crawler. In a replica master control system, a replica master is located remotely from the serpentine robotic crawler. The replica master contains the same joints as the serpentine robotic crawler, and is manually manipulated into the desired poses. Sensors located at the joints sense the position of the joints, and these positions are communicated to the serpentine robotic crawler which actuates its joints to attempt to establish the same pose. Optionally, the joints in the serpentine robotic crawler can include force sensors, torque sensors, or both, allowing the force and/or torque on the joints to be measured. The joint forces and/or torques can optionally be communicated back to the replica master, providing force feedback into the control system. Various force feedback control systems are known which can be applied to embodiments of the present invention.


The control system may be integrated into the serpentine robotic crawler thereby allowing the crawler to operate autonomously. For example, the crawler may operate autonomously for an extended period of time. In an embodiment, the control system can include distributed joint and track controllers which locally control one or more closely associated joints. Distributed joint and track controllers can communicate with a master controller located within the crawler or located externally from the crawler.


In another embodiment, control of the serpentine robotic crawler can include control of a first frame, with other frames slaved to the first frame. For example, an operator can control the orientation and movement of the first frame. The other frames then follow the first frame. One particular control scheme can include automatically steering the other frames in following the first frame so as to minimize forces imposed on the linkage arm.


As another example, control of the serpentine robotic crawler can include use of a joystick. For example, a two-dimensional joystick can be used to control a pose of the robot, for example by controlling motion of the actuated linkage via the joystick. Movement of the two-degrees of motion in the joystick can be translated into complex movements of the multi-degree of freedom actuated linkage via predefined primitives. As a particular example, movement of the joystick to the left or right can arch the serpentine robotic crawler to the left or right, with sustained holding of the joystick moving the serpentine robotic crawler between a tank-like configuration and a train-like configuration. As another particular example, movement of the joystick to the front or back can arch the serpentine robotic crawler up or down, with sustained holding of the joystick forward or backward placing the serpentine robotic crawler into an inside- or outside-climbing configuration. Of course, a variety of mappings from a joystick to movements can be defined, as will be appreciated. Interface between an operator and the control system can be provided via a menu driven interface operational on a personal computer, laptop, personal data assistant, and the like, as is known.


The control system can also be configured to provide a degree of compliance in the joints. For example, forces applied to the joints by the environment of the flexible robotic crawler can be sensed and communicated to the control system. When certain force thresholds are exceeded, the joints can be allowed to move. For example, joints can include breakaway clutches, implemented either via mechanical systems, electronic systems, or hybrid electro-mechanical systems. Force limit thresholds can be made adjustable to provide variable compliance to the serpentine robotic crawler. For example, high thresholds to provide a stiff posture may prove useful in pushing through certain types of obstructions. Alternately, low thresholds may prove useful in bending around other types of obstructions.


As another example, the control system can be implemented using a processing system. Various movement primitives can be preprogrammed, including for example primitives to assume certain poses (e.g., tank, train, or climbing configurations), and primitives for movement (e.g., forward, backwards). Control can include feedback from joint force sensors and environmental sensors. Hybrid human and automated control can be combined. For example, high-level manual commands/primitives can be implemented using automated low-level feedback loops that execute the commands/primitives. Control function can be divided into subsystems, including for example, pose control, compliance control, movement control, force control, and hybrid combinations thereof.


In an alternate configuration of a serpentine robotic crawler, the serpentine robotic crawler can include a more than two frame units, each having a continuous track rotatably supported therein. At least one multi-degree of freedom linkage arm can be coupled between the frame units. For example, with N frame units, N−1 linkage arms are used to intercouple the frames into a multi-frame train. The multi-degree of freedom linkage arms can include at least nine joint axes, as described above, for example. Optionally, the multi-degree of freedom linkage arm can be removably connected between the frame units, to allow the multi-frame train to be reconfigured, for example into a number of individual frames, pairs of frames, or shorter multi-frame trains.


A serpentine robotic crawler can also include various sensors or tools positioned on the actuated multi-degree of freedom linkage arm and or the frame. For example, a serpentine robotic crawler can have a camera disposed on one of the frames. As another example, cameras can be disposed on both the leading and the trailing frame. For example, a front camera can be used primarily for scanning the environment, and a rear camera can be used for observing the pose of the serpentine robotic crawler for control purposes. Other sensors, including for example, radar, lidar, infrared detectors, temperature sensors, chemical sensors, force sensors, motion detectors, microphones, antennas, and the like can be disposed on the serpentine robotic crawler. As another example, tools, including for example, light sources, clamps, grippers, manipulators, cutters, drills, material samplers, and the like can also be disposed on the serpentine robotic crawler. As another example, the serpentine robotic crawler can include articulated arms disposed on the frame. Examples of such articulated arms can be found in commonly owned and co-pending U.S. patent application Ser. No. 11/985,336, entitled “Tracked Robotic Vehicle with Articulated Arms,” filed Nov. 13, 2007, which describes a serpentine robotic crawler having articulated arms, and which is herein incorporated by reference in its entirety.


Applications for a serpentine robotic crawler can include search and rescue, military operations, and industrial operations. The serpentine robotic crawler can help to avoid the need to expose humans to hazardous environments, such as unstable buildings, military conflict situations, and chemically, biologically, or nuclear contaminated environments. The configurational flexibility of the serpentine robotic crawler provides multiple movement modes. For example, movement in a tank-like configuration can provide high stability. Movement in a train-like configuration can provide access through narrow passages or pipes. Climbing the outside of structures, e.g., a pole, and climbing the inside of structures, e.g., inside a pipe, are also possible.


In accordance with one embodiment of the present invention, a method for facilitating operation of a serpentine robotic crawler is disclosed. The method can comprise providing a serpentine robotic crawler. The serpentine robotic crawler can include a first frame having a first continuous track rotatably supported by the first frame, a second frame having a second continuous track rotatably supported by the second frame, and a linkage arm coupling the first and second frames together in tandem. The linkage arm can have a first elbow-like joint formed by an interface between the first frame and a first linkage member, and a second elbow-like joint formed by an interface between the second frame and a second linkage member. The linkage arm can also have a first wrist-like actuated linkage coupled to the first linkage member. The first wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The linkage arm can also include a second wrist-like actuated linkage coupled to the second linkage member. The second wrist-like actuated linkage can include actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes. The linkage arm can further include a third elbow-like joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage. The third elbow-like actuated joint can provide bending movement about a lateral axis. The method can further comprise facilitating positioning of the first wrist-like actuated linkage out of plane from the first frame with the first elbow-like actuated joint, via the first linkage member. Additionally, the method can comprise facilitating positioning of the second wrist-like actuated linkage out of plane from the second frame with the second elbow-like joint, via the second linkage member. The positioning of the first and second wrist-like linkages relative to the frame can include embodiments that comprise locating the first and second wrist-like linkages in a fixed position or configuration, or locating these in one of a plurality of available moveable positions or configurations.


It is to be understood that the embodiments of the invention disclosed are not limited to the particular structures, process steps, or materials disclosed herein, but are extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. In addition, various embodiments and example of the present invention may be referred to herein along with alternatives for the various components thereof. It is understood that such embodiments, examples, and alternatives are not to be construed as de facto equivalents of one another, but are to be considered as separate and autonomous representations of the present invention.


Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of lengths, widths, shapes, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.


While the foregoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.

Claims
  • 1. A serpentine robotic crawler, comprising: a first frame having a first continuous track rotatably supported by the first frame;a second frame having a second continuous track rotatably supported by the second frame; anda linkage arm coupling the first and second frames together in tandem, the linkage arm having a first elbow-like joint formed by an interface between the first frame and a first linkage member,a second elbow-like joint formed by an interface between the second frame and a second linkage member,a first wrist-like actuated linkage coupled to the first linkage member, wherein the first wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes,a second wrist-like actuated linkage coupled to the second linkage member, wherein the second wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes, andan actuated third elbow-like joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage, wherein the third elbow-like joint provides bending movement about a lateral axis,wherein the first linkage member, via first elbow-like joint, is positionable to allow the first wrist-like actuated linkage to be out of plane from the first frame, andwherein the second linkage member, via the second elbow-like joint, is positionable to allow the second wrist-like actuated linkage to be out of plane from the second frame.
  • 2. The serpentine robotic crawler of claim 1, wherein the first linkage member is coupled to the first frame between leading and trailing ends of the first continuous track.
  • 3. The serpentine robotic crawler of claim 2, wherein movement of at least one of the first elbow-like joint and the second elbow-like joint is actuated by a dedicated drive.
  • 4. The serpentine robotic crawler of claim 1, wherein movement of at least one of the first elbow-like joint and the second elbow-like joint is actuated.
  • 5. The serpentine robotic crawler of claim 1, wherein movement of at least one of the first elbow-like joint and the second elbow-like joint is passive.
  • 6. The serpentine robotic crawler of claim 5, wherein the at least one of the first elbow-like joint and the second elbow-like joint is movable to a selectively fixed position.
  • 7. The serpentine robotic crawler of claim 1, wherein the two different lateral axes of at least one of the first wrist-like actuated linkage and the second wrist-like actuated linkage are at a substantially right angle to one another.
  • 8. The serpentine robotic crawler of claim 1, wherein each of the first and second frames further comprises a drive coupled to the continuous track.
  • 9. The serpentine robotic crawler of claim 8, further comprising a control subsystem in communication with each drive and with each actuated joint in the linkage arm and configured to selectively actuate each drive and actuated joint to control the pose of the robotic crawler.
  • 10. The serpentine robotic crawler of claim 8, wherein each of the first elbow-like joint and the second elbow-like joint are actuatable by one of the drives to cause movement.
  • 11. The serpentine robotic crawler of claim 1, wherein an axis of rotation for the first elbow-like joint is coaxial with a drive wheel for the first continuous track.
  • 12. The serpentine robotic crawler of claim 1, wherein a range of motion of the first linkage member about the first elbow-like joint is physically limited to prevent contact between at least a portion of the linkage arm and the first continuous track.
  • 13. A serpentine robotic crawler, comprising: a first frame having a first continuous track rotatably supported by the first frame;a second frame having a second continuous track rotatably supported by the second frame; anda linkage arm coupling the first and second frames together in tandem and being movable about a first lateral axis associated with the first frame, a second lateral axis associated with the second frame, and at least two longitudinal axes, which longitudinal axes are oriented by movement of the linkage arm about at least one of the first lateral axis and the second lateral axis,wherein movement about the first lateral axis and the second lateral axis facilitates exposure of leading and trailing ends of each continuous track.
  • 14. The serpentine robotic crawler of claim 13, wherein the first lateral axis is between the leading and trailing ends of the first continuous track.
  • 15. The serpentine robotic crawler of claim 13, wherein movement about the first lateral axis and the second lateral axis is actuated.
  • 16. The serpentine robotic crawler of claim 13, wherein movement about the first lateral axis and the second lateral axis is passive.
  • 17. The serpentine robotic crawler of claim 13, wherein the first lateral axis is coaxial with a drive wheel for the first continuous track.
  • 18. The serpentine robotic crawler of claim 13, wherein a range of motion of the first linkage member about the first lateral axis is physically limited to prevent contact between at least a portion of the linkage arm and the first continuous track.
  • 19. A serpentine robotic crawler, comprising: a first frame having a first continuous track rotatably supported by the first frame;a second frame having a second continuous track rotatably supported by the second frame; anda linkage arm coupling the first and second frames together in tandem, the linkage arm having a first wrist-like actuated linkage coupled to the first frame, wherein the first wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes,a second wrist-like actuated linkage coupled to the second frame, wherein the second wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes, andan elbow-like actuated joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage, wherein the elbow-like actuated joint provides bending movement about a lateral axis,wherein the first wrist-like actuated linkage is positioned out of plane from the first frame, andwherein the second wrist-like actuated linkage is positioned out of plane from the second frame.
  • 20. A method for facilitating operation of a serpentine robotic crawler, comprising: providing a serpentine robotic crawler, comprising a first frame having a first continuous track rotatably supported by the first frame,a second frame having a second continuous track rotatably supported by the second frame, anda linkage arm coupling the first and second frames together in tandem, the linkage arm having a first elbow-like joint formed by an interface between the first frame and a first linkage member,a second elbow-like joint formed by an interface between the second frame and a second linkage member,a first wrist-like actuated linkage coupled to the first linkage member, wherein the first wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes,a second wrist-like actuated linkage coupled to the second linkage member, wherein the second wrist-like actuated linkage includes actuated joints that provide rotational movement about a longitudinal axis and bending movement about two different lateral axes, anda third elbow-like joint formed by a coupling of the first wrist-like actuated linkage and the second wrist-like actuated linkage, wherein the elbow-like actuated joint provides bending movement about a lateral axis;facilitating positioning of the first wrist-like actuated linkage out of plane from the first frame with the first elbow-like actuated joint, via the first linkage member; andfacilitating positioning of the second wrist-like actuated linkage out of plane from the second frame with the second elbow-like joint, via the second linkage member.
US Referenced Citations (312)
Number Name Date Kind
107874 Appleby Aug 1914 A
1112460 Leavitt Oct 1914 A
1515756 Roy Nov 1924 A
1975726 Martinage Oct 1934 A
2025999 Myers Dec 1935 A
2082920 Aulmont Jun 1937 A
2129557 Beach Sep 1938 A
2312072 Broadwater Mar 1940 A
2311475 Schmeiser Feb 1943 A
2329582 Bishop Sep 1943 A
2345763 Mayne Apr 1944 A
2701169 Cannon Feb 1955 A
2850147 Hill Sep 1958 A
2933143 Robinson Apr 1960 A
2967737 Moore Jan 1961 A
3037571 Zelle Jun 1962 A
3060972 Sheldon Oct 1962 A
3107643 Edwards Oct 1963 A
3166138 Dunn, Jr. Jan 1965 A
3190286 Stokes Jun 1965 A
3215219 Forsyth Nov 1965 A
3223462 Dalrymple Dec 1965 A
3266059 Stelle Aug 1966 A
3284964 Saito Nov 1966 A
3311424 Taylor Mar 1967 A
3362492 Hansen Jan 1968 A
3387896 Sobota Jun 1968 A
3489236 Goodwin Jan 1970 A
3497083 Anderson Feb 1970 A
3565198 Ames Feb 1971 A
3572325 Bazell Mar 1971 A
3609804 Morrison Oct 1971 A
3650343 Helsell Mar 1972 A
3700115 Johnson Oct 1972 A
3707218 Payne Dec 1972 A
3712481 Harwood Jan 1973 A
3715146 Robertson Feb 1973 A
3757635 Hickerson Sep 1973 A
3808078 Snellman Apr 1974 A
3820616 Juergens Jun 1974 A
3841424 Purcell Oct 1974 A
3864983 Jacobsen Feb 1975 A
3933214 Guibord Jan 1976 A
3934664 Pohjola Jan 1976 A
3974907 Shaw Aug 1976 A
4015553 Meddleton Apr 1977 A
4051914 Pohjola Oct 1977 A
4059315 Jolliffe Nov 1977 A
4068905 Black et al. Jan 1978 A
4107948 Maolaug Aug 1978 A
4109971 Black Aug 1978 A
4132279 Van der Lende Jan 1979 A
4218101 Thompson Aug 1980 A
4260053 Onodera Apr 1981 A
4332317 Bahre Jun 1982 A
4332424 Thompson Jun 1982 A
4339031 Densmore Jul 1982 A
4393728 Larson Jul 1983 A
4396233 Slaght Aug 1983 A
4453611 Stacy, Jr. Jun 1984 A
4483407 Iwamoto et al. Nov 1984 A
4489826 Dubson Dec 1984 A
4494417 Larson Jan 1985 A
4551061 Olenick Nov 1985 A
4589460 Albee May 1986 A
4621965 Wilcock Nov 1986 A
4636137 Lemelson Jan 1987 A
4646906 Wilcox, Jr. Mar 1987 A
4661039 Brenhold Apr 1987 A
4671774 Owsen Jun 1987 A
4700693 Lia Oct 1987 A
4706506 Lestelle Nov 1987 A
4712969 Kimura Dec 1987 A
4713896 Jennens Dec 1987 A
4714125 Stacy, Jr. Dec 1987 A
4727949 Rea et al. Mar 1988 A
4736826 White et al. Apr 1988 A
4752105 Barnard Jun 1988 A
4756662 Tanie Jul 1988 A
4765795 Rebman Aug 1988 A
4784042 Paynter Nov 1988 A
4796607 Allred, III Jan 1989 A
4806066 Rhodes Feb 1989 A
4815319 Clement Mar 1989 A
4815911 Bengtsson Mar 1989 A
4818175 Kimura Apr 1989 A
4828339 Thomas May 1989 A
4848179 Ubhayakar Jul 1989 A
4862808 Hedgecoxe Sep 1989 A
4878451 Siren Nov 1989 A
4900218 Sutherland Feb 1990 A
4909341 Rippingale Mar 1990 A
4924153 Toru et al. May 1990 A
4932491 Collins, Jr. Jun 1990 A
4932831 White et al. Jun 1990 A
4936639 Pohjola Jun 1990 A
4997790 Woo Mar 1991 A
5018591 Price May 1991 A
5021798 Ubhayakar Jun 1991 A
5022812 Coughlan Jun 1991 A
5046914 Holland et al. Sep 1991 A
5080000 Bubic Jan 1992 A
5130631 Gordon Jul 1992 A
5142932 Moya Sep 1992 A
5174168 Takagi Dec 1992 A
5174405 Carra Dec 1992 A
5186526 Pennington Feb 1993 A
5199771 James Apr 1993 A
5205612 Sugden et al. Apr 1993 A
5214858 Pepper Jun 1993 A
5219264 McClure et al. Jun 1993 A
5252870 Jacobsen Oct 1993 A
5297443 Wentz Mar 1994 A
5317952 Immega Jun 1994 A
5337732 Grundfest Aug 1994 A
5337846 Ogaki et al. Aug 1994 A
5350033 Kraft Sep 1994 A
5354124 James Oct 1994 A
5363935 Schempf et al. Nov 1994 A
5386741 Rennex Feb 1995 A
5413454 Movsesian May 1995 A
5426336 Jacobsen Jun 1995 A
5428713 Matsumaru Jun 1995 A
5435405 Schempf Jul 1995 A
5440916 Stone et al. Aug 1995 A
5443354 Stone et al. Aug 1995 A
5451135 Schempf Sep 1995 A
5465525 Mifune Nov 1995 A
5466056 James Nov 1995 A
5469756 Feiten Nov 1995 A
5516249 Brimhall May 1996 A
5519814 Rodriguez et al. May 1996 A
5551545 Gelfman Sep 1996 A
5556370 Maynard Sep 1996 A
5562843 Yasumoto Oct 1996 A
5567110 Sutherland Oct 1996 A
5570992 Lemelson Nov 1996 A
5573316 Wankowski Nov 1996 A
5588688 Jacobsen Dec 1996 A
5672044 Lemelson Sep 1997 A
5697285 Nappi Dec 1997 A
5712961 Matsuo Jan 1998 A
5749828 Solomon May 1998 A
5770913 Mizzi Jun 1998 A
5816769 bauer Oct 1998 A
5821666 Matsumoto Oct 1998 A
5842381 Feiten Dec 1998 A
RE36025 Suzuki Jan 1999 E
5878783 Smart Mar 1999 A
5888235 Jacobsen et al. Mar 1999 A
5902254 Magram May 1999 A
5906591 Dario May 1999 A
5984032 Gremillion Nov 1999 A
5996346 Maynard Dec 1999 A
6016385 Yee Jan 2000 A
6030057 Fikse Feb 2000 A
6056237 Woodland May 2000 A
6107795 Smart Aug 2000 A
6109705 Courtemanche Aug 2000 A
6113343 Goldenberg et al. Sep 2000 A
6132133 Muro et al. Oct 2000 A
6138604 Anderson Oct 2000 A
6162171 Ng Dec 2000 A
6186604 Fikse Feb 2001 B1
6203126 Harguth Mar 2001 B1
6260501 Agnew Jul 2001 B1
6263989 Won Jul 2001 B1
6264293 Musselman Jul 2001 B1
6264294 Musselman et al. Jul 2001 B1
6281489 Tubel et al. Aug 2001 B1
6323615 Khairallah Nov 2001 B1
6325749 Inokuchi et al. Dec 2001 B1
6333631 Das et al. Dec 2001 B1
6339993 Comello Jan 2002 B1
6380889 Herrmann et al. Apr 2002 B1
6394204 Haringer May 2002 B1
6405798 Barrett et al. Jun 2002 B1
6408224 Okamoto Jun 2002 B1
6411055 Fujita Jun 2002 B1
6422509 Yim Jul 2002 B1
6430475 Okamoto Aug 2002 B2
6431296 Won Aug 2002 B1
6446718 Barrett et al. Sep 2002 B1
6450104 Grant Sep 2002 B1
6477444 Bennett et al. Nov 2002 B1
6484083 Hayward Nov 2002 B1
6488306 Shirey et al. Dec 2002 B1
6505896 Boivin Jan 2003 B1
6512345 Borenstein Jan 2003 B2
6522950 Conca et al. Feb 2003 B1
6523629 Buttz Feb 2003 B1
6529806 Licht Mar 2003 B1
6535793 Allard Mar 2003 B2
6540310 Cartwright Apr 2003 B1
6557954 Hattori May 2003 B1
6563084 Bandy May 2003 B1
6574958 Macgregor Jun 2003 B1
6576406 Jacobsen et al. Jun 2003 B1
6595812 Haney Jul 2003 B1
6610007 Belson et al. Aug 2003 B2
6619146 Kerrebrock Sep 2003 B2
6636781 Shen et al. Oct 2003 B1
6651804 Thomas Nov 2003 B2
6652164 Stiepel et al. Nov 2003 B2
6668951 Won Dec 2003 B2
6708068 Sakaue Mar 2004 B1
6715575 Karpik Apr 2004 B2
6725128 Hogg et al. Apr 2004 B2
6772673 Seto Aug 2004 B2
6773327 Felice Aug 2004 B1
6774597 Borenstein Aug 2004 B1
6799815 Krishnan Oct 2004 B2
6820653 Schempf Nov 2004 B1
6831436 Gonzalez Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6837318 Craig Jan 2005 B1
6840588 Deland Jan 2005 B2
6866671 Tierney Mar 2005 B2
6870343 Borenstein Mar 2005 B2
6889118 Murray et al. May 2005 B2
6917176 Schempf Jul 2005 B2
6923693 Borgen Aug 2005 B2
6936003 Iddan Aug 2005 B2
6959231 Maeda Oct 2005 B2
7020701 Gelvin et al. Mar 2006 B1
7040426 Berg May 2006 B1
7044245 Anhalt et al. May 2006 B2
7069124 Whittaker et al. Jun 2006 B1
7090637 Dankitz et al. Aug 2006 B2
7137465 Kerrebrock Nov 2006 B1
7144057 Young et al. Dec 2006 B1
7171279 Buckingham et al. Jan 2007 B2
7188473 Asada Mar 2007 B1
7188568 Stout Mar 2007 B2
7228203 Koselka et al. Jun 2007 B2
7235046 Anhalt et al. Jun 2007 B2
7331436 Pack et al. Feb 2008 B1
7387179 Anhalt et al. Jun 2008 B2
7415321 Okazaki et al. Aug 2008 B2
7475745 DeRoos Jan 2009 B1
7546912 Pack et al. Jun 2009 B1
7597162 Won Oct 2009 B2
7600592 Goldenberg et al. Oct 2009 B2
7645110 Ogawa et al. Jan 2010 B2
7654348 Ohm et al. Feb 2010 B2
7775312 Maggio Aug 2010 B2
7798264 Hutcheson et al. Sep 2010 B2
7843431 Robbins et al. Nov 2010 B2
7845440 Jacobsen Dec 2010 B2
7860614 Reger Dec 2010 B1
7974736 Morin et al. Jul 2011 B2
8042630 Jacobsen Oct 2011 B2
8162410 Hirose et al. Apr 2012 B2
8205695 Jacobsen et al. Jun 2012 B2
20010037163 Allard Nov 2001 A1
20020038168 Kasuga et al. Mar 2002 A1
20020128714 Manasas et al. Sep 2002 A1
20020140392 Borenstein Oct 2002 A1
20020189871 Won Dec 2002 A1
20030000747 Sugiyama Jan 2003 A1
20030069474 Couvillon, Jr. Apr 2003 A1
20030097080 Esashi May 2003 A1
20030110938 Seto Jun 2003 A1
20030223844 Schiele Dec 2003 A1
20040030571 Solomon Feb 2004 A1
20040099175 Perrot et al. May 2004 A1
20040103740 Townsend Jun 2004 A1
20040168837 Michaud Sep 2004 A1
20040216931 Won Nov 2004 A1
20040216932 Giovanetti Nov 2004 A1
20050007055 Borenstein Jan 2005 A1
20050027412 Hobson Feb 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050107669 Couvillon, Jr. May 2005 A1
20050115337 Tarumi Jun 2005 A1
20050166413 Crampton Aug 2005 A1
20050168068 Courtemanche et al. Aug 2005 A1
20050168070 Dandurand Aug 2005 A1
20050225162 Gibbins Oct 2005 A1
20050235898 Hobson Oct 2005 A1
20050235899 Yamamoto Oct 2005 A1
20050288819 de Guzman Dec 2005 A1
20060000137 Valdivia y Alvarado Jan 2006 A1
20060005733 Rastegar Jan 2006 A1
20060010702 Roth Jan 2006 A1
20060070775 Anhalt Apr 2006 A1
20060117324 Alsafadi et al. Jun 2006 A1
20060156851 Jacobsen Jul 2006 A1
20060225928 Nelson Oct 2006 A1
20060229773 Peretz Oct 2006 A1
20060290779 Reverte et al. Dec 2006 A1
20070029117 Goldenberg et al. Feb 2007 A1
20070156286 Yamauchi Jul 2007 A1
20070193790 Goldenberg et al. Aug 2007 A1
20070260378 Clodfelter Nov 2007 A1
20070293989 Norris Dec 2007 A1
20080115687 Gal et al. May 2008 A1
20080164079 Jacobsen Jul 2008 A1
20080167752 Jacobsen Jul 2008 A1
20080168070 Naphade Jul 2008 A1
20080215185 Jacobsen Sep 2008 A1
20080272647 Hirose et al. Nov 2008 A9
20080284244 Hirose et al. Nov 2008 A1
20090035097 Loane Feb 2009 A1
20090171151 Choset et al. Jul 2009 A1
20090212157 Arlton et al. Aug 2009 A1
20100030377 Unsworth Feb 2010 A1
20100036544 Mashiach Feb 2010 A1
20100258365 Jacobsen Oct 2010 A1
20100268470 Kamal et al. Oct 2010 A1
20100318242 Jacobsen et al. Dec 2010 A1
20120205168 Flynn et al. Aug 2012 A1
Foreign Referenced Citations (78)
Number Date Country
2512299 Sep 2004 CA
1603068 Apr 2005 CN
2774717 Apr 2006 CN
1970373 May 2007 CN
3025840 Feb 1982 DE
3626238 Feb 1988 DE
19617852 Oct 1997 DE
19714464 Oct 1997 DE
19704080 Aug 1998 DE
10018075 Jan 2001 DE
102004010089 Sep 2005 DE
0105418 Apr 1984 EP
0584520 Mar 1994 EP
0818283 Jan 1998 EP
0924034 Jun 1999 EP
1444043 Aug 2004 EP
1510896 Mar 2005 EP
1832501 Sep 2007 EP
1832502 Sep 2007 EP
2638813 May 1990 FR
2850350 Jul 2004 FR
1199729 Jul 1970 GB
51-106391 Aug 1976 JP
52 57625 May 1977 JP
HEI 52-122431 Oct 1977 JP
58-89480 May 1983 JP
SHO 58-80387 May 1983 JP
HEI 59-139494 Aug 1984 JP
60015275 Jan 1985 JP
60047771 Mar 1985 JP
60060516 Apr 1985 JP
60139576 Jul 1985 JP
61001581 Jan 1986 JP
SHO 61-1581 Jan 1986 JP
SHO61-020484 Feb 1986 JP
SHO61-054378 Mar 1986 JP
SHO61-075069 Apr 1986 JP
61089182 May 1986 JP
62165207 Jul 1987 JP
62-162626 Oct 1987 JP
SHO 63-32084 Mar 1988 JP
63306988 Dec 1988 JP
04092784 Mar 1992 JP
4126656 Apr 1992 JP
HEI 5-3087 Jan 1993 JP
05147560 Jun 1993 JP
HEI05-270454 Oct 1993 JP
HEI 5-286460 Nov 1993 JP
06-115465 Apr 1994 JP
HEI 8-133141 Nov 1994 JP
2007-216936 Aug 1995 JP
7329841 Dec 1995 JP
HEI 7-329837 Dec 1995 JP
HEI 9-142347 Jun 1997 JP
2003-237618 Feb 2002 JP
2003-019985 Jan 2003 JP
2003-315486 Nov 2003 JP
03535508 Jun 2004 JP
2004536634 Dec 2004 JP
2005-081447 Mar 2005 JP
2005111595 Apr 2005 JP
2006510496 Mar 2006 JP
2007-237991 Sep 2007 JP
WO 8702635 May 1987 WO
WO9726039 Jul 1997 WO
WO 0010073 Feb 2000 WO
WO 200010073 Feb 2000 WO
WO0216995 Feb 2002 WO
WO 02095517 Nov 2002 WO
WO03030727 Apr 2003 WO
WO03037515 May 2003 WO
WO 2004056537 Jul 2004 WO
WO2005018428 Mar 2005 WO
WO2006068080 Jun 2006 WO
WO2008049050 Apr 2008 WO
WO2008076194 Jun 2008 WO
WO 2008135978 Nov 2008 WO
WO2009009673 Jan 2009 WO
Non-Patent Literature Citations (43)
Entry
U.S. Appl. No. 12/171,146, filed Jul. 10, 2008; Stephen C. Jacobsen; office action dated Aug. 20, 2012.
U.S. Appl. No. 13/181,380, filed Jul. 12, 2011; Stephen C. Jacobsen; office action dated Jul. 17, 2012.
U.S. Appl. No. 12/814,302, filed Jun. 11, 2010; Stephen C. Jacobsen; notice of allowance dated Jul. 25, 2012.
Arnold, Henry, “Cricket the robot documentation.” online manual available at http://www.parallaxinc.com, 22 pages.
Iagnemma, Karl et al., “Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers.” International Journal of Robotics Research, Oct.-Nov. 2004, pp. 1029-1040, vol. 23, No. 10-11.
Hirose, et al., “Snakes and strings; new robotic components for rescue operations,” International Journal of Robotics Research, Apr.-May 2004, pp. 341-349, vol. 23, No. 4-5.
Paap et al., “A robot snake to inspect broken buildings,” IEEE, 2000, pp. 2079-2082, Japan.
Braure, Jerome, “Participation to the construction of a salamander robot: exploration of the morphological configuration and the locomotion controller”, Biologically Inspired Robotics Group, master thesis, Feb. 17, 2004, pp. 1-46.
Jacobsen, et al., Advanced intelligent mechanical sensors (AIMS), Proc. IEEE Trandsucers, Jun. 24-27, 1991, abstract only, San Fransico, CA.
Jacobsen, et al., “Research robots for applications in artificial intelligence, teleoperation and entertainment”, International Journal of Robotics Research, 2004, pp. 319-330, vol. 23.
Jacobsen, et al., “Multiregime MEMS sensor networks for smart structures,” Procs. SPIE 6th Annual Inter. Conf. on Smart Structues and Materials, Mar. 1-5, 1999, pp. 19-32, vol. 3673, Newport Beach CA.
MacLean et al., “A digital MEMS-based strain gage for structural health monitoring,” Procs. 1997 MRS Fall Meeting Symposium, Nov. 30-Dec. 4, 1997, pp. 309-320, Boston Massachusetts.
Berlin et al., “MEMS-based control of structural dynamic instability”, Journal of Intelligent Material Systems and Structures, Jul. 1998 pp. 574-586, vol. 9.
Goldfarb, “Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots,” IEEE Transactions on Mechatronics, Jun. 2003, vol. 8 No. 2.
Dowling, “Limbless Locomotion: Learning to crawl with a snake robot,” The Robotics Institute at Carnegie Mellon University, Dec. 1997, pp. 1-150.
Jacobsen, Stephen; U.S. Appl. No. 11/985,320, filed Nov. 13, 2007; published as US-2008-0215185; published Sep. 4, 2008; issued as patent No. 7,845,440 on Dec. 7, 2010.
Jacobsen, Stephen, U.S. Appl. No. 11/985,346, filed Nov. 13, 2007; published as US-2008-0136254 on Jun. 12, 2008.
Jacobsen, Stephen; U.S. Appl. No. 11/985,324, filed Nov. 13, 2007; published as US-2008-0217993-A1; published Sep. 11, 2008; Aug. 28, 2011 as 8,002,365; issued as patent No. 8,002,365 on Aug. 23, 2011.
Jacobsen, Stephen; U.S. Appl. No. 11/985,323, filed Nov. 13, 2007; published as US-2008-0164079 on Jul. 10, 2008; issued as patent No. 7,845,440 on Dec. 7, 2010.
Jacobsen, Stephen; U.S. Appl. No. 12/171,144, filed Jul. 10, 2008; published as US-2009-0025988 on Jan. 29, 2009; issued Jul. 10, 2011 as 7,845,440.
Jacobsen, Stephen; U.S. Appl. No. 12/171,146, filed Jul. 10, 2008; published as US-2009-0030562 on Jan. 29, 2009.
Jacobsen, Stephen, U.S. Appl. No. 12/151,730, filed May 7, 2008; published as US-2008-0281231 on Nov. 13, 2008; issued Aug. 13, 2011 as 8,002,716.
Jacobsen, Stephen, U.S. Appl. No. 12/117,233, filed May 8, 2008; published as US-2008-0281468-A1on Nov. 13, 2008.
Jacobsen, Stephen, U.S. Appl. No. 11/293,701, filed Dec. 1, 2005; published as US-2006-0156851-Alon Jul. 20, 2006.
Jacobsen, Stephen, U.S. Appl. No. 11/985,336, filed Nov. 13, 2007; published as US-2008-0167752-Alon Jul. 10, 2008; issued as patent 8,185,241 on May 22, 2012.
Jacobsen, Stephen, U.S. Appl. No. 12/350,693, filed Jan. 8, 2009; published as US-2010-0174422-A1on Jul. 8, 2010.
Jacobsen, Stephen; U.S. Appl. No. 12/694,996, filed Jan. 27, 2010; published as US-2010-0201187 on Jul. 12, 2010.
Jacobsen, Stephen; U.S. Appl. No. 12/814,302, filed Jun. 11, 2010; published as US2010-0317244 on Dec. 16, 2010.
Jacobsen, Stephen; U.S. Appl. No. 12/814,304; filed Jun. 11, 2010; published as US-2010-0318242 on Dec. 16, 2010.
Jacobsen, Stephen; U.S. Appl. No. 12/820,881, filed Apr. 22, 2010; published as US-2010-0201185 on Aug. 12, 2010; issued as patent No. 8,042,630 on Oct. 25, 2011.
Jacobsen, Stephen; U.S. Appl. No. 12/765,618, filed Apr. 22, 2010; published as US-2010-0201185-A1on Aug. 12, 2010.
Matthew Heverly & Jaret Matthews: “A wheel-on-limb rover for lunar operation” Internet article, Nov. 5, 2008, pp. 1-8, http://robotics.estec.esa.int/i-SAIRAS/isairas2008/Proceedings/SESSION%2026/m116-Heverly.pdf.
NASA: “NASA's newest concept vehicles take off-roading out of this world” Internet article, Nov. 5, 2008, http://www.nasa.gov/mission—pages/constellation/main/lunar—truck.html.
Revue Internationale De defense, “3-D vision and urchin” Oct. 1, 1988, p. 1292, vol. 21, No. 10, Geneve CH.
Advertisement, International Defense review, Jane's information group, Nov. 1, 1990, p. 54, vol. 23, No. 11, Great Britain.
Ren Luo “Development of a multibehavior-based mobile robot for remote supervisory control through the internet” IEEE/ASME Transactions on mechatronics, IEEE Service Center, Piscataway, NY, Dec. 1, 2000, vol. 5, No. 4.
Nilas Sueset et al., “A PDA-based high-level human-robot interaction” Robotics, Automation and Mechatronics, IEEE Conference Singapore, Dec. 1-3, 2004, vol. 2, pp. 1158-1163.
Jacobsen, Stephen; U.S. Appl. No. 13/181,380, filed Jul. 12, 2011.
U.S. Appl. No. 12/814,304, filed Jun. 11, 2010; Stephen C. Jacobsen; office action dated Nov. 13, 2012.
U.S. Appl. No. 12/117,233, filed May 8, 2008; Stephen C. Jacobsen. office action dated Nov. 23, 2012.
U.S. Appl. No. 12/350,693, filed Jan. 8, 2009; Stephen C. Jacobsen; Notice of Allowance issued Sep. 20, 2012.
Celaya et al; Control of a Six-Legged Robot Walking on Abrupt Terrain; Proceedings of the 1996 IEE International Conference on Robotics and Automation, Minneapolis, Minnesota; Apr. 1996; 6 pages.
Burg et al; Anti-Lock Braking and Traction Control Concept for All-Terrain Robotic Vehicles; Proceedings of the 1997 IEE International Conference on Robotics and Automation; Albuquerque, New Mexico; Apr. 1997; 6 pages.